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Abstract 

Background Overuse of pesticides is a major worldwide problem for the environment and human health. Atrazine 
(ATR) is a synthetic triazine herbicide that is typically used to manage crops and although it was banned many years 
ago, it was detected frequently with a high persistence in the aquatic environments. This study assesses the human 
and environment health risks, temporal patterns and spatial distribution of ATR and its degradation products 
(DPs) in the Sele River estuary within the Southern European context.. It specifically investigates their occurrence 
in the water dissolved phase (WDP), suspended particulate matter (SPM), and sediment.

Results Sampling was conducted across 10 sites throughout the year’s four seasons. Amounts of ATR and its DPs 
detected ranged from 20.1 to 96.5 ng  L−1 in WDP, from 5.4 to 60.2 ng  L−1 in SPM, and from 4.7 to 19.8 ng  g−1 in sedi-
ment samples, signifying some pollution levels. Spatial distribution mechanisms revealed a southward movement 
of ATR and its DPs pollution from the Sele River mouth, intensifying during the rainy season. In this study area, a risk 
evaluation was also carried out. No sample contained ATR or its DPs in concentrations above the recommended 
limits, which pose a Non-carcinogenic and Carcinogenic risk. The environmental risk was low. Additionally, the deter-
mined Incremental lifetime cancer risk (ILCR) value was within the allowable range.

Conclusion Despite its long-standing prohibition, this study investigate ATR levels in the water and sediments 
of Sele River in Southern Europe. Beyond simply delineating the pollution status of Sele River, this research deline-
ates its ecological repercussions on the Thyrrenian Sea, providing essential data for norms and laws related to water 
contamination.

Keywords Monitorings, Pollutants, Degradation products, Non carcinogenic and carcinogenic risk, Environmental 
risk

*Correspondence:
Paolo Montuori
pmontuor@unina.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-024-00941-6&domain=pdf


Page 2 of 18De Rosa et al. Environmental Sciences Europe          (2024) 36:115 

Graphical Abstract

Background
Aquatic ecosystem safety is mainly centred on how com-
mon organic contaminants are transformed in aquatic 
environments, which is more complicated than their 
destiny in surface water or soil.. The use of pesticides to 
safeguard food production and satisfy global demand is 
common, but they are also ubiquitous environmental 
pollutants that have a negative impact on human health, 
biodiversity, and water quality [1, 2]. Pesticides pose a 
concern because of their physic-chemical properties 
and resilience, but most importantly because they may 
metabolize and produce new degradation products (DPs) 
[3, 4].

DPs can originate from different degradation mecha-
nisms of pesticides. These degradation actions in the 
environment comprises two main processes: biological 
degradation and chemical degradation. Chemical deg-
radation, in turn, is further categorized into hydrolysis 
and photolysis. Both hydrolysis and photolysis play sig-
nificant roles in the breakdown of pesticides within the 
environment.

Hydrolysis involves the chemical breakdown of pes-
ticide molecules through reactions targeting specific 
chemical structures within them, such as ester bonds, 
ether bonds, and amide bonds [5]. Photolysis, on the 
other hand, involves the degradation of pesticides 
through exposure to light radiation, wherein the energy 
from light breaks molecular bonds within the compound, 
initiating internal reactions. Many pesticides exhibit a 

high sensitivity to photolysis due to their inherent struc-
tural properties [6]. Biological degradation, conversely, 
is facilitated by microorganisms that catalyze various 
reactions including hydrolysis, oxidation, alkylation, and 
dealkylation. Biodegradation can be understood as the 
conversion of complex pesticide substances into simpler 
compounds through microbial activity [7, 8].

The produced DPs are often at least as hazardous as the 
parent chemicals, and because of their extremely polar 
and hydrophilic properties, they may easily pass into 
aquatic ecosystems [9–11]. (ATR and its DPs have been 
under intensive scientific review for over a decade due 
to its negative effects on growth, reproduction, develop-
ment and other physiological functions in aquatic organ-
isms [12]. Mercurio et  al. has revealed the potentially 
high toxicity of ATR degradation substances to nonpho-
totrophic organisms [13].

According to the literature, ATR’s pollution resulted in 
hazardous effects on fish such as immunosuppression, 
oxidative stress, inflammation, and high acceptability to 
infection [14, 15]. These substances pose a major threat 
to human health since they may result in the develop-
ment of conditions that affect the immunological, res-
piratory, reproductive, neurological, gastrointestinal, and 
endocrine systems as well as the skin and the genital tract 
[16, 17].

Mostly used as a specific herbicide, ATR stops photo-
synthesis in broadleaf weeds. Mostly applied as a spe-
cific herbicide, ATR finds extensive application in corn 
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and sugar cane cultivation, owing to its notable efficacy 
in weed control [18] Consequently, its widespread adop-
tion on a global scale has ensued. Nonetheless, owing to 
its considerable propensity for environmental contami-
nation, the European Union instituted an absolute ban 
on ATR employment in 2004 [19]. Despite this regula-
tory measure, ATR continues to be extensively utilized 
in other regions, including the United States, Brazil, 
India, and China. Because this pesticide is very polar and 
hydrophilic (Kow = 2.61), it may easily seep out of the 
ground and be transported by rural streams through run-
off, which then enters estuarine ecosystems. [20].

The degradation process develops during the transit 
of herbicides via leaching from soil into adjacent surface 
marine water, and it is dependent on the marine environ-
ment, atmospheric conditions and the characteristics 
of the herbicide. ATR in water and in soil is a very per-
sistent chemical. [21]. Aquatic organisms may be at risk 
due to ATR, the herbicide that is most commonly identi-
fied in estuarine environments and has a 100% detection 
frequency has been found everywhere [22]. The half-life 
of ATR can range from numerous weeks to approxi-
mately 2  years across various environmental contexts, 
primarily due to its non-biodegradable characteristics 
and its resilience against microbiological degradation in 
aquatic ecosystems [23, 24]. Its main degradation prod-
ucts defined as primary are desethylatrazine (DEA), 
desisopropylatrazine (DIA), and hydroxyatrazine (HA), 
while desethylhydroxyatrazine (DEHA) and desisopro-
pylhydroxyatrazine (DIHA) are defined as secondary 
degradation products and derive mainly from chemical 
and biological degradation processes (Fig.  1). Because 
of their comparable or greater ecotoxicity to the ATR 
parent, the alkyl-substituted derivatives, DEA and DIA, 
represent important degradation products that have 
been researched. The hydroxyl-substituted product, HA, 
appears to be the principal product of chemical degrada-
tion and constitutes up the majority in aquatic environ-
ments [25]. In terms of toxicity, ATR is a compound that, 
with prolonged or repeated exposure, may result in organ 
damage, skin sensitization, and allergic skin responses. 
Moreover ATR acts also as an endocrine disruptor, the 
capacity of this herbicide to interfere with the vertebrate 
endocrine system is broadly recognized, but the mecha-
nisms and responses usually differ among species [26]. 
It is categorized as possibly carcinogenic to humans 
in Group III and has the potential to negatively impact 
human health [27, 28]. In Europe, ATR was prohibited 
in 2004, however, considering that several countries 
surface waterways still contain this herbicide, the Direc-
tive 2013/39/EU [29] determines Environmental Qual-
ity Standards of 0.6 μg/L as annual average and 2.0 μg/L 
as maximum allowable concentration of ATR for fresh 

waters. Nevertheless, notwithstanding the prohibition, 
ATR and its metabolites have recurrently been detected 
in significant concentrations, surpassing water quality 
standards, in several European countries such as Spain, 
Slovenia, Hungary, Portugal, and Germany over the past 
decade [30]. Furthermore, recent studies documented the 
presence of ATR and its DPs in water of Italy [28, 31].

The vertical and horizontal distributions of ATR in 
water, suspended particles, and sediment may provide 
significant knowledge about the dynamics of herbicide 
consumption in marine environments because of its 
extensive application. The ATR transmission mecha-
nism from terrestrial watershed to marine environment 
is dependent on variations in salinity, DOC, seawater 
depth, and temperature on a regional and temporal scale 
[32]. This research evaluates the amounts of ATR and 
its DPs found from the Sele River, one of the important 
rivers of the Campania plain. Situated in a rich region 
of southern Italy, the Campania plain has sustained the 
development of agriculture and farming during history. 
Rich farming techniques, such raising cattle on buffalo 
farms and producing fruits and vegetables on a huge 
scale, are common in this area, in particular the Plane of 
Sele River is an area characterized by an intensive agri-
culture and greenhouse cultures [33, 34]. Currently, there 
is a significant lack of research examining the health risks 
associated with atrazine and its degradation products. 
Therefore, given the scarcity of data regarding regional 
ATR contamination and its DPs in water and sediment 
in Italy, the main objective of the study was to assess the 
concentrations of atrazine (ATR) and its degradation 
products (DPs) in the Sele River, as well as the potential 
risks to human health resulting from exposure to them. 
In detail, the research aimed to (i) estimate the concen-
trations of ATR and its DPs in WDP, SPM and sediment 
phases; (ii) evaluate their distribution between water and 
sediment; (iii) analyze the spatial and temporal variations 
in the Sele River; (iv) Assess the potential non-carcino-
genic and carcinogenic risks to human health...

Materials and methods
Area of study
The Sele plain, of about 500  km2, constitutes a very fertile 
region of Campania Region, divided into right and left 
areas based to the Sele River’s flow. This region is bor-
dered to the north by the Meridional chains of Mt Picen-
tini, to the east by the hills of the medium Sele, to the 
south by the chains of the sub-Lucan Appennines, and 
to the west by the Tyrrhenian Sea of the Gulf of Salerno. 
From a geological perspective, the Sele Plain is an area 
that was just recently developed. This is because the Sele 
River, in particular, was responsible for accumulating 
alluvial debris from the adjacent mounts and generating 
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deep and fertile soils. Due to these characteristics, the 
Sele Plain is the Salerno province’s most significant and 
productive lung. In this study area the climate is usually 
Mediterranean with wet and moderate winter and dry 
summer, rainfall is concentrated from autumn to spring 
and the principal crops are potatoes, vegetables, peach, 
apricots and pears [35, 36] (Fig. 2).

Sampling
The sampling procedure has been previously described 
by De Rosa et al. [34]. Briefly, between 2020 and 2021, 
water and sediment samples were gathered in the Sele 
River to evaluate the spatio-temporal distribution of 
different classes of pollutants including ATR and its 

DPs. The water samples were collected in triplicate, 
and Fig.  2 shows the sampling points stations. At a 
depth of about 20 cm in the river, surface water sam-
ples were taken with pre-cleaned 2.5  L glass bottles, 
transferred to the laboratory and stored at 4  °C until 
analysis The samples were filtered via glass fiber fil-
ter (47  mm 0.7  m; Whatman, Maidstone, UK) to dis-
tinct the suspended particle matter (SPM) and water 
dissolved phase (WDP) fractions. In the spring sea-
son (April 2021), at the 10 sampling locations, sedi-
ment (SED) samples (0–5  cm) were taken and placed 
in aluminium containers by a grab sampler (Van Veen 
Bodemhappe 2 L capacity), then they were transferred 
to the laboratory and stored at − 20 °C before analysis 
[37, 38].

Fig. 1 Degradation pathways of atrazine to primary and secondary metabolites [70, 71]
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Instrumental analysis of ATR and DPs
Instrumental analysis for the determination of ATR and 
its DPs has previously been discussed in detail by Triassi 
et al. [28]. A Thermo Scientific™ UltiMate™ 3000UHPLC 
coupled to a TSQ Fortis Triple Quadrupole was used. 
The separation of analytes was accomplished using a 
reversed-phase Acclaim C18 column (4 μm particle size, 
250 × 4.6  mm). The mobile phase consisted of LC–MS 
grade water/methanol (95:5) as eluent A and LC–MS 
grade methanol/water (95:5) as eluent B, both containing 
0.1% formic acid/5 mM ammonium formate. The column 
temperature was maintained at + 25 °C, with a flow rate 
of 300 μL min-1 and an injection volume of 2 μL. Gradi-
ent elution was conducted by altering the proportion of 
solvent A to solvent B as follows: 0 min at 2.0% B, 1 min 
at 2% B, 2 min at 50% B, 9 min at 98% B, 12 min at 98% B, 
and 12.1 min back to 2% B.

Method selectivity was ensured by monitoring two 
transitions per compound at the analyte’s retention time, 
corresponding to the transition between the precursor 
ion and the two most abundant product ions. MS Quan-
tification (SRM1) utilized the most abundant ion, while 
confirmation (SRM2) used the other. Detailed LC and 
MS conditions are provided in Table S1, and SRM details 
are summarized in Table S2.

Extraction samples method
The ATR and its degradation products were determined 
using the multi-residue method outlined by Climent et al. 
[39]. Specifically, 500 mL of water samples were filtered 
through 0.45 μm glass fiber filters, and the resulting fil-
trates were preconcentrated using a peristaltic pump at 
a consistent flow rate of 7 mL  min−1 through SPE Oasis 
HLB cartridges. Prior to use, these cartridges were pre-
conditioned with 5 mL of acetone, 5 mL of acetonitrile, 

and 10 mL of Milli-Q water.After the loading phase, the 
cartridges underwent a 5-min air-drying period, then 
underwent elution with 4  mL of acetone followed by 
4 mL of acetonitrile. Afterwards, the samples were dried 
using a nitrogen stream and reconstituted in 100 μL of 
methanol/water (1:1) for LC–MS/MS analysis. Consid-
ering the extraction method, the extracts were precon-
centrated with a 1:5000 factor. ATR and DPs adhered 
to particulate matter (SPM), retained by glass fiber fil-
ters (47  mm × 0.7  μm; Whatman, Maidstone, UK), and 
extracted through sonication for 15  min. Later on, the 
extracts were dried using a nitrogen stream and reconsti-
tuted in 100 μL of methanol/water (1:1) for LC–MS/MS 
analysis. In this case as well considering the extraction 
method, the extracts were preconcentrated with a 1:5000 
factor [23].

For sediment samples (5.0 g), a processing step involved 
using 10 mL of methanol/acetone (1:1), followed by cen-
trifugation. The dried extract was then reconstituted in 
500 μL of methanol/water (1:1) for subsequent analysis 
via LC–MS/MS [40].

Quality control and quality assurance
The method validation was conducted to assess data 
quality by determining precision, accuracy, linearity, lim-
its of detection (LODs), limits of quantification (LOQs), 
and uncertainty. The analytical parameters were evalu-
ated using samples of ultrapure water UPLC grade and 
uncontaminated natural water spiked with predeter-
mined concentrations of the studied compounds. The 
matrix effect was assessed in duplicate by comparing the 
analyte signal obtained from pre-concentrating 500 mL of 
ultrapure water UPLC grade with that obtained from pre-
concentrating 500 mL of river water, each spiked with a 
concentration of 0.00125  ng   L−1 of all compounds. The 

Fig. 2 Map of study area and location of sampling sites in Campania Plain, southern Italy
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quantification of the samples was carried out through 
external calibration using matrix-matched standards to 
correct signal enhancement or suppression. The linear-
ity of the calibration curves for water and SPM phases 
was assessed across an instrumental concentration range 
of 6.25–1000.00 ng/L, corresponding to a concentration 
range of 0.00125 to 0.2  ng/L, using calibration stand-
ards prepared in uncontaminated river water (matrix-
matched calibration standards) to ensure accurate 
quantification. For sediment, the range of the calibration 
curve was between 0.0292 and 10.00 µg  L−1, correspond-
ing to a concentration range of 0.00292–1.00 ng  g−1.

Terbuthylazine was introduced into samples as the 
surrogate standard for LC–MS/MS analysis, at the con-
centration of 50 ng  L−1, before extraction to validate the 
analytical process. Due to the widespread presence of 
terbuthylazine as a contaminant [41], the recovery pro-
cess involved assessing the matrix effect by comparing 
the analyte signal obtained from concentrating 500  mL 
of ultrapure water (UPLC grade) with the signal obtained 
from both non-spiked and spiked matrices.

In batches of 10 samples, certified reference materi-
als were analyzed alongside samples using identical 
extraction techniques to identify potential interfering 
chemicals. Limit of Detection (LODs) and Limit of quan-
tification (LOQs) were calculated as 3 and 10 times the 
signal-to-noise ratio for each analyte. Specifically, for 
WDP and SPM, the effective LODs and LOQs, deter-
mined considering the concentration factor (1:5000) 
ranged from 0.000375 to 0.000615  ng   L−1 and 0.00125 
to 0.00205  ng   L−1, respectively. In sediment samples, 
the amounts varied from 0.000875 to 0.00121 ng  g−1 and 
0.00292 to 0.00403 ng  g−1, respectively.

Surrogate averaged recovery rates were 89.6 ± 5.5% in 
WDP, 90.5 ± 7.0% in SPM, and 93.2 ± 3.0% in sediment 
samples. These surrogate recoveries were considered in 
the calculation of ATR and DP results.

Health risk estimation
River systems are important components of environ-
ment, exhibiting complex hydrodynamics and rich bio-
diversity. Moreover, with pollution development and 
population growth in river systems, large amounts of pol-
lutants, including ATR and DPs, are typically discharged 
into estuaries. In this study health risk assessment was 
evaluated and categorized into two classes: carcinogenic 
and non-carcinogenic risk.

It was estimated that the direct ingestion and dermal 
absorption of ATR via contact to water by adhering to 
the exposed skin are the most frequent way of polluted 
water [42]. Humans are exposed to contaminants includ-
ing pesticides in water and sediments through several 
pathways or routes. Notable among such pathways are 

direct or indirect ingestion of substrate particles and der-
mal absorption of trace elements in particles adhered to 
exposed skin; as the reference dose of inhalation and unit 
risk of atrazine inhalation were not available in the rec-
ommended methods, only the risks via accidental inges-
tion and dermal contact exposure routes were assessed.

Several study in litterature have estimated the potential 
risk to human health that could arise from the consump-
tion of pesticide contaminated food (dietary intake). 
However, there is the need to estimate the risk to human 
health through non dietary exposures. These risks are 
predicted by some risk assessment models which include 
the chronic daily intake (CDI) and the incremental life-
time cancer risk (ILCR).

As shown in Table  S3, the slope factors for carcino-
genic pollutants and reference dosages for noncarcino-
genic substances were obtained from databases including 
the Integrated Risk Information System (IRIS, US EPA). 
In the health risk evaluation, 1 ×  10–6 was used as the 
acceptable critical threshold of lifetime cancer risk for 
individuals in accordance with the suggested tolerable 
risks gave by the US EPA [43].

Equations  (1) and (2) were used to estimate the expo-
sure pathways through eating and cutaneous absorption. 
Equations  (3) and (4) were used to determine the atra-
zine’s and its DPs non-carcinogenic health risk and incre-
mental lifetime cancer risk, respectively.

so CDI is chronic daily intake (mg/kg*d); C indicates 
the amount of the target contaminants(mg/L); IR is the 
intake rate (L/d); EF suggest the exposure frequency 
(d/y) that was 30 and 70  years for non-cancer and can-
cer risk, respectively, ED is the exposure period (years); 
BW is the body weight (kg); AT is the standard expo-
sure time (days); SA is the skin exposure area  (cm2); 
Kp is the permeability coefficient (cm/h); ABF is the 
dermal absorption factor and ET is the Exposure time 
(h/d). RfD value for ingestion is RfDo and for dermal 
contact with contaminated water and sediment is RfD-
ABS (RfDo ×  ABSGI).  ABSGI is considered as the fraction 
absorbed in the gastrointestinal tract in the main toxicity 
study. For the calculation of ILCR,  SFO (mg/kg/day) and 
 SFO ×  ABSGI represent the slop factor of direct ingestion 

(1)CDIIngestion = (C ∗ IR ∗ EF ∗ ED)/(BW ∗ AT )

(2)

CDIDermal =(C ∗ SA ∗ Kp ∗ ABF ∗ ET ∗ EF ∗ ED ∗ CF)
/(BW ∗ AT )

(3)HQ =

∑
CDI/RFD

(4)ILCR =

∑
CDI ∗ SF
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and dermal contact, respectively.Parameters used for 
exposure analysis of ATR and its DPs via ingestion and 
dermal pathways are reported in Table S3 in Supplemen-
tary Material Section [44].

Environmental risk assessment
The environmental risk assessment was conducted for 
this study. The potential ecological risks associated with 
the residues of ATR, HA, DEA and DIA identified in the 
analysed fractions and were evaluated. The presence of 
these pollutants in freshwater and marine ecosystems 
can cause significant harm and pose a serious threat to 
aquatic organisms. According to Barbieri et  al. [45] the 
hazard quotient (HQ) approach was calculated using the 
ratio of the mean or maximum measured environmental 
concentration (MEC) to the predicted no-effect concen-
tration (PNEC), as shown by the Eq. (5):

PNEC values were procured from the NORMAN Eco-
toxicology Database (https:// www. norman- netwo rk. 
com/ nds/ ecotox/) [45].

In this study, the mean concentration and the maxi-
mum concentration measured for each pesticide 
were used as MEC to assess the general-case scenario 
(HQmean) and to evaluate the worst-case scenario 
(HQmax), respectively. In addition, the HQ of the ATR, 
HA, DEA and DIA mixture (HQmix) was evaluated as 
the sum of individual HQm values of each contaminant.

High MEC and/or low PNEC are indicators of an 
important environmental risk. To best reflect freshwa-
ter, marine water systems, native aquatic organisms from 
trophic levels of fish and aquatic invertebrates, were con-
sidered in this study.

Three risk levels were identified based on the value of 
HQ: HQ values below 1 indicate zero or low risk, while 
HQ values between 1 and 10 anticipate moderate risk, 
and HQ values above 10 suggest high environmental risk.

Results and discussions
Levels of atrazine and its DPs
The extensive and occasionally insufficient application 
of herbicides has led to the development of resistance to 
these chemical agents. Consequently, there is an ongo-
ing necessity for the development and utilisation of new 
herbicides [46], which may possess increased toxicity. 
According to Heap [47], there have been reports of 1066 
cases across 70 countries detailing instances of weed 
resistance to herbicides, thereby presenting a significant 
public health concern.

Due to the implications for human health and the 
environment, regulations and legislation in numerous 

(5)HQ =

MEC

PNEC

countries, particularly those with well-established water 
quality laws, impose restrictions on the usage of herbi-
cides. Climent et al. [39] highlight that within the Euro-
pean Union, the legislation governing the maximum 
permissible concentrations of pesticides in drinking 
water stands as the most rigorous globally.This study ana-
lyzed the levels of ATR and DPs in the Sele River area, 
the amounts of these contaminants in water, SPM and 
sediment in the Sele River study area were reported in 
Tables  1, 2 and 3. The total concentrations of ATR and 
DPs in WDP ranged from 20.1 to 96.5 ng/L−1 with mean 
value of 54.1. These results revealed that WDP had the 
greatest concentrations in the Sele River [20, 48]. In par-
ticular average concentrations obtained indicate higher 
concentrations for HA (30.8  ng   L−1) followed by DIA 
(6.34 ng   L−1), DEHA (6.27 ng   L−1), DIHA (5.12 ng   L−1), 
ATR (3.18  ng   L−1) and DEA (2.28  ng   L−1) The diverse 
structural and chemical characteristics of ATR degrada-
tion products affect their variable interfacial partitioning. 
ATR, DIA, and DEA are significantly polar substances, 
hence their greater amounts in the WDP can be 
explained by their chemical-physical properties [49], in 
fact because ATR has approximately symmetric molecu-
lar structure, the substance has strong hydrophobicity 
and therefore low solubility, making ATR persistent in 
aqueous solution. On the other hand, the hydrolysis pro-
cesses that take place in water might justify the presence 
of HA, DIHA, and DEHA. The environmental behaviour 
of ATR depends upon several factors, including reten-
tion, transformation and transport processes, as well 
as by the interaction between them [50], in fact both in 
water and in sediments, ATR is subjected to numerous 
chemical reactions such as dechlorination, dealkylation 
of amino groups and hydroxylation [48]. The concentra-
tion of ATR could also be due to its properties, in fact 
it has a water solubility of 33 mg   L−1 (20  °C), a melting 
point of 175.8  °C, and is readily soluble in organic sol-
vents [51]. According to Urseler et al. ATR has a half-life 
of 100 days in water and 32–128 days in soil, making it a 
very persistent chemical [52].

For SPM, concentrations ranged from 5.4 to 
60.2 ng    L−1, with a mean value of 27.1 ng    L−1 (equiva-
lent to 129.9  ng   g−1). The average sample concentra-
tions obtained indicate higher concentrations for HA 
(15.5  ng   L−1) followed by DIA (3.63  ng   L−1), DEHA 
(3.18 ng  L−1), DIHA (2.40 ng  L−1), ATR (1.65 ng  L−1) and 
DEA (0.75 ng  L−1).

Comparisons between the findings of this study and 
other studies that have assessed the existence of ATR 
and its DPs in both WDP and SPM samples are cur-
rently limited with those in the literature. Particularly, 
upon comparing the data acquired with the outcomes 
of the previous investigation by Triassi et  al. [28], it 

https://www.norman-network.com/nds/ecotox/
https://www.norman-network.com/nds/ecotox/
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can be inferred that the values identified for the SPM 
phase in the analyzed rivers (Volturno River and Sele 
River) are comparable. To elaborate, the total amount 
detected ranged from 4.5 to 63.2 ng  L−1 with an average 
of 28.4  ng   L−1 for the Volturno River, and from 5.43 to 
60.23 ng  L−1 (with a mean value of 27.15 ng  L−1) for the 
Sele River. Conversely, in the dissolved phase, the results 
of this study unveiled quantities ranging from 20.09 to 
96.56 ng  L−1 (with a mean value of 54.0 ng  L−1). Further-
more, for this matrix as well, the findings exhibit consist-
ency with those derived in the previous study, wherein 
the total amounts of ATR and DPs detected in WPD 
ranged from 18.1 to 105.5 ng   L−1, with a mean value of 
54.4  ng   L−1Instead, Climent et  al. [39] in a 2019 study 
reports data obtained from a study on the most used pes-
ticides in Chile and in relation to the concentrations of 
DIHA and HA found, the highest values were found in 
the SPM with maximum of 1123 μg/kg (1123 ng/g−1) and 
1195 μg/kg (1195 ng/g−1), respectively [39]. Higher values 
were also found by Peng et al. [53] that identified a maxi-
mum concentration of 1726 ng   L−1 of ATR in China, in 
the Yangtze River Delta, while Battaglin et al. [54] in 86 
water samples (183 ng  L−1) finds ATR as one of the most 
frequently detected compounds.

In stagnate surface waters, ATR can remain floating 
or it may be absorbed by the sediment. Adsorption can 
occur in this phase following the diffusion of herbicides 
into sedimentary pore fluids or following a sediment 
disturbance event, such as cleaning or waves. Sediment 
resuspension could occur when rapid water flows into 
the body of water following periods of intense rainfall. 
ATR or its DPs may be removed from water during such 
disturbance episodes by attached to sediment and sink-
ing to the bottom of the water body. In addition, ATR can 
disperse while it is still in the water above it or after it has 
attached itself to sediments through biotic and abiotic 
processes. This is possible by dechlorination, which is 
basically a chemical hydrolysis process, or by N-dealkyla-
tion and ring destruction mediated by microorganisms 
[55].
N-Dealkylation of ATR developes DEA and DIA 

whereas HA is the first hydrolytic product. The 
dealkylated metabolites are further degraded to hydroxy-
lated atrazine products such as DEHA and DIHA. Fur-
thermore, DEA and DIA are less adsorbed onto sand, 
most likely as a result of their greater mobility and lower 
sorption than ATR [56].

For the sediment samples the results are detailed 
in Table  3. The average concentrations obtained 
indicate higher levels for HA (3.58  ng   g−1), fol-
lowed by ATR (3.29  ng   g−1), DEA (1.91  ng  g   g−1), 
DEHA (1.86 ng g   g−1), DIA (0.89 ng g   g−1), and DIHA 
(0.74 ng g  g−1). Nevertheless, for the Volturno River, the 
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average concentrations found in sediment samples were 
3.33 ng g  g−1 for HA and 3.26 ng  g−1 for ATR. Similarly, 
the mean concentrations observed for DPs in this study 
were comparable to those documented by Triassi et al. 
(DEA: 1.93 ng  g−1; DEHA: 1.75 ng  g−1; DIA: 0.81 ng  g−1; 
DIHA: 0.62  ng   g−1)In this study the ratios of total 
amounts (sum of all concentrations obtained for single 
compound) found in WDP and SPM ([WDP]/[SPM]), 
as well as those of the total amounts determined in 
SPM and SED ([SPM]/[SED]) were estimated.

For both ratios the result was > 1, furthermore it was 
seen that the amounts of the compounds reduced from 
WDP to SED. In sediments, HA concentrations were 
higher than other metabolites, this can be justified by 
the chemical-physical characteristics of this DPs (low 
solubility and long half-life in soil). The findings indi-
cated that chemical adsorption, which includes ion 
exchange and functional group complexation, is the 
primary factor influencing the adsorption of ATR by 
soil [57]. The H-bonding interactions between ATR and 
sediment are primarily responsible for the adsorption 
affinity of ATR to sediment [58].

Distribution mechanisms in the water system
The distribution mechanisms of ATR and its DPs from 
the Sele River was estimated by comparing the total 
concentration of samples collected at 10 sampling loca-
tions across four distinct seasons, both with and without 
rainfall. The seasonal variation patterns of these con-
taminants in WDP, SPM and SED were different (Fig. 3). 
Being the primary mode of transportation in the mari-
time environment, dissolved ATR is a priority concern, 
and the data obtained from monitoring conducted clearly 
showed an evident seasonal variations, when the value 
rises from summer months to rainy month and reach-
ing the maximum values in February. It was evident that 
the greatest amounts were identified for WDP at the 
river mouth (96.56  ng   L−1 in February) and gradually 
decreased from 58.4  ng   L−1 at 500  m, to 50.7  ng   L−1 at 
1000 m and 46.2 ng  L−1 at 1500 m south. All results are 
expressed as the average of the four seasons.

From the processing and evaluation of the data it is 
possible to deduce that the concentrations of ATR and 
DPs decrease considerably as one moves away from the 
mouth towards the sea, this could be explained by the 
dilution effect caused by sea water and other key fac-
tors such as temperature, dissolved oxygen and salinity 
(Table S3). The seasonal patterns that these environmen-
tal factors displayed help to explain the temporal changes 
in WDP, SPM and sediment. Temperature has an impact 
on ATR’s environmental patterns, which include absorp-
tion, photodegradation, and biodegradation. The dis-
solved oxygen level is connected to the aerobic process 

that forms DEA and DIA and eliminates side chains 
(ethyl and isopropyl groups). Salinity modified the pat-
tern of fractionation among the WDP and the solid 
phase, which in turn changed the fluctuations in atrazine 
concentration. Overall, the results of this study showed 
that concentrations at various locations may be sensitive 
to the distances from the sample sites to the estuary, even 
though phase dispersion is one of the primary mecha-
nisms of pesticide migration [59, 60].

Health risk assessment
The effects of ATR in human beings are not well known; 
nevertheless, as per findings by Swan et al. [61] and Swan 
[62], ATR and DPs were associated with a decline in 
semen quality and increased mortality among farmers 
exposed to them, in contrast to urban counterparts in the 
US. Moreover, elevated concentrations of ATR metabo-
lites were detected in the urine of farmers engaged in the 
application of ATR in agricultural settings.

Hence, due to the hazardous properties associated 
with ATR, its usage has been prohibited in the Euro-
pean Union since 2003 [63]. Nonetheless, ATR and 
its DPs, including continue to be identified in aquatic 
environments.

According to Glinski et al. [64] and Velisek et al. [65], 
the DPs of ATR may exhibit greater toxicity compared to 
the parent compound and are frequently found in water 
bodies contaminated with pesticides. Consequently, the 
unregulated and illicit application of ATR poses a signifi-
cant concern. Therefore, it is imperative to establish and 
enforce control measures to address this issue effectively.

Non‑carcinogenic risk
Non-carcinogenic risk assessment involved calculat-
ing the Hazard Quotient (HQ), utilizing the mean val-
ues of ATR and DPs obtained to calculated the total 
Chronic Daily Intake [CDI ingestion + CDI dermal (Eq. 1 
and 2)], in relation to the Reference Dose (RFD) [42]. 
ATR and its degradation products predominantly enter 
the human body through through contaminated water 
(WDP + SPM) and accidental ingestion.

The toxicity of ATR showed a direct correlation with its 
long-term daily use. This study examined the consump-
tion rate through accidental ingestion and dermal contact 
with water and sediments, which may occur as a result of 
the potential uses of the river for both summertime rec-
reational activities and agricultural purposes. Certainly, 
skin contact and inadvertent ingestion of surface water 
(from rivers and lakes) could potentially play a significant 
role in human exposure to these contaminants [66].

As indicated in the results presented in Table 4, the HQ 
levels were consistently below 1. This signifies that the 
concentrations of substances identified were below the 



Page 14 of 18De Rosa et al. Environmental Sciences Europe          (2024) 36:115 

limit associated with adverse impacts, suggesting a safe 
scenario.

Carcinogenic risk
Carcinogenic risks were evaluated for ATR and its DPs 
and it was calculated by multiplying total exposure (CDI) 
(μg/kg/day) and carcinogenic slope factor (SF) (kg*day/
μg) [67].

In general, a risk value higher than  10–4 suggests unac-
ceptable carcinogenic health risk, while a risk value of 
 10–6 could be reputed as the maximum acceptable level. 
So the risk value is between  10–6 and  10–4, the health risk 
is reputed acceptable or tolerable [68] and that between 
 10–8 and  10–7 was reputed as negligible [69]. Accordingly, 
in this study we considered  10–6 as mean acceptable criti-
cal threshold for adults.

In this research, cancer risk for human in water 
(WDP + SPM) and sediment were reported in Table  4, 
data showed that there wasn’t a cancer risk transfer the 
pollutants to the inhabitants by repeated consumption 
and skin contact in Sele River study area.

Environmental risk
To estimate the impact of the ATR and its DPs in the 
Sele River ecosystem, the HQ approach was used. The 
method was determined by comparing the maximum 

and mean measured concentrations of each contaminant 
with its corresponding lowest PNEC (extracted from the 
NORMAN ecotoxicology database) and to best reflect 
freshwater, marine water systems, native aquatic organ-
isms from trophic levels of fish and aquatic invertebrates, 
were considered in this study.

The results obtained for the detected pollutants showed 
that none the compounds analyzed posed high environ-
mental risk  (HQm > 10) for the general-case scenario: 
ATR  (HQm 0.003); HA  (HQm 0.009); DEA  (HQm 0.023) 
and DIA  (HQm 0.044).

For the worst-case scenario, the  HQmax, using the 
maximum concentrations obtained, was calculated: ATR 
 (HQmax 0.0120); HA  (HQmax 0.060); DEA  (HQmax 0.240) 
and DIA  (HQmax 0.280). Again, none of the contaminants 
analyzed reported  HQmax values above 10, indicating that 
there is no possibility of high risk potential to be associ-
ated with chronic exposure to these pollutants in the Sele 
River. In addition the risk quotient of the ATR and DPs 
mixture (HQmix), estimated as the sum of the individual 
 HQm values of each analytes, was 0.080, indicating a low 
environmental risk.

Based on the results obtained from this study it can be 
concluded that there is a low ecological risk in the Sele 
River estuary. In addition, metabolites DEA and DIA 
may be more hazardous than ATR [49], but the values 

Table 3 Overview of the sampling area and mean concentrations (± standard deviations n = 3) of ATR and its metabolites in the April 
sediment sampling campaign of the Sele River, southern Italy

The sediment samples were collected in triplicate

Nd not detected

Sampling location Compound (ng  g−1 dw)

Site number 
identification

Site characteristics Site location ATR DIHA DEHA DIA DEA HA Total

1 (river water) Sele River mouth 41° 01′ 19″ N 13° 55′ 
26″ E

4.88 ± 0.32 1.66 ± 0.41 3.01 ± 0.27 1.42 ± 0.41 2.89 ± 0.20 6.01 ± 0.23 19.87 ± 0.55

2 (seawater) River mouth 500 m 
north

41° 01′ 05″ N 13° 55′ 
38″ E

3.02 ± 0.20 0.65 ± 0.10 1.99 ± 0.56 0.96 ± 0.24 1.91 ± 0.16 3.99 ± 0.36 12.52 ± 0.60

3 (seawater) River mouth 1000 m 
north

41° 00′ 51″ N 13° 55′ 
48″ E

1.99 ± 0.18 0.32 ± 0.10 1.25 ± 0.22 0.70 ± 0.17 0.99 ± 0.12 2.26 ± 0.25 7.51 ± 0.22

4 (seawater) River mouth 1500 m 
north

41° 00′ 33″ N 13° 55′ 
49″ E

1.55 ± 0.08 nd 1.07 ± 0.04 0.15 ± 0.01 0.69 ± 0.15 1.26 ± 0.09 4.72 ± 0.10

5 (seawater) River mouth 500 m 
west

41° 01′ 25″ N 13° 55′ 
56″ E

4.01 ± 0.23 0.70 ± 0.35 2.00 ± 0.12 1.36 ± 0.24 2.48 ± 0.23 4.01 ± 0.28 14.56 ± 0.77

6 (seawater) River mouth 1000 m 
west

41° 01′ 00″ N 13° 54′ 
52″ E

3.01 ± 0.17 0.41 ± 0.21 1.88 ± 0.61 0.81 ± 0.36 1.25 ± 0.42 3.68 ± 0.63 11.04 ± 0.58

7 (seawater) River mouth 1500 m 
west

41° 00′ 45″ N 13° 54′ 
40″ E

2.88 ± 0.31 0.36 ± 0.07 1.33 ± 0.21 0.21 ± 0.05 2.23 ± 0.29 2.87 ± 0.69 9.88 ± 1.01

8 (seawater) River mouth 500 m 
south

41° 01′ 30″ N 13° 55′ 
10″ E

3.87 ± 0.26 1.10 ± 0.15 2.25 ± 0.11 1.32 ± 0.51 2.85 ± 0.39 4.52 ± 1.12 15.91 ± 1.35

9 (seawater) River mouth 1000 m 
south

41° 01′ 47″ N 13° 55′ 
05″ E

3.99 ± 0.52 0.88 ± 0.32 1.96 ± 0.55 1.22 ± 0.08 2.37 ± 0.38 3.67 ± 0.72 14.09 ± 1.87

10 (seawater) River mouth 1500 m 
south

41° 02′ 02″ N 13° 54′ 
56″ E

3.72 ± 0.71 0.66 ± 0.21 1.89 ± 0.39 0.77 ± 0.43 1.48 ± 0.35 3.56 ± 0.59 12.08 ± 0.69
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did not indicate worrying conditions for the species stud-
ied. Similarly, residues of ATR and HA did not present an 
unacceptable ecological risk.

However, many other factors need to be considered 
when assessing ecological risk, since aspects such as 
temperature, salinity, runoff, as well as temporal trends 

Fig. 3 Spatial distribution mechanism of ATR and DPs in the water system

Table 4 Non-carcinogenic risk and carcinogenic risk from ingestion and dermal routes

Compounds Non‑carcinogenic risk Carcinogenic risk

Ingestion HQ Dermal HQ Ingestion ILCR Dermal ILCR

WDP + SPM

 ATR 1.3 ×  10–3 8.7 ×  10–8 1.1 ×  10–5 7.0 ×  10–10

 DIHA 9.9 ×  10–4 6.4 ×  10–8 7.9 ×  10–6 5.2 ×  10–10

 DEHA 1.4 ×  10–3 9.6 ×  10–8 1.2 ×  10–5 7.7 ×  10–10

 DIA 1.6 ×  10–3 1.0 ×  10–7 1.3 ×  10–5 8.6 ×  10–10

 DEA 4.2 ×  10–4 2.7 ×  10–8 3.4 ×  10–6 2.2 ×  10–10

 HA 7.5 ×  10–3 4.8 ×  10–8 6.1 ×  10–5 3.9 ×  10–9

Sediment

 ATR 9.4 ×  10–2 5.9 ×  10–8 7.4 ×  10–6 4.8 ×  10–10

 DIHA 2.1 ×  10–2 1.3 ×  10–8 1.6 ×  10–6 1.1 ×  10–10

 DEHA 5.3 ×  10–2 3.3 ×  10–8 4.1 ×  10–6 2.7 ×  10–10

 DIA 2.5 ×  10–2 1.6 ×  10–8 2.0 ×  10–6 1.3 ×  10–10

 DEA 5.4 ×  10–2 3.4 ×  10–8 4.3 ×  10–6 2.7 ×  10–10

 HA 1.0 ×  10–1 6.4 ×  10–8 8.0 ×  10–6 5.2 ×  10–10
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of exposure may influence the effects of pesticides and 
therefore, their risk to aquatic organisms.

Conclusions
The widespread use of pesticides has raised concerns 
worldwide due to their slow degradation and lasting pres-
ence, posing significant threats to environmental sus-
tainability. This research provides valuable insights into 
ATR and its DPs pollution levels in the Sele River estu-
ary. Water samples showed higher ATR levels compared 
to sediment samples, especially near the river mouth and 
exacerbated during winter due to increased rainfall. The 
study suggests contamination flowing southward into 
the Mediterranean Sea. Risk assessment in the Sele River 
area found that none of the samples exceeded contamina-
tion limits for ATR and its DPs, posing non-carcinogenic 
and carcinogenic risks, moreover the results obtained 
from the assessment of environmental risk demonstrated 
a low ecological risk in this area. This study is pioneer-
ing in assessing ATR levels in southern Italy’s water and 
sediments despite its prohibition years ago. It highlights 
the ecological impact on the Mediterranean Sea, provid-
ing crucial data for water contaminant legislation and 
standards.
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