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Abstract 

Background Persistent, mobile and toxic (PMT), or very persistent and very mobile (vPvM) substances are a wide 
class of chemicals that are recalcitrant to degradation, easily transported, and potentially harmful to humans 
and the environment. Due to their persistence and mobility, these substances are often widespread in the environ-
ment once emitted, particularly in water resources, causing increased challenges during water treatment processes. 
Some PMT/vPvM substances such as GenX and perfluorobutane sulfonic acid have been identified as substances 
of very high concern (SVHCs) under the European Registration, Evaluation, Authorisation and Restriction of Chemicals 
(REACH) regulation. With hundreds to thousands of potential PMT/vPvM substances yet to be assessed and managed, 
effective and efficient approaches that avoid a case-by-case assessment and prevent regrettable substitution are 
necessary to achieve the European Union’s zero-pollution goal for a non-toxic environment by 2050.

Main Substance grouping has helped global regulation of some highly hazardous chemicals, e.g., through the Mon-
treal Protocol and the Stockholm Convention. This article explores the potential of grouping strategies for identifying, 
assessing and managing PMT/vPvM substances. The aim is to facilitate early identification of lesser-known or new 
substances that potentially meet PMT/vPvM criteria, prompt additional testing, avoid regrettable use or substitution, 
and integrate into existing risk management strategies. Thus, this article provides an overview of PMT/vPvM sub-
stances and reviews the definition of PMT/vPvM criteria and various lists of PMT/vPvM substances available. It covers 
the current definition of groups, compares the use of substance grouping for hazard assessment and regulation, 
and discusses the advantages and disadvantages of grouping substances for regulation. The article then explores 
strategies for grouping PMT/vPvM substances, including read-across, structural similarity and commonly retained 
moieties, as well as the potential application of these strategies using cheminformatics to predict P, M and T proper-
ties for selected examples.

Conclusions Effective substance grouping can accelerate the assessment and management of PMT/vPvM sub-
stances, especially for substances that lack information. Advances to read-across methods and cheminformatics tools 
are needed to support efficient and effective chemical management, preventing broad entry of hazardous chemicals 
into the global market and favouring safer and more sustainable alternatives.
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Background
In 2019 water pollution was estimated to cause 1.4 mil-
lion premature deaths globally [1]. Improving water qual-
ity by reducing pollution is also defined as one of the 
tasks in the Sustainable Development Goals [2]. Mean-
while, the number of known chemicals that are in use 
is increasing dramatically. Over 350,000 chemicals and 
mixtures have been registered in the global market over 
the past 50 years [3], while the largest chemical databases 
contain over 100 million chemicals, with PubChem [4] 
and the Chemical Abstracts Service (CAS) registry con-
taining 116 million [5] and 219 million [6] chemicals, 
respectively, as of January 2023. Chemical production 
and pollution are outpacing global assessment capac-
ity, posing more risks to human health, wildlife, and the 
environment [7, 8]. In 2021, about 222.8 and 85.3 mil-
lion tonnes of chemicals hazardous to human health and 
the environment, respectively, were consumed in the 
European Union (EU) [9]. Some of these chemicals are 
persistent, mobile and toxic (PMT) substances or very 
persistent and very mobile (vPvM) substances, collec-
tively referred to as PMT/vPvM substances.

PMT/vPvM substances have been listed by the Euro-
pean Commission’s Scientific Committee on Health, 
Environmental and Emerging Risks (SCHEER) as one 
of the 14 emerging problems that could impact human 
health or the environment [10]. Recently, the EU 
Chemicals, Labelling and Packaging (CLP) regulation 
(1272/2008) introduced the new hazard classes PMT 
and vPvM, as well as defined criteria for PMT/vPvM 
substances based on chemical properties [11], as pre-
sented in Fig. 1. These substances do not degrade in the 
environment over an appreciable timescale and are eas-
ily transported through water and aquatic ecosystems 
due to poor sorption to soil and sediments [12–14]. 
PMT/vPvM substances can be found in a wide range of 
applications and sources, including in industrial pro-
cesses, fire-fighting foams, and consumer products, such 
as food, cosmetics and furniture [15]. They can cause 
long-term harm to humans and the environment and are 
also costly and difficult to remove from drinking water 
[16–19]. PMT/vPvM substances have been suggested to 
have an equivalent level of concern as persistent, bioac-
cumulative and toxic (PBT) substances or very persistent 

Fig. 1 EU CLP criteria [11] for PMT/vPvM substances. A Mobility criteria based on log  KOC (blue). B Persistence criteria, with persistent in green 
and (C) toxicity criteria, including carcinogenicity, mutagenicity, endocrine disruption, specific target toxicity and reproductive toxicity (1A, 1B, 1 
and 2 refer to the categories for that criterion) as well as concentrations, where long-term no observable effect concentration (NOEC), and effect 
concentration  (ECx) for marine and freshwater organisms refers to the concentration where a toxic effect was observed in a given percentage 
of the population, e.g., 10% for  EC10 at less than 0.01 mg/L
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and very bioaccumulative (vPvB) substances. GenX and 
perfluorobutane sulfonic acid (PFBS), both classified as 
PMT/vPvM substances by the German Environmental 
Agency (UBA) [20] (but not yet officially classified under 
the CLP Regulation), have been identified as substances 
of very high concern (SVHCs) under the European Reg-
istration, Evaluation, Authorisation and Restriction of 
Chemicals, REACH, regulation (EC 1907/2006) [12]. 
The commonality between PMT/vPvM and PBT/vPvB 
substances is their elevated potential for long-lasting 
and long-range exposure when released to the environ-
ment in substantial quantities. Their difference is related 
to the exposure pathway, with PMT/vPvM substances 
likely to be first monitored in water resources, where they 
are most likely to accumulate and PBT/vPvB substances 
being first monitored in the food supply, humans and 
living organisms. Though this was not stated within the 
CLP regulation [11], it may be assumed that these haz-
ard classes were also introduced due to concerns from 
enhanced exposure potential leading to unforeseen 
effects, be they odour, aesthetic, geophysical, economi-
cal or other than established toxicological criteria. As 
an example, REACH Annex 1, Sect.  0.10 refers to “par-
ticular effects, such as ozone depletion, photochemical 
ozone creation potential, strong odour and tainting, for 
which […] the risks associated with such effects shall be 
assessed on a case-by-case basis”. Considering these con-
cerns, a key consideration for vP substances is to further 
check if they exhibit enhanced exposure-related proper-
ties (vB or vM), toxicological or other hazards, following 
the current regulatory approaches.

Furthermore, due to the high mobility of PMT/vPvM 
substances, many of them can break through artificial 
barriers in wastewater treatment plants, including granu-
lar activated carbon filtration and ultrafiltration systems, 
posing challenges for removal and remediation [12, 21]. 
These substances can be further transported through 
natural media, such as soils, riverbanks, aquifers and 
groundwater, making them hard to contain and remove 
from the environment. As such, these substances are 
problematic in drinking water, and many are detected 
frequently in European surface waters [12]. For example, 
1,4-dioxin was found in Bavarian surface waters [22] and 
melamine in the Netherlands, France and Belgium [23].

Approximately 2% of identifiable unique chemicals 
registered under REACH are considered to meet the 
PMT/vPvM criteria (259 out of 13,405 unique, identifi-
able chemicals registered under REACH); however, the 
true number is likely higher due to data gaps related to 
persistent, mobility or toxicity, with a potential maxi-
mum of 28% of REACH registered substances (3677 
out of 13,405 substances) [24]. Developing and applying 
substance grouping strategies is one way to potentially 

identify and manage PMT/vPvM substances more effec-
tively. There are two main motivations for a substance 
grouping approach. The first is to expedite hazard assess-
ments related to the large number of substances being 
introduced to the global chemical market. The second is 
to avoid regrettable substitution caused by drop-in sub-
stitution [25], where one substance is replaced by another 
with similar hazardous properties and effects [26]. Thus, 
this paper aims to explore how grouping strategies can 
be generally developed and used to identify, assess and 
manage new, emerging and well-known PMT/vPvM sub-
stances. To provide context, the paper first provides an 
overview of PMT/vPvM substances, including scoping 
the numbers of substances covered by existing defini-
tions, reviewing previous successful grouping strategies, 
and determining the relevance of grouping strategies in 
the context of PMT/vPvM substances while exploring 
the future efforts required to achieve this effectively. The 
principle aim of this article is not specifically targeting 
the ECHA technical guidance for PMT/vPvM substance 
assessment, but rather it is on how grouping strate-
gies can be used to screen, assess, regulate and manage 
groups of PMT/vPvM substances more efficiently.

Methods
Definition of key terms
The International Union of Pure and Applied Chemis-
try (IUPAC) defines a chemical substance as “matter of 
constant composition best characterized by the entities 
(molecules, formula, units, atoms) it is composed of. Phys-
ical properties such as density, refractive index, electric 
conductivity, melting point etc. characterize the chemi-
cal substance” [27]. The term “substance” in this article 
is used in this context. Databases also refer to chemical 
entities as compounds and substances, but the context 
may be different. PubChem, for instance, define these as 
“a substance is a chemical sample description provided by 
a single source and a compound is a normalized chemical 
structure representation found in one or more contributed 
substances” [28]. Since this article later refers to calcula-
tions performed on PubChem queries, “compound” in 
this article refers to a chemical that fulfils the definition 
of a compound according to PubChem with a unique 
PubChem Compound Identifier (CID). A mixture, 
according to IUPAC, is a “portion of matter consisting 
of two or more chemical substances called constituents” 
[29]. Mixtures can be simple (e.g., xylene is a mixture of 
three isomers, o-xylene, m-xylene and p-xylene) or com-
plex (e.g.,  C9–C14 alcohols, or mineral oils). The latter are 
often referred to as “substances of Unknown or Variable 
composition, Complex reaction products or Biological 
origin” (UVCBs) [30].
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A group of substances is defined by REACH as sub-
stances that have “(1) a common functional group; (2) 
the common precursors and/or the likelihood of com-
mon breakdown products via physical and biological 
processes, which result in structurally similar chemicals; 
or (3) a constant pattern in the changing of the potency 
of the properties across the category.” (REACH Regula-
tion EC No 1907/2006, Annex XI, Sect. 1.5) [31]. In other 
words, the term “group” and “category” are used inter-
changeably in this article. As an example, two widely reg-
ulated groups of substances that fulfil all three aspects of 
grouping substances in the REACH regulation are diox-
ins (polychlorinated dibenzo-p-dioxins and polychlorin-
ated dibenzo-furans) [32] and polychlorinated biphenyls 
(PCBs) [33], which are composed of about 210 [34] and 
209 individual congeners, respectively [35].

Literature analysis
To obtain relevant literature to underpin the arguments 
in this paper, a comprehensive literature search span-
ning both policy-related documents (e.g., regulations, 
guidelines, analysis, dossiers) and scientific literature was 
conducted using keywords like "persistent, mobile and 
toxic", “very persistent very mobile”, "substance grouping" 
and "chemical regulation" in electronic databases, such as 
PubMed and Google Scholar, while filtering for relevance. 
As the study focus area was mainly the European Union, 
recent policy documents in the EU and United Nations 
were considered most relevant due to the greater activity 
on PMT/vPvM substances, while detailed policy analysis 
of areas outside the European Union was considered out 
of scope. Scientific studies focused on grouping strate-
gies for the assessment and management of substances, 
including chemicals, pollutants, and contaminants that 
exhibit persistence and mobility in the environment were 
also considered relevant. Backward citation searching 
was also conducted from the list of relevant articles to 
identify additional studies that may have been overlooked 
during the electronic search. By systematically executing 
the search strategy across multiple databases and sup-
plementing it with hand-searching reference lists, a com-
prehensive selection of relevant literature with findings 
focused on the topic was compiled and considered in this 
article.

Cheminformatics analysis
For cheminformatics analysis, the search functions avail-
able in the PubChem database [4] were used to obtain the 
structural and substructural data of compounds of inter-
est. The OPERA ReadyBiodegradable model version 2.9 
[36] was used to predict the persistence of compounds, 
along with the KOCWIN model version 2.00 [37] to pre-
dict the mobility (log Koc values) of the compounds from 

the PubChemLite for Exposomics data set, Version 1.27.0 
[38] and other subsets of compounds extracted from 
PubChem. Further details of other data sets used can be 
found in the "availability of data and material" section. 
The toxicity predictions were performed with MS2Tox 
version 0.3.2 [39]. Data processing was performed in R 
version 4.3.1 [40] using the packages Tidyverse version 
2.0.0 [41, 42] and ggplot2 version 3.4.3 [43, 44] for data 
transformation and plotting, and RChemMass 0.1.28 [45] 
for obtaining the exact mass before MS2Tox calculations. 
Additional information is given in the “Cheminformatics 
challenges in grouping PMT/vPvM substances” section.

Overview of PMT/vPvM substances
Assessment of the number of substances being intro-
duced to the global chemical market that may be PMT/
vPvM substances requires a clear set of criteria and the 
ability to scale the application of these criteria to large 
numbers. The EU Chemicals, Labelling and Packaging 
(CLP) regulation (EC 1272/2008) criteria for PMT/vPvM 
substances [11] are displayed in Fig. 1. The mobility (M) 
aspect (see Fig. 1A) is defined based on the organic–car-
bon–water partition coefficient (KOC, with units of L/
kg) of a chemical which is then log transformed to log 
KOC values, this is used as a proxy to describe the sorp-
tion potential of a chemical to organic carbon. Since 
experimental log KOC data are rare, it was suggested that 
the logarithmic octanol–water partition coefficient (log 
KOW or log P) or the pH-adjusted log DOW (or log D) 
could be used as a screening parameter for hydrophobic-
ity, where high-quality log KOC data are not available [24, 
46]. Though the two parameters have some variance, par-
ticularly for ionogenic substances, substances with very 
low log DOW values tend to have very low log KOC values, 
hence, log DOW values were seen as a good alternative 
screening parameter for mobility. As such they are often 
used in a complementary fashion (see [24, 47] for more 
details), where log KOW and log DOW data are used when 
log KOC data are unavailable. Persistence (P) is defined 
based on the half-lives of a chemical in different environ-
mental water, sediment and soil systems (see Fig. 1B), and 
toxicity (T) is defined based on one or a combination of 
the following: carcinogenicity, mutagenicity, reproductive 
toxicity, endocrine disruption and specific target organ 
toxicity after repeated exposure as well as long-term no-
observed effect concentration (NOEC) and effect con-
centration at a given percentage of the population  (ECx) 
shown in Fig. 1C.

A compound is a considered a PMT substances when it 
fulfils the persistence, mobility and toxicity criteria (i.e., 
a combination of at least one persistency criterion, one 
mobility criterion and one toxicity criterion are met) or 
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in the case of vPvM at least one of the criteria for very 
persistent and the very mobile criterion must be met (see 
Fig.  1). Some examples of PMT/vPvM substances are 
shown in Fig. 2.

There are several published lists containing PMT/
vPvM substances (e.g., the PMT list by Holmberg et al., 
UBAPMT, EAWAGPMT, UFZHSFPMT, ZEROPM and 
PMTPFAS) [20, 48–52]. The later five have been digitized 
and are hosted on the NORMAN Suspect List Exchange 
(NORMAN-SLE) [53, 54] and thus openly available with 
a CC-BY license. The UBAPMT suspect list contains 
substances currently registered under REACH that meet 
the proposed PMT/vPvM criteria set by UBA in 2019 
[47]. The original list has 254 substances [55, 56], while 
the 2022 revised version has 340 substances [57, 58] due 
to an increase in chemicals registered in REACH and 
updated chemical information [20]. The EAWAGPMT 
list contains 1,156 compounds identified in groundwater 
by Kiefer et al. [49, 59]. This list contains a mix of com-
pounds on other PMT lists as well as compounds on 
the Swedish Chemical Agency (KEMI) market list [60] 
that have a low log Dow and high water exposure index, 
while the UFZHSFPMT list includes 1,063 potential per-
sistent mobile compounds detected in surface water as 
described by Neuwald et al. [50, 61, 62]. The ZEROPM-
BOX1 contains 38 compounds, including representative 
per- and poly-fluoroalkyl substances (PFAS), triazines 
and triazoles used to start the H2020 ZeroPM project 
[51]. Finally, the PMTPFAS list contains 180 fluorinated 

compounds extracted from the UBAPMT, EAWAGPMT 
and UFZHSFPMT lists [52]. In combination, the five lists 
contain 2,081 unique compounds, but this does not rep-
resent all PMT/vPvM substances in the global market.

Grouping and regulations
Assessing and regulating individual PMT/vPvM sub-
stances that fall within a PMT/vPvM substance group is 
inefficient and more time-consuming than assessing an 
entire group. Past strategies have led to drop-in replace-
ments, subsequently referred to as regrettable substitu-
tion [25]. Assessing chemicals individually also ignores 
cumulative exposures and risks of groups of substances 
[63]. Considering primarily the structural similarity and 
similar properties of PMT/vPvM substances, it may be 
more feasible and prudent to regulate these substances 
as a group. The idea of substance grouping based on the 
relationship between hazard and structural similarity is 
not new, since many of the very first organic substances 
to be regulated were groups sharing a similar structure. 
The successes of regulation in managing substances as 
groups, such as ozone-depleting substances (ODS) under 
the Montreal Protocol [64, 65] and specific groups of 
persistent organic pollutants (POPs) under the Stock-
holm Convention [66] are discussed below. Moreover, 
successfully grouping substances for regulation not only 
accelerates but also prevents and reduces inconsisten-
cies in the regulatory process [67]. Grouping substances 
can enhance chemical safety management, facilitating the 

Fig. 2 Selected examples of potential PMT/vPvM substances from the UBAPMT list assessed by Arp and Hale (2022) as meeting the criteria [20, 24]. 
A PMT substances; B vPvM substances; C both PMT and vPvM substances
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identification of regulated substances and potential sub-
stitutes for harmful ones [67].

While there may be several legislations about group-
ing substances globally, this section focuses on the use 
of grouping in EU legislation. In the EU, the European 
Chemical Agency (ECHA) coordinates the REACH regu-
lation for the restriction, evaluation and authorization of 
substances based on hazard classifications and the CLP 
regulation for labelling based on hazard classifications. 
REACH Annex XI Sect. 1.5 specifies how groups or cat-
egories of substances can be defined and which regula-
tory actions can be applied [31]. It states that “substances 
whose physicochemical, toxicological and ecotoxicological 
properties are likely to be similar or follow a regular pat-
tern as a result of structural similarity may be considered 
as a group, or ‘category’ of substances” [31]. The toxico-
logical or hazard properties referred to are described in 
the CLP regulation shown in Fig. 1.

According to Article 36 of the CLP regulation, certain 
substances, including those with respiratory sensitiz-
ing properties (category 1), germ cell mutagenicity, car-
cinogenicity, and reproductive toxicity (categories 1A, 
1B and 2), are considered hazardous and are subject to 
harmonized classification. This also applies to active 
substances listed in Regulation (EC) No 1107/2009 and 
Regulation (EU) No 528/2012 [68, 69]. Moreover, Article 
57 of REACH includes substances that are hazardous to 
the environment and are also subject to harmonized clas-
sification. A list of these hazardous substances for which 
harmonized classification and labelling has been estab-
lished at the EU level can be found in Part 3 of Annex VI 
of the CLP regulation.

Under REACH, UVCBs are regulated based on the 
structural similarity of the constituents identified and 
can also be regulated as part of a different group. This 
means that certain components of these substances may 
be identified and registered as part of a different group. 
Annex XI Sect. 1.5 of REACH provides more information 
on the regulation of UVCBs [31, 70].

Existing grouping legislation and impacts
The Montreal Protocol on ozone‑depleting substances
The Montreal Protocol regulates the manufacturing and 
consumption of ODS [64, 71]. This is a group of over 
100 substances including chlorofluorocarbons (CFCs), 
methyl chloroform, hydrochlorofluorocarbons (HCFCs) 
and hydrobromofluorocarbons (HBFCs) that release 
chlorine and bromine into the stratosphere, damaging 
the ozone layer [64, 72]. This can lead to increased global 
warming, skin cancer and damage to marine ecosystems 
[73]. The Montreal Protocol is considered to have drasti-
cally decreased relative consumption (total of production 
and imports—total of exports and destroyed) of ODS in 

the EU (100–0.36%) and globally (100–1.35%) between 
1986 and 2021 [71, 74], as shown in Fig.  3. This is an 
example of a property-based regulatory effort that has 
been successful [71, 75]. However, the Montreal Protocol 
has also been criticized for shifting the burden by transi-
tioning from ODS to greenhouse gases and PMT/vPvM 
precursors, as discussed further below.

The Stockholm convention on persistent organic 
pollutants
The Stockholm Convention was signed in 2001 to pro-
tect humans and the environment from POPs [66]. An 
EU Legislation regulation (EC No 850/2004) was adopted 
later to implement the Convention in the EU [76, 77]. 
Initially, the Convention regulated 12 POPs or groups of 
POPs, such as aldrin, chlordane and dichlorodiphenyl-
trichloroethane (DDT). Over time, the list expanded to 
include 39 substances and substance groups as of January 
2024, with the regulation covering the manufacturing, 
sales, use, and waste management of these chemicals, 
as well as unintentional releases in some cases [66, 78]. 
Structural similarity and the resulting similar compound 
properties played a major role in managing the group-
ing of substances under the Convention, for instance, 
polychlorinated biphenyls (PCBs), dioxins and DDT 
derivatives [79]. The Stockholm Convention has been 
successful in reducing the emission of regulated POPs 
since its enforcement. The emission levels of PCBs, for 
example, decreased by over 60% from 2001 to 2020, while 
dioxin levels also dropped by 50% from 2001 to 2020 (top 
of Fig.  4). This reduction is also noticeable as the num-
ber of registered patents for 17 dioxins, 12 PCBs and 
hexachlorobenzene (HCB) dropped since the Convention 
(bottom of Fig. 4).

Substitution of regulated substances with PMT/vPvM 
substances
The concept of regrettable substitution first appeared in 
the literature in 2011 [82]. There are many examples of 

Fig. 3 EU and global relative consumption of ODS since 1986 
[74] showing the reduction of the consumption of ODS due 
to the Montreal Protocol
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regrettable substitution, which refers to the practice of 
replacing a hazardous substance with a structurally sim-
ilar substance for a specific use or function, that is also 
hazardous or potentially more hazardous, or that has 
not been tested broadly enough for different hazards and 
other than those of the substance being replaced [83]. 
One well-known example is Bisphenol A, an endocrine-
disrupting chemical (EDC) that was first discovered in 
1891 [84]. Due to its harmful effects, it has since been 
replaced by various other EDCs with similar structures, 
such as Bisphenol S and Bisphenol P. Currently, more 
than 30 bisphenols, including the ones mentioned above, 
are recommended for restriction by ECHA [85].

One of the reasons for the “drop-in” solution by compa-
nies after substance regulation (both as individual or as a 
group) is that structurally similar substances often have 
similar functions in the product being applied, and can 
be manufactured generally without requiring substantial 
changes in processes, infrastructure, or product testing 
[63]. Unfortunately, similar toxicological effects are likely 
to occur as well [26], and at other times “burden shifting” 
towards different hazards. A key example is the series 
of restrictions related to the Montreal Protocol that 
began with a global phase-out of CFCs [86, 87]. Later, 
hydrobromofluorocarbons (HBFCs) were introduced 
as replacements but were only briefly commercialized 
[88]. They were then replaced with hydrochlorofluoro-
carbons (HCFCs), which exhibited substantially less 

ozone-depleting potential, and exhibited the same com-
mercial properties as CFCs [89]. HCFCs were eventu-
ally also included under the Montreal Protocol and were 
again replaced by chemicals with similar chemistry, 
hydrofluorocarbons (HFCs) [64]. Due to the removal of 
chlorine atoms from the molecules, HFCs no longer pose 
a threat to the stratospheric ozone layer [90], but they 
are still highly persistent and have high global warming 
potential. Therefore, in a subsequent amendment to the 
Montreal Protocol, the Kigali Amendment, HFCs them-
selves were listed [90, 91]. As a consequence of the Kigali 
amendment, the industry that manufactures fluorinated 
gases then sought to substitute HFCs with hydrofluor-
oolefins (HFOs), which have a short atmospheric lifetime 
of 6 days [92, 93]. However, these HFOs (almost) exclu-
sively degrade to form trifluoroacetic acid (TFA), a vPvM 
substance that is ubiquitous in the environment, espe-
cially in drinking water systems, but the current under-
standing of its risk to human health and the environment 
is limited. While some research has argued that TFA has 
low health risks [94, 95], other studies have shown mild 
liver hypertrophy in rats, and eye and skin irritation [94, 
96]. As the levels of TFA are rapidly increasing, some 
EU countries have proposed to ban HFOs as part of the 
broad PFAS restriction under REACH. In summary, 
although the Montreal Protocol is often considered the 
most successful multilateral environmental agreement, 
this has led to burden shifting over time from ODS to 

Fig. 4 Top: Emission tonnage of PCB, dioxins and HCB from regulation (EU) No 277/2012, between 1990 and 2020 [80]. Bottom: The chemical 
stripes drawn using the chemical stripes package in R [81] show a decrease in the number of registered patents of PCB, dioxins and HCB 
in PubChem; the date range was chosen to match the emission data
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the production of persistent, mobile substances, such as 
TFA.

Similar to the Montreal Protocol, increased regula-
tory pressure on PBT/vPvB substances in Europe and 
the USA was seen as a driver for the chemical industry to 
produce more hydrophilic, and hence mobile, substances 
[97]. Individual fluoropolymer manufacturers have devel-
oped their own structurally similar per- and polyfluoro-
alkylether carboxylic acids (PFECAs) as replacements for 
PFOA, which was used as a processing aid in fluoropoly-
mer production. However, as mentioned above, some 
of these replacements, including GenX, are similarly 
problematic despite being less bioaccumulative [98]. To 
date, many monitoring programs have seen an increase 
in these replacements in water resources and fish due 
to increasing use and emissions [99]. GenX and PFBS 
were identified as SVHCs under the EU REACH regula-
tion in 2019 and were some of the first SVHCs that were 
considered an equivalent level of concern to PBT/vPvB 
substances [12]. Thus, the phasing out of some PBT/
vPvB substances such as the long-chain PFASs has led to 
burden shifting towards PMT/vPvM substances such as 
PFECAs [100].

Existing regulation of substances as groups based on 
structural similarity and/or intrinsic properties has been 
successful, as demonstrated in the Montreal Protocol of 
ODSs and the Stockholm Convention of POPs. Mean-
while, regrettable substitution with increasing produc-
tion of PMT/vPvM substances such as TFA and GenX 
has been noted as a side-effect. This shows a limitation 
of the grouping approach under the Montreal Protocol 
and the Stockholm Convention: limiting the scope of 
intrinsic properties during grouping may lead to burden 
shifting to other hazards. This calls for a grouping strat-
egy that can prevent regrettable substitution and improve 
the efficiency and effectiveness of chemical regulatory 
processes.

Grouping strategies
Grouping based on structural similarity
Read-across in substance grouping is a strategy that 
relies on the use of important information obtained from 
tests conducted on a reference substance known as the 
“source” substance within a group to predict the prop-
erties of another substance in the group known as the 
“target” substance [101]. This method relies on justified 
similarities in structure, toxicokinetic, physicochemi-
cal and molecular properties, transformation process/
endpoints and other similar data for interpolation and 
extrapolation of relevant information [102] and is recom-
mended in Sect. 1.5 of Annex XI of the REACH regula-
tion for groups of substances [70]. It can be applied from 
a single source substance to a single target substance 

(analogue approach) or from multiple source substances 
to multiple target substances within a group (category 
approach) [101, 103]. This method is commonly used to 
fill data gaps for chemical safety assessment in the regu-
latory process but has also been used to build grouping 
hypotheses for categories of chemicals [101, 102]. The 
Read-Across Assessment Framework (RAAF) by ECHA 
and the OECD guidance on the grouping of chemicals 
have been developed to guide systematic and consistent 
applications of read-across [104, 105].

Read-across is advantageous because it reduces the 
number of experimental tests needed during an assess-
ment by using existing experimental data for the source 
substance(s) to predict the properties of the untested 
substance(s) [106]. If a clear hypothesis and justifica-
tion are provided, read-across can be used efficiently to 
predict the hazard properties of target substances and 
fill data gaps in the regulatory process, thereby facilitat-
ing and speeding up assessment and regulatory decisions 
[107]. However, read-across requires an adequate justifi-
cation for use, and appropriate documentation covering 
all assumptions and conclusions [36, 107]. This can be 
complex and may require a certain level of expertise for 
interpretation [108]. Despite its limitations, read-across 
can be applied to the grouping of PMT/vPvM substances.

For persistence in the environment, an important prop-
erty is the readiness of the bonds to be broken down 
under ambient conditions, whether it is from radical 
reactions or through metabolic processes. For instance, 
the C–F bonds in PFAS (bond dissociation energy of 
513.8 ± 10.0 kJ/mol), and aromatic–Cl bonds in PCBs or 
dioxins (394.9 ± 13.4 kJ/mol), are difficult to break down 
in the environment, making groups rich in such bonds 
likely to be persistent [109]. Compounds with molecules 
containing high bond dissociation energies can be flagged 
for persistence assessment and subsequent inclusion as 
PMT/vPvM if each of the M and/or T criteria is met. 
Biodegradability models can be used to quickly provide 
relevant information about the persistence of many sub-
stances or the presence of many persistent substructures, 
pending further investigation and confirmation by exper-
imental studies [110]. However, the applicability domain 
of available models is dependent on their training data, 
resulting in unreliable predictions for compound classes 
that may not be covered yet [110].

For mobility, the chemical substructures that are asso-
ciated with low KOC values are those that are highly 
polar or ionic, as this favours their water solubility over 
sorption to soil organic carbon [24, 111]. A 2022 review 
found that most ionic compounds with measured log 
KOC values have log KOC values < 4.0 [24]. Thus, the pres-
ence of many hydrophilic substituents may be a predic-
tor of mobility, and conversely, chemicals with largely 
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hydrophobic substructures are unlikely to be mobile in 
the environment. However, an important limitation of 
mobility is size. Extremely large molecules that are highly 
polar and ionic may not be mobile if they have sufficient 
hydrophobic substructures to decrease their solubility, 
or (as in the case of water-soluble polymers) can aggre-
gate for charge neutrality and therefore lose/reduce their 
mobility as an aggregate [112]. Quantitative structure–
activity relationship (QSAR) models are available to pre-
dict the mobility of certain substances and can be applied 
effectively (within their respective applicability domains) 
to classify the mobility of substances.

The toxicity of a substance is related to its chemical 
structure and determines the type of health effects it 
induces in the biological systems [113]. The interaction of 
a chemical with a biological system is determined by the 
functional groups, stereochemistry and other molecu-
lar features [114]. A change in the structure can lead to 
changes in toxicity, depending on how this change affects 
the toxicophore—the structural portion associated with 
the toxicity of the chemical [115]. The descriptors used 
for toxicity predictions vary between models, some mod-
els consider only 2D descriptors, while others use a mix 
of 2D and 3D descriptors. In recent years, some models 
have also attempted to predict toxicity through graph 
neural networks which take the position of the different 
functional groups into consideration [116, 117]. Toxicity 
is also related to the absorption, distribution, metabolism 
and excretion ability of the body, which depends on the 
chemical structure of the substance. Increased hydropho-
bicity leads to increased absorption and increased poten-
tial toxic effects (due to potential bioaccumulation). A 
concern with PMT/vPvM substances is chronic exposure 
via water consumption, which can lead to elevated con-
centrations in humans and diverse biota [12, 118].

Considering the chemical features that make these 
substances P, M and T, and the provided criteria for 
classification, PMT/vPvM substances can be identified 
and grouped accordingly. Read-across can be applied 
to identify PMT substances on the basis that they have 
similar (sub)structures, similar properties and available 
toxicological data. This can be done through a fragment-
based approach, which relies on the identification of 
small similar fragments or functional groups with similar 
properties [119]. Substance grouping approaches take the 
fragment models one step further. Substances can have 
similar properties due to the similarity in structures—
this includes functional groups, common precursors or 
reaction products, and a constant pattern in the chang-
ing of the potency of the properties across the group [31, 
104]. The substance grouping approach is used in read-
across techniques and alternative assessments [104]. This 
has been supported by the use of various models that 

predict physical–chemical property information such 
as the KOCWIN model [120]. This is a fragment-based 
model that relates substructures and mobility (KOC) 
based on appropriate training data [120]. The mobility 
(KOC) of new chemicals can be predicted using the estab-
lished relationship (when they are within the applicabil-
ity domain). Similarly, the ReadyBiodegradable model in 
OPERA [36] and CERAPP and CoMPARA models [116, 
121]can be used to predict the biodegradability and tox-
icity, respectively, of many new PMT/vPvM substances.

Grouping based on retained moieties from transformation 
reactions
Both biotic and abiotic transformations generally result 
in transformation products (TPs) with significantly 
higher mobility (lower log KOW) than their parent com-
pounds or precursors, making them more mobile in the 
environment. This seems intuitive as one of the "goals’’ 
of metabolism and wastewater treatment processes is to 
increase the polarity of the compounds. For metabolic 
processes, this allows the compounds to be expelled from 
the body with the urine. However, some persistent sub-
structures may be retained during the transformation 
resulting in similar toxic properties between the parent 
compound and TPs. For example, decabromodiphenyl 
ethane forms 6 metabolites that were found to be carci-
nogenic like the parent compound [122]. In other cases, 
even small structural changes can result in large dif-
ferences in toxicity such as for bis(pentabromophenyl) 
ether, which has low thyroid binding affinity itself but 
can form the TP 2,3,5,6-tetrabromo-4-(2,3,4,5,6-penta-
bromophenoxy)phenol with a strong thyroid binding 
affinity [122]. Therefore, it is of interest not only to iden-
tify parent compounds that may be PMT/vPvM, but also 
compounds that can form PMT/vPvM TPs, along with 
identifying the common persistent and mobile moieties 
that were retained and not readily metabolized. Such 
an approach would be consistent with the approach to 
substance grouping in REACH of identifying “common 
breakdown products via physical and biological pro-
cesses, which result in structurally similar chemicals” 
(REACH Annex XI, Sect. 1.5).

One way to do this identification is by using known 
reactions, such as those contained within the “transfor-
mations” section in PubChem, which links parent com-
pounds to TPs with basic reaction information [123]. 
Of all the substances on the five suspect lists mentioned 
above, perfluorooctanoic acid (PFOA) has the high-
est number of recorded parent compounds (22) in the 
PubChem transformations section (from version 0.1.6 of 
the data set archived on Zenodo) [124]. This is also one 
of several PMT/vPvM TPs, where parent compounds are 
included in the legislation as part of the substance group. 
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Specifically, the Stockholm Convention restricts the use 
of PFOA-related compounds, which include compounds 
that form PFOA after degradation [78]. TFA is also a 
known TP of several different compounds containing a 
 CF3–moiety. Since there are over 5 million compounds 
containing a  CF3–moiety included in PubChem [125], 
many of which are also industrially relevant, there are 
myriad potential sources of TFA.

Triazoles are another example of moieties preserved 
from parent compounds to TPs. Out of the triazole com-
pounds in PubChem, 62 have recorded TPs (12 Jan 2024) 
[124]. This corresponds to 233 unique reactions, out of 
which the triazole moiety is retained in 88% of the cases, 
showing its high stability. While usually not acutely toxic 
in low doses, triazoles may cause several severe chronic 
toxic effects, such as endocrine disruption and neurotox-
icity [126]. Triazole substances such as benzotriazoles are 
present in the environment at high levels [126]. Thus, the 
retention of this functional group and other PMT/vPvM 
moieties may be concerning from an exposure point of 
view, supporting the idea that grouping based on retained 
moieties or TPs is relevant to obtain comprehensive and 
inclusive groups for PMT/vPvM substances.

Another example of how substances can be regulated 
based on their precursors are the aromatic amines reg-
istered under REACH some of which can also be found 
on PMT/vPvM suspect lists, such as 4,4′-methylenedi-
aniline, 4,4′-oxydianiline, 4-chloroaniline, 3,3′-dichlo-
robenzidine, 4,4′-methylenebis(2-chloroaniline), 
4,4′-methylenedianiline, and 2-methoxy-5-methylaniline 
[20, 31, 50]. However, there are several other aromatic 
amines that have multiple known precursors listed in the 
PubChem transformations library (e.g., 4-aminophenol 
and aniline) that are also listed as PMT by the UBAPMT 
suspect list. As such, regulating aromatic amines and pre-
cursor substances as a group based on PMT/vPvM sub-
stances warrants further investigation and consideration.

Cheminformatics challenges in grouping PMT/
vPvM substances
The strategies mentioned above regarding grouping can 
be matched to substance regulation in various ways. 
First, substances falling within a PMT/vPvM group with 
little known data could be flagged for follow-up to see if 
persistence and mobility measurements have been con-
ducted in literature, and if read-across methods (based 
on patterns with other substances) could be used to fill 
data gaps. This could help prioritise filling data gaps and 
would help develop read-across approaches for further 
substances within the group. Second, if any other sub-
stance with a similar structure exists in the group and 
is hazardous (source substance), this could be seen as a 
reason to investigate for similar toxicological hazards 

for this substance (target substance). If several members 
within a group are shown to be PMT/vPvM substances, 
then a precautionary approach would be to assume all 
group members with no assessments are similarly haz-
ardous, until there is sufficient scientific data to show 
otherwise. An overview of an assessment procedure to 
identify PMT/vPvM substances has also been presented 
by Neumann and Schliebner, suggesting to first assess 
compounds for persistence followed by mobility and tox-
icity for both precursors and transformation products 
[47].

Estimating the number of individuals and groups of 
chemicals that fit the PMT/vPvM classification is a chal-
lenging task. Most substances lack readily available per-
sistence, mobility and toxicity data. Due to the limited 
data availability, the prediction models of these proper-
ties are also limited in their accuracy and applicability 
domains. However, some data and models are available 
as a starting point, especially for log KOW. For example, 
both XlogP and the newer XlogP3 [127, 128] and the 
KOWWIN [129] module in EPI Suite [130] use a mul-
tivariate regression approach to KOW prediction. While 
KOC data are more limited than KOW data, there are also 
several models which attempt to predict KOC, including 
KOCWIN from EPI Suite [37] and the KOC module of 
OPERA [36], which both utilise the training data from the 
PHYSPROP database [36, 37]. For persistence, OPERA 
also contains three modules for predicting biodegradabil-
ity (BiodegHL, ReadyBiodegradable and Km) as well as 
one module predicting rate constants for gas-phase reac-
tions with hydroxyl-radicals, though with more limited 
applicability domains compared to the KOC module [36]. 
The prediction of toxicity is even more challenging due to 
the limited availability of training data. However, models 
already exist for several toxicological endpoint predic-
tions, such as endocrine disruption, mutagenicity and 
developmental toxicity for many possible structures [131, 
132]. For example, the CERAPP and CoMPARA models 
in OPERA can be used to predict estrogen and androgen 
receptor interactions [116, 121].

An example of how a combination of experimental 
and predicted property data has been used to classify 
compounds as PMT/vPvM is the study by Arp and Hale 
(2022), which focused on the compounds in the REACH 
inventory [24]. Their study concluded that about 1.9% of 
substances registered in REACH and 24% of REACH-
registered substances that were detected in drinking 
water sources would be classified as PMT. However, over 
40% of the inventory could not be assessed due to data 
gaps. This illustrates the importance of acquiring experi-
mental data for a wider range of compounds.

To further illustrate how predicted properties can be 
used for assessing PMT compounds, the PubChemLite 
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for Exposomics [133] data set was used to give a pre-
liminary estimate of the number of potential environ-
mental contaminants that are predicted to meet the 
CLP definition of mobility. PubChemLite is a subset 
of ~ 350,000 compounds from PubChem with environ-
mentally relevant annotation content [133]. In total, KOC 
values were predicted for 346,133 compounds (96.0% of 
PubChemLite) using the molecular connectivity index 
(MCI) model from KOCWIN [37, 120]. The results of the 
log KOC distribution are shown in Fig. 5. Based on these 
predicted values log KOC, 147,930 compounds (41%) 
would be considered mobile and 78,107 compounds 
(21%) would be considered very mobile. The MCI model 
assigns values of 1 and 0 for chemicals when KOC predic-
tions have been overcorrected. The large peak at log KOC 
10 is an upper bound for these predictions within the 
MCI model output. Note that the results of this analysis 
will differ if the KOW-based model in KOWWIN is used.

To investigate this concept in more detail on slightly 
smaller subsets, four compound classes: triazines, aro-
matic amines, PFAS and triazoles were selected based on 
the five suspect lists mentioned previously (UBAPMT, 
EAWAGPMT, UFZHSFPMT, PMTPFAS and ZEROPM-
BOX1) [20, 49–52]. The substructure search function of 
PubChem was then used to estimate the number of com-
pounds that belong to these compound classes. An over-
view of these search queries can be found in Table 1. As 
can be seen in the first three rows, relatively unspecific 
substructures can generate very large query results. For 
the 1,2,3-triazole substructure over 1 million substances 
were found, which corresponded to a search of only 87% 
of the database as the search results are capped at 1 mil-
lion substances. Similarly, the aromatic amines (with 
aniline as the searched substructure) resulted in over 1 
million substances with only 2% of the database searched. 
The 1,3,5-triazine query resulted in 718,119 substances. 
The compounds classified within the OECD definition 

of PFAS in the PubChem PFAS tree were used to source 
PFAS, which contained 6,604,017 compounds at the time 
the queries were performed (Dec. 17, 2023) [125]. It is 
unlikely that all compounds containing these substruc-
tures would meet the PMT/vPvM criteria outlined in the 
CLP. For example, only 250,873 of the 718,199 triazines 
meet the CLP criteria for mobility based on the predicted 
log KOW from XlogP3. As such the substructures used 
when discussing PMT/vPvM compound grouping for 
regulation purposes should be more specific.

More specific substructure queries were used to inter-
rogate these results further according to the PMT/vPvM 
criteria, shown in the remaining rows of Table  1 and 
Fig.  6, using the structures of melamine, benzotriazole 
and benzidine as well as the “larger PFAS parts” defi-
nition (contains –CF2CF2–) from the PubChem PFAS 
tree [125]. The search was then progressively restricted 
to exclude the searched substructures from being part 
of larger ring systems and substances with molecu-
lar weights greater than 300  g/mol. The results of this 
search were also used to perform persistence and toxic-
ity prediction as discussed above. The top two rows of 
Fig.  6 show these substructure query results. Like their 
less specific triazine counterpart, they seem too broad 
to capture only PMT/vPvM substances. However, when 
restricting the search to only compounds below 300  g/
mol, between 87% and 99% of the compounds would 
meet the CLP definition of mobility. The most restricted 
PubChem search results were also used for biodegrada-
bility and  LC50 predictions using the ReadyBiodegradable 
model from OPERA and MS2Tox (compounds which fell 
outside the applicability domain of the ReadyBiodegrada-
ble model were excluded in the biodegradability results; 
this information is not given by MS2Tox). As can be seen 
in Fig.  6, almost all compounds inside the applicability 
domain were classified as non-biodegradable. This indi-
cates that in addition to their mobility, most compounds 
within these classes are potentially persistent. Based 
on the EU CLP definition of toxicity, an  EC10 less than 
0.01  mg/L is toxic for marine or freshwater organisms. 
Some of the predicted  LC50 toxicity values (the lethal 
concentration at 50% of the population) shown in Fig. 6 
go below 0.1 mg/L. As toxicity is usually observed before 
lethality, this indicates that some of the compounds may 
be toxic below 0.01 mg/L. In addition, it is important to 
note that this is not the only toxicity criterion used in the 
CLP, for example, triazole compounds have been shown 
to have endocrine-disrupting properties by, e.g., Wang 
et al. [134], and thus, it is likely that at least a fraction of 
these compounds would be classified as PMT.

Fig. 5 Predicted log  KOC via KOCWIN values for PubChemLite 
(346,133 compounds total) [38, 133]. Some  KOC predictions 
fall outside the applicability domain of the model. The “count” 
is the number of compounds inside each bin. Bin widths are 0.2
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Fig. 6 Distribution of PubChem XlogP3 values for four searches with varying restrictions (top three rows), plus predicted biodegradability 
from the OPERA ReadyBiodegradable model and  LC50 values (in mg/L) predicted from MS2Tox for the most restricted search queries (last two rows). 
Search settings and total numbers are given in Table 1. It should be noted that MS2Tox is used for illustration purposes only, and does not reflect 
the CLP toxicity criteria in Fig. 1
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Perspectives for grouping strategies
Challenges for assessing and managing PMT/vPvM 
substances
Based on the criteria for persistence, mobility and tox-
icity, many chemicals (as shown from the prediction 
results above) may be PMT/vPvM substances, war-
ranting further assessments and management (see 
Table  1). One of the major challenges of dealing with 
PMT/vPvM substances is the lack of high-quality data. 
As shown above, there is a growing need for com-
putational modelling to complement experimental 
approaches as the number of substances to be tested 
increases, yet efficient computational methods rely on 
high quality and sufficient experimental data availabil-
ity, which is a major limiting factor. Structurally diverse 
substances with multiple functional groups and stereo-
chemistry can lead to unexpected behaviour, posing 
a critical challenge [135]. However, developing high-
throughput screening (HTS) methods for toxicity test-
ing may be difficult for these diverse substances and 
toxicological endpoints, which produce large amounts 
of data, and require expert knowledge to interpret and 
manage [136].

Identification, monitoring and removal are other chal-
lenges to managing PMT/vPvM substances. Targeted 
identification and monitoring approaches will not be 
sufficient to detect all PMT/vPvM substances; hence, it 
is crucial to ensure wider availability of analytical meth-
ods and reference standards to properly identify, quantify 

and assess potential PMT/vPvM substances. Targeted 
analysis could be complemented with non-targeted ana-
lytical approaches. Non-target analysis can be a first 
step in identifying unknown and emerging PMT/vPvM 
substances and their TPs in environmental and biologi-
cal matrices. It can also be used for the monitoring of 
known PMT/vPvM substances, yet regulatory acceptance 
of non-targeted monitoring is still lacking [137]. Moreo-
ver, the lack of data on persistence, mobility, toxicity, 
TPs, complex mixtures and appropriate suspect lists for 
broader suspect screening poses identification and moni-
toring challenges [22].

Prioritization strategies for testing and assessment
Considering many potential PMT/vPvM substances, 
and the possible challenges outlined, it is necessary to 
develop other strategies that could be used in combi-
nation with the proposed grouping strategies above to 
prioritize chemicals for assessing their PMT/vPvM prop-
erties. Exposure and emission information could serve in 
the prioritization of chemicals for testing. Utilising expo-
sure information such as mode of exposure (chemicals 
in food or drinking water) [138, 139] or Occupational 
Exposure Banding strategy for categorization of airborne 
substances lacking defined limits [140], could help iden-
tify chemicals with high exposure potential. In addition, 
the hazard level of the toxicity can be used as a criterion, 
where specific persistent and mobile substances with 
high toxicity can be targeted for prioritization.

Table 1 Overview of the PubChem substructure searches (queries performed on 19/12/2023)

Default settings for all queries were (1) single or double bonds match aromatic bonds, (2) chain bonds in the query may match rings in hits and (3) remove any 
explicit hydrogens before searching. Extra settings “Ring” (rings may not be embedded in a larger system) and the filter “MW < 300” (Molecular weight < 300 g/mol) 
are indicated in the respective column. Query URLs are embedded into the substructure column. The first three rows in italics are generic queries, the latter rows 
are the queries used to generate Fig. 6. The OECD PFAS results were obtained via the PubChem classification browser. DB = database, values in brackets indicate the 
percentage of the database searched (queries are capped at 1 M results).

Substructure Substructure SMARTS Extra settingsNone Number of structures

1,3,5-Triazine C1= NC= NC= N1 None 718,134

Aromatic amine C1= CC= C(C= C1)N None  > 1 M (2% of DB)

1,2,3-Triazole C1= NNN= C1 None  > 1 M (87% of DB)

Melamine C1(=  NC(=  NC(= N1)N) N)N None 96,660

Melamine C1(=  NC(=  NC(= N1)N) N)N Ring 47,519

Melamine C1(=  NC(=  NC(= N1)N) N)N Ring, MW < 300 10,528

Benzotriazole C1= CC2= NNN= C2C= C1 None 165,361

Benzotriazole C1= CC2= NNN= C2C= C1 Ring 158,766

Benzotriazole C1= CC2= NNN= C2C= C1 Ring, MW < 300 30,945

Benzidine C1= CC(=  CC= C1C2= CC= C(C= C2)N)N None 208,934

Benzidine C1= CC(=  CC= C1C2= CC= C(C= C2)N)N Ring 48,123

Benzidine C1= CC(=  CC= C1C2= CC= C(C= C2)N)N Ring, MW < 300 1,618

OECD PFAS PFAS tree—OECD PFAS defin ition None 6,604,017

OECD PFAS PFAS tree—OECD PFAS defin ition Larger PFAS Parts 222,174

OECD PFAS PFAS tree—OECD PFAS defin ition Larger PFAS Parts, MW < 300 29,521

https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DNC%3DNC%3DN1&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC%3DC(C%3DC1)N&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DNNN%3DC1&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1(%3DNC(%3DNC(%3DN1)N)N)N&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1(%3DNC(%3DNC(%3DN1)N)N)N&input_type=smarts&fullsearch=true&ringsnotembedded=true
https://pubchem.ncbi.nlm.nih.gov/#query=C1(%3DNC(%3DNC(%3DN1)N)N)N&input_type=smarts&fullsearch=true&ringsnotembedded=true&mw_lte=300
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC2%3DNNN%3DC2C%3DC1&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC2%3DNNN%3DC2C%3DC1&input_type=smarts&fullsearch=true&ringsnotembedded=true
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC2%3DNNN%3DC2C%3DC1&input_type=smarts&fullsearch=true&ringsnotembedded=true&mw_lte=300
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC(%3DCC%3DC1C2%3DCC%3DC(C%3DC2)N)N&input_type=smarts&fullsearch=true&page=1
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC(%3DCC%3DC1C2%3DCC%3DC(C%3DC2)N)N&input_type=smarts&fullsearch=true&ringsnotembedded=true
https://pubchem.ncbi.nlm.nih.gov/#query=C1%3DCC(%3DCC%3DC1C2%3DCC%3DC(C%3DC2)N)N&input_type=smarts&fullsearch=true&ringsnotembedded=true&mw_lte=300
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=120
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=120
https://pubchem.ncbi.nlm.nih.gov/classification/#hid=120
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The use of in  vitro, in  vivo, and in silico approaches 
can aid the grouping and prioritization of chemicals for 
testing or assessments by regulatory bodies. This can be 
done by generating grouping hypotheses and justifica-
tion for inclusion or exclusion criteria for substances in 
groups [140]. In particular, novel approaches may gener-
ate huge amounts of toxicological and high-throughput 
“omics” data including metabolomics, transcriptomics, 
and exposomics to support the validation and estab-
lishment of grouping hypotheses needed by regulatory 
authorities [141]. An example of a grouping hypothesis 
is the mode of action (MOA) hypothesis, which states 
that all chemicals that share a common mode of action 
are candidates for grouping [142]. In addition, concepts 
such as adverse outcome pathways and toxicity pathways 
can be translated into prioritization hypotheses that can 
target specific substances, hence advancing prioritization 
for hazard assessment [143, 144]. These can facilitate reg-
ulator efforts to restrict hazardous substances.

Measurable biological and physiological effects of 
chemical exposure, known as effect biomarkers, can be 
used to group PMT/vPvM substances according to their 
toxicological profiles. If two substances induce similar 
biomarker responses indicative of for instance genotox-
icity, or endocrine disruption, they can be grouped. This 
approach can also help to identify common pathways of 
toxicity, adverse outcome pathways (AOPs), or mecha-
nisms of toxicity. By grouping substances with similar 
toxic profiles as PMT/vPvM substances, effect biomark-
ers can aid in characterizing cumulative risks posed by 
mixtures and complex chemical substances. This proac-
tive approach focuses on biological effects rather than 
relying solely on the structural and chemical properties 
of PMT/vPvM substances [145, 146]

It is crucial to recognize that the effectiveness of strate-
gies used for prioritizing substances largely depends on 
the availability of relevant data, including hazard and 
exposure data. To improve the availability and quality 
of such data, it is necessary to foster collective efforts, 
such as high-quality data generation, community-level 
data collection, Open Science, FAIR data, and enhanced 
data sharing policies. When substances are identified by 
read-across and experimental evidence as substances that 
meet the PMT/vPvM criteria, then a hazard classifica-
tion would be required. The data collected through these 
efforts can then be used to enhance the prioritization, 
identification, and regulation of PMT/vPvM substances. 
To manage PMT/vPvM substances effectively, manu-
facturers can be encouraged to submit a plan to prevent 
emissions and remove these substances from wastewater. 
This approach can help improve the overall management 
of PMT/vPvM substances. As a precaution, the princi-
ple of "as low as reasonably achievable" (ALARA) can be 

applied to minimize exposure levels and reduce the risk 
of harm to PMT/vPvM substances [147].

Conclusion
To achieve the EU’s zero pollution ambition of a non-
toxic environment by 2050, regulating the production, 
use and disposal of PMT/vPvM substances is necessary. 
As shown in Table  1, scaling PMT/vPvM criteria to big 
substance collections reveals that there are potentially 
thousands of PMT/vPvM substances that could cause 
harm to human health and the environment, especially 
concerning water quality and drinking water treatment.

The Montreal Protocol and the Stockholm Conven-
tion have demonstrated that grouping substances can 
be an effective strategy to expedite the elimination of 
the production, use, and emission of toxic substances, 
such as ozone-depleting substances (ODSs) and persis-
tent organic pollutants (POPs). This approach can also 
accelerate the identification and regulatory processes for 
substances that lack hazard information. Grouping can 
prevent the introduction of new hazardous substances 
into the global market. However, it is important to ensure 
that grouping is done in a way that is feasible and pro-
motes the use of safer and more sustainable alternatives. 
Otherwise, it could result in the production of regrettable 
substitutes, as was the case with ODSs and POPs, which 
led to the creation of some PMT/vPvM substances.

Read-across based on structural or substructural simi-
larity is one of the strategies that could be used to group 
PMT/vPvM substances, which relies on the idea that 
substances with similar structures have similar proper-
ties. Commonly retained moieties from transformation 
reactions could also be a grouping strategy for PMT/
vPvM substances. Substances that are structurally similar 
to PMT/vPvM according to read-across, or form persis-
tent, mobile TPs could be flagged for subsequent assess-
ment and/or regulatory actions.

Cheminformatics may be used for substance group-
ing based on predictive models for properties, such as 
biodegradability, mobility, and toxicity. PubChemLite 
predictions suggest that 41% of potentially environmen-
tally relevant compounds would be considered mobile 
(147,930 compounds) and 21% would be considered very 
mobile (78,107 compounds). Certain compound classes, 
such as triazines, aromatic amines, triazoles and PFAS, 
are likely to be persistent, non-biodegradable, and toxic. 
As shown in Table 1, the numbers are high and restrict-
ing these compounds as a group would be challenging; 
however, prioritizing members of these large groups 
for property testing is warranted as they contain a sub-
structure associated with a PMT/vPvM substance group. 
Additional strategies are needed to prioritize some 
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substances for regulation, such as mapping the uses of 
these chemicals and exposure which requires more data 
availability following FAIR principles.

Some strategies proposed for the prioritization of sub-
stances for testing or assessment of PMT/vPvM include 
(i) better understanding and the use of exposure/ emis-
sions information, such as Occupational Exposure Band-
ing and environmental exposure to the PMT/vPvM 
substances, and (ii) the use of in vitro, in vivo and in silico 
techniques to generate relevant toxicological data that 
will support identification,  prioritization and regulation 
of PMT/vPvM substances. These strategies in combina-
tion with substance grouping could result in substituting 
PMT/vPvM substances with safer alternatives.
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