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Abstract 

The agricultural sector faces challenges in managing water resources efficiently, particularly in arid regions dealing 
with water scarcity. To overcome water stress, treated wastewater (TWW) is increasingly utilized for irrigation 
purpose to conserve available freshwater resources. There are several critical aspects affecting the suitability of TWW 
for irrigation including salinity which can have detrimental effects on crop yield and soil health. Therefore, this study 
aimed to develop a novel approach for TWW salinity prediction using artificial intelligent (AI) ensembled machine 
learning approach. In this regard, several water quality parameters of the TWW samples were collected through field 
investigation from the irrigation zones in Al-Hassa, Saudi Arabia, which were later assessed in the lab. The assessment 
involved measuring Temperature (T), pH, Oxidation Reduction Potential (ORP), Electrical Conductivity (EC), Total 
Dissolved Solids (TDS), and Salinity, through an Internet of Things (IoT) based system integrated with a real-time 
monitoring and a multiprobe device. Based on the descriptive statistics of the data and correlation obtained 
through the Pearson matrix, the models were formed for predicting salinity by using the Hammerstein-Wiener 
Model (HWM) and Support Vector Regression (SVR). The models’ performance was evaluated using several statistical 
indices including correlation coefficient (R), coefficient of determination (R2), mean square error (MSE), and root mean 
square error (RMSE). The results revealed that the HWM-M3 model with its superior predictive capabilities achieved 
the best performance, with R2 values of 82% and 77% in both training and testing stages. This study demonstrates 
the effectiveness of AI-ensembled machine learning approach for accurate TWW salinity prediction, promoting 
the safe and efficient utilization of TWW for irrigation in water-stressed regions. The findings contribute to a growing 
body of research exploring AI applications for sustainable water management.
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Introduction
Water scarcity in arid and semi-arid regions is often 
exacerbated by a combination of natural and human-
induced factors [1]. To address these challenges, 
utilizing TWW for irrigation is gaining prominence 
as a practical and cost-effective alternative, alleviating 
pressure on natural water resources [2]. Globally, the 
utilization of TWW for irrigation is on the rise, with 
notable examples such as Israel, Spain, and California, 
where 85%, 40%-70%, and 30% of TWW, respectively, 
are reutilizing it for irrigation. In Saudi Arabia, the 
irrigation sector is suggested to account for about 71% 
of the annual freshwater consumption. To ensure the 
growing gap between water demand and supply, treated 
wastewater has been recognized as a potential solution. 
Thus, the initial regulatory step called “Treated Sanitary 
Wastewater and Its Reuse Regulations” was taken 
in 2000 which required either secondary or tertiary 
treatment before its use. Later, in 2006, the Ministry of 
Environment, Water, and Agriculture [MEWA] released 
two booklets focusing on the use of treated wastewater in 
agriculture [3]. Beyond water conservation, TWW carries 
the added advantage of being nutrient-rich, reducing 
the necessity for fertilization. The  United Nations (UN) 
agencies, like the Food and Agriculture Organization 
(FAO), acknowledge that repurposing TWW for 
irrigation has immense potential and is a vital aspect of 
resolving serious ecological problems worldwide [4, 5]. 
Salinity levels found in treated wastewater tend to be 
higher than in the source water. About 30 million tons of 
salt (NaCl) is consumed annually in the European Union 
alone, resulting in a significant global consumption. This 
extensive salt consumption contributes to heightened 
salinity in urban effluents and, consequently, in the 
resulting treated wastewater [6].

The  World Health Organization (WHO) published 
a number of guidelines in 1973, 1989, and 2006 
which specified secure practices for the use of treated 
wastewater in irrigation as a way to address the risks 
associated to public health [7–10]. The primary objective 
of these guidelines was to reinforce government 
regulations regarding wastewater treatment, focusing 
on the thresholds for TWW quality standards [8, 11, 
12]. However, the FAO published two guidelines on the 
use of TWW for irrigation. The first recommendation 
separates irrigation water into three categories based on 
characteristics like toxicity, salinity, sodicity, and other 
risks [13]. This categorization exposes the possible crop 
production issues associated with conventional water 
sources. In the second guideline, the FAO segmented the 
application of water reuse in irrigation into three groups, 
taking into account the type of irrigated crops [14]. 
Besides, the Environmental Protection Agency (EPA) 

issued water reuse guidelines in 1980, 1992, 2004, and 
2012. The most recent version is viewed as a refinement 
of the 2004 guideline, with the goal of promoting 
wastewater reuse by serving as trustworthy references, 
drawing from a compilation of global experiences 
[15, 16]. In general, the latest guideline places greater 
emphasis on environmental and health preservation 
compared to its predecessor [17]. The guidelines set 
forth by WHO, EPA, and FAO serve as foundational 
principles for the formulation of regulations in various 
countries globally. Therefore, in the absence of national 
guidelines in any country, it is recommended to turn to 
the guidelines provided by WHO, EPA, and FAO as a 
viable solution.

Al-Hassa has been reported as one of the largest 
irrigation zones in the Kingdom of Saudi Arabia. In 
AL-Hassa, the primary source of water used for irrigation 
includes the water from the groundwater wells mixed 
with treated wastewater and partially agricultural 
drainage. The sewage treatment plants (STPs) namely 
Hofuf STP, Umran STP, Oyun STP, and Aramco STP 
derive almost 200,000 m3/day of treated wastewater used 
for irrigation [18]. One of the studies reported elevated 
levels of salinity and nitrate in the groundwater wells 
in Al-Ahsa oasis while investigating the groundwater 
quality. The groundwater utilized for irrigation in 
Al-Ahsa Oasis is noted for its high salinity and falls within 
the categories of low to medium sodicity. This salinity 
and sodicity profile could potentially be attributed to the 
extensive extraction from groundwater wells [19].

It is vital to note  that various plants and crops may 
tolerate various levels of salinity since it is a crucial 
factor that indicates the water’s usefulness and possible 
environmental impact after its release. It is therefore 
crucial to comprehend and anticipate salinity levels 
[20, 21]. Lately, the application of Machine Learning 
(ML) approaches to foresee wastewater quality has 
drawn more attention. With the help of the given data 
set, ML models can possibly be trained to identify 
the correlations between different variables [22]. For 
instance, Hejabi et  al. [23] assessed AI models’ efficacy 
in simulating effluent quality parameters. The metrics 
related to influent quality were classified as independent, 
whilst the parameters related to effluent quality were 
classified as dependent [23]. Similarly, Mustafa et  al. 
[24] employed ML and ensemble techniques to model 
TDS concentrations in wastewater treated with Salvinia 
molesta plants. The study demonstrated enhanced 
prediction accuracy for TDS concentrations by ensemble 
learning using artificial neural network (ANN), support 
vector machine (SVM), adaptive neuro-fuzzy inference 
system (ANFIS), and multi-linear regression (MLR) 
[24]. Moreover, Banadkooki et al. [25] adopted different 
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ML techniques including  ANFIS, SVM and ANN to 
predict the quantity of TDS. These ML techniques were 
optimized using moth flam optimization (MFO), cat 
swarm optimization (CSO), particle swarm optimization 
(PSO), shark algorithm (SA), grey wolf optimization 
(GWO), and gravitational search algorithm  (GSA). The 
ANFIS-MFO and ANFIS-CSO models showed superior 
performance over the other models [25]. One of another 
studies by Abba et  al. [26] utilized various models, 
including general regression neural network (GRNN), 
Hammerstein–Wiener  (HW), non-linear autoregressive 
exogenous model (NARX), and least square support 
vector machine (LSSVM), to develop a multi-parametric 
model for a water treatment plant. The NARX model 
demonstrated great predictive capabilities for pH, while 
the HW model demonstrated exceptional simulation 
abilities for hardness, turbidity, and suspended particles 
[26]. Mokhtar et  al., [27] for instance, assessed three 
machine learning algorithms, namely SVR, extreme 
gradient boosting (XGB), and random forest (RF) and 
four multiple regressions, i.e., stepwise regression (SW), 
principal components regression (PCR), partial least 
squares regression (PLS), and ordinary least squares 
regression (OLS) to predict six IQWI parameters. The 
study suggested SW as the optimal regression model 
for IWQI prediction, and SVR as the best AI model, 
providing insightful information to improve irrigation 
water quality [27]. Moreover, Hamada et  al., [28] 
employed gaussian process regression (GPR), RF, XGB, 

and light gradient boosting machine (LightGBM) to 
predict total suspended solids (TSS), chemical oxygen 
demand (COD), and biochemical oxygen demand (BOD) 
concentrations in Gaza wastewater treatment plant 
effluent a day in advance. The GPR demonstrated the 
highest accuracy compared to RF, XGB, and LightGBM, 
with pH and temperature identified as crucial parameters 
in wastewater quality prediction, emphasizing GPR’s 
suitability for optimal wastewater treatment selection 
based on original characteristics and standards [28].

Building upon the foundation laid by [23–27] and [28], 
herein, this study aims at identifying the prediction capa-
bilities of the SVR and HWM models to assess the salinity 
dynamics in the TWW believing that the study outcomes 
would help improve the efficacy of the wastewater treat-
ment plant. Furthermore, regardless of the significance of 
SVR and the HWM in various fields, their representation 
in Scopus appears relatively scarce. The search for articles 
about SVR and the HWM within the Scopus database 
yields limited results as shown in Fig. 1, which indicates 
an underexplored area within the domain of academic 
research. Therefore, this highlights the potential for fur-
ther exploration and in-depth investigation into these 
predictive modelling techniques and system identifica-
tion methods across various disciplines. Moreover, the 
choice of SVR and HWM in this study was mainly due to 
the versatile capabilities of these two models in dealing 
with complex systems, particularly in the area of environ-
mental and water resource studies. SVR is known for its 

Fig. 1  The major keywords used over the literature on Hammerstein–Wiener and Support Vector Machine Database from Scopus
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ability to handle high-dimensional data and non-linear-
ity, whereas the HWM, with its capacity to capture both 
linear and nonlinear dynamics, offers a unique advantage 
in accurately representing the relationships.

Methodology
Study area
The Al-Hassa Agricultural zone is renowned for its 
cultivation which acts a vital component of the region’s 
economy [29]. This region has adopted contemporary 
farming methods in recent years, utilizing cutting-edge 
technologies to boost output while maintaining the 
fundamentals of conventional farming. Groundwater 
wells, treated wastewater, and partially agricultural 
drainage water are currently Al-Ahsa Oasis’s main 
sources of irrigation water. The treated wastewater 
used for agriculture primarily comes from municipal 
wastewater treatment plants [19]. These plants receive 
wastewater from residential, commercial, and industrial 
sources within the city. After undergoing treatment 
processes to remove contaminants and pathogens, the 
treated wastewater, also known as reclaimed water, is 
repurposed for agricultural irrigation. Through the use of 
treated wastewater that would otherwise be released into 
the environment, this technique aids in the conservation 
of freshwater resources [30]. To assure that the treated 
wastewater satisfies particular quality requirements and 
is suitable for agricultural use, it passes through a number 
of treatment processes, including physical, biological, 
and occasionally advanced treatment techniques. These 
treatments aim to remove solids, organic matter, and 
harmful substances to make the water suitable for 
irrigation without posing risks to crops, soil, or human 
health.

Using treated wastewater for agriculture aligns with 
efforts to conserve freshwater resources and supports 
sustainable agricultural practices. However, it’s crucial to 

ensure that the quality of treated wastewater meet stand-
ards to prevent potential risks associated with irrigation. 
Herein, the study encompassed gathering water samples 
from diverse irrigation zones in Al-Hassa, as depicted in 
Fig. 2. These samples were subjected to thorough labora-
tory analysis, evaluating a range of water quality param-
eters. These included salinity, temperature, pH, ORP, EC, 
resistivity, turbidity, and TDS, featured with real-time 
monitoring facilitated by an Internet of Things (IoT)-based 
system as well as a multiprobe device. The analyzed sam-
ples were then used to predict the key parameters accord-
ingly. The detailed study approach can be referred in Fig. 3.

AI‑infused process flow
The implementation of SVR and HWM Model served as 
the core framework for addressing the research objec-
tives. This paper illuminates a systematic approach that 
begins with data collection and preprocessing, ensuring 
the dataset’s suitability for both models. The SVR imple-
mentation involved data partitioning, model training, 
and hyperparameter optimization to attain an optimal 
classification framework. Simultaneously, the HWM 
was applied, emphasizing data formatting, system iden-
tification, or regression techniques tailored for the spe-
cific dataset. The integration phase, a key part of this 
study, carefully combined the results of these models. 
It does this by using techniques that blend them or by 
using the predictions of one model as rules for the other. 
Throughout the paper, the unique strengths of each 
model demonstrate how their collaboration leads to a 
more comprehensive and robust solution for the research 
problem. This approach is briefly depicted in the AI-
Infused workflow as shown in Fig.  4, visually capturing 
the sequential steps and integration points between SVR 
and the HWM, explaining the comprehensive nature of 
the methodology. For instance, the first phase involves 
collecting TWW samples from the field which undergoes 

Fig. 2  Study Area—Al-Hassa Farms, Eastern Province, Saudi Arabia
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Fig. 3  The setup overview highlighting a the treated waste water distribution lines, b the collection tanks in the farms and c the experimental 
setup integrated with Arduino and Multiprobe

Fig. 4  AI-infused process flow
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pre-processing to ensure its quality and consistency 
for analysis. Later, it involves ensuring all the data uses 
the same units followed by utilization of two machine 
learning models. The processed data then predicted the 
salinity levels in the TWW samples which were then 
compared to the actual measured values to evaluate the 
accuracy of the models, followed by the selection of the 
best fit model.

Hammerstein–Wiener Model (HWM)
The HWM is composed of both nonlinear and linear 
block systems. This model can be effectively employed as 
a block-box model, offering versatility in handling various 
variables and parameters [31]. Its performance surpasses 
that of linear and nonlinear systems like MLR and ANN, 
as the HWM considers both linearity and nonlinearity 
within a dataset. The architectural components of HWM 
consist of a linear dynamic block, a static input nonlinear 
block, and static output nonlinear blocks [32] and [26] as 
shown in Fig.  5. The HWM employs a mechanism that 
involves transforming nonlinear functions into linear 
input blocks, which are then converted back into a 
nonlinear state as output. The key equations associated 
with the HWM model are as follow:

where, Eq.  1 describes the nonlinear input block, con-
tains a pair of elements: u (t) indicating the input of the 
system and f (⋅) denoting a function that is nonlinear 
which transforms the input x (t). Equation 2 defines the 
linear dynamic block, where the convolution operation is 
represented by ∗ , the block’s output is yl (t), and Gl is the 
transfer function of the block. On the other hand, the lin-
ear dynamic block’s output yl (t) is obtained by applying 

(1)U(t) = f (x(t))

(2)y
l
(t) = Gl ∗ u(t)

(3)y(t) = h
(

y
l
(t)

)

(4)y(t) = h (Gl ∗ f (x(t)))

the nonlinear function ℎ (⋅) to the static output nonlinear 
block, which is represented by Eq. 3. Finally, the overall 
output of the model is represented by Eq. 4.

Support vector regression (SVR)
The SVR in artificial intelligence are models used for clas-
sification tasks. It is a machine learning approach primar-
ily designed to address classification challenges involving 
small sample sizes, nonlinearities, and high-dimensional 
data [34–36] as seen in Fig. 6. It involves identifying the 
most effective hyperplane within a multi-dimensional 
space to distinctly separate various classes within a data-
set. The fundamental equation:

The above equation represents the hyperplane, where 
y is the predicted target variable, w is the weight vector, 
x is the input vector, and b is the bias term. The objective 
is to maximize the margin between this hyperplane and 
the closest data points, known as support vectors, from 
distinct classes. SVR aim to minimize misclassifications 
while maximizing the distance between classes, creating 
a robust decision boundary [24].

Data and evaluation criteria
A rigorous pre-processing and post-processing approach 
were used in the extensive process of forecasting salinity 
in treated wastewater samples taken from the Al-Hassa 
region in order to assure the accuracy and dependability 
of the SVR and HWM predictions. Initially, the collected 
data underwent a normalization procedure, a crucial step 
aimed at scaling the variables to a standard range, ensuring 
that each parameter contributes proportionately to the 
models [37, 38]. To further perform the in-depth analysis, 
the dataset underwent descriptive analysis. During this 
stage, the key aspects of the data were outlined providing 
an in-depth understanding of the fundamental trends. 
Subsequently, to further investigate the correlations 
between the obtained water quality metrics, the Pearson 
correlation matrix was employed for assessing the possible 
connections and selecting the relevant input variables 

(5)y = w · x + b

Fig. 5  Schematic diagram of HWM [adapted from [33]] Fig. 6  Schematic diagram of SVR model [adapted from 34]
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[39, 40]. Based on that, the model combinations were 
decided with a robust framework to estimate salinity. The 
performance metrics are commonly used to evaluate the 
overall performance of a system [41]. The comprehensive 
dataset encompassing almost 7700 values was compiled. 
Following rigorous model selection procedures, the dataset 
was divided, allocating 70% of the data for the training 
phase and reserving the remaining 30% for the testing 
phase to ensure robust model evaluation. Through this 
approach, key performance metrics were calculated to 
gauge the predictive accuracy of the chosen models. This 
division and subsequent analysis aimed to validate the 
effectiveness of the models in accurately representing the 
complex interdependencies among the variables within the 
treated wastewater samples. Herein, the computed and the 
measured data was monitored through the four statistical 
measures, namely R2, R, MSE, and RMSE as discussed 
below:

(6)R2
= 1−











N
�

i=1

(Sal.o − Sal.P)
2

N
�
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�

Sal.o − Sal.O

�2




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
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where, Sal.P and Sal.O  represents the predicted 
and observed salinity, whereas 

−

Sal.O and 
−

Sal.P represents 
the observed and predicted salinity with its correspond-
ing averages for N data points, respectively.

Result and discussions
Performance measure
The descriptive statistical analysis as shown in Table 1 rep-
resents the descriptive statistics ensuring that the data was 
properly aligned, well understood, finely processed and ful-
filled the requirements of the chosen AI models. This leads 
to more effective model development and reliable results 
[37]. Furthermore, based on the correlation matrix, an 
appropriate combination of inputs was identified (refer to 

(7)
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√
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√
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N
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2

Table 1  Descriptive statistics of the data

Parameters Mean SD Kurtosis Skewness Min Max

Temp. [°C] 23.280 0.028 −0.783 0.619 23.24 23.34

pH 8.063 0.0186 24.013 −4.466 7.90 8.07

ORP [mV] 169.584 2.031 −0.866 0.340 166.60 174.50

EC [µS/cm] 2841.975 1.973 −1.071 −0.284 2837.00 2846.00

RES [Ohm-cm] 351.924 0.264 8.353 −3.217 351.00 352.00

TDS [ppm] 1421.230 1.021 −0.955 −0.212 1419.00 1423.00

Turb. [FNU] 0.333 0.071 471.996 13.690 0.20 3.10

Table 2  Pearson correlation matrix between the inputs and output

Temp. [°C] pH ORP
[mV]

EC
[µS/cm]

RES
[Ohm-cm]

TDS
[ppm]

Turbidity [FNU] Sal. [PSU]

Temp.[°C] 1

pH 0.116 1

ORP [mV] −0.810 −0.595 1

EC [µS/cm] 0.813 0.301 −0.887 1

RES [Ohm−cm] −0.492 −0.061 0.370 −0.442 1

TDS [ppm] 0.797 0.287 −0.864 0.969 −0.494 1

Turb. [FNU] −0.011 −0.350 0.196 −0.048 0.114 −0.052 1

Sal. [PSU] 0.633 0.265 −0.760 0.856 −0.199 0.842 0.000 1
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Table 2). The study utilized the holdout validation method, 
a variation of k-fold cross-validation. This validation pro-
cess offered diverse approaches like k-fold cross-validation, 
holdout, and leave-one out, among others. The holdout 
method simplifies k-fold by randomly dividing data into 
two sets: training and testing phases [26, 32].

The choice of the models for predicting salinity was 
based on the given outputs. A total of three candidate 
models were selected as follows:

Predictive analysis
In predicting salinity, the choice of input variables is cru-
cial for accurate modeling. The utilization of different 
combinations of variables across three distinct models, 
namely Model I, Model II, and Model III, using SVR and 
HWM to explore varying levels of complexity and infor-
mation integration as shown in Figs. 7 and 8, respectively. 

(10)Model I : EC + TDS

(11)Model II : EC + TDS + ORP + Temp.

(12)
Model III : EC + TDS + ORP + Temp. + pH

Model I employed a straightforward combination of two 
variables, i.e., EC and TDS. This minimalist approach 
seeks to establish a foundational understanding of salinity 
prediction by relying on the fundamental factors known 
to influence salinity levels. For Model II, additional two 
variables, namely ORP and Temp. were introduced 
alongside the variables used for Model I. Incorporating 
additional parameters aimed to capture a wider range of 
factors that could further enhance the predictive capabil-
ities. Model III further broadened the range of input vari-
ables by incorporating pH, thus incorporating an even 
more extensive collection of factors that could influence 
salinity. Analyzing the patterns ranging from simpler 
to complex combinations enabled us to investigate how 
adding more parameters impacts the predictive abilities 
of both SVR and HWM. Moreover, the selected variables 
also play a crucial role in environmental and chemical 
contexts, contributing effectively to salinity variations.

As depicted in above figures, the SVR models, despite 
their inherent strength in handling complex relationships 
through the use of kernel functions, might have limita-
tions in capturing intricate nonlinearities presented in 
the dataset. The different SVR configurations may not 
have been as successful in capturing the complex and 
varied correlations between the salinity and the input 

Fig. 7  SVR Models response plot between true and predicted values
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Fig. 8  HVM Structure and best fit models

Table 3  Results of SVR for Modelling Salinity

Models Training Testing

R2 MSE R RMSE R2 MSE R RMSE

SVR-M1 0.7300 0.0672 0.8544 0.2592 0.6800 0.0351392 0.8246 0.1875

SVR-M2 0.7240 0.0687 0.8509 0.2621 0.6740 0.0261140 0.8210 0.1616

SVR-M3 0.6776 0.0802 0.8231 0.2833 0.6200 0.0206101 0.7874 0.1436
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variables as the more sophisticated structure of HWM. 
Specifically, the superiority of the HWM-M3 over other 
models could be justified based on several assumptions. 
Firstly, the HWM is capable to incorporate the static and 
the nonlinear elements that could help capture the strong 
relation between the input variable and the output. Sec-
ondly, it uses advanced preprocessing methods which is 
flexible to handle nonlinearities. The extensive training 
and testing further assured resilience across he various 

datasets. The performance metrics for SVM and HWM 
models can be referred in Tables 3 and 4, respectively.

From Fig. 9, the R2 values for both the models can be 
depicted in the form of radar graph. The radar graph 
tells the effectiveness of the dataset in a particular sit-
uation via thorough assessment of the performance. 
Upon comparision, an exceptional performance of 
HWM model over SVR was witnessed in both testing 
and training phases. There seems a potential need for 
regularization to assure model refinement for the SVR 

Table 4  Results of HWM for Modelling Salinity

Models Training Testing

R2 MSE R RMSE R2 MSE R RMSE

HWM-M1 0.8076 0.0479 0.8986 0.2188 0.7576 0.0000236 0.8704 0.0049

HWM-M2 0.8086 0.0476 0.8992 0.2182 0.7586 0.0011274 0.8710 0.0336

HWM-M3 0.8279 0.0428 0.9099 0.2070 0.7779 0.0000042 0.8820 0.0021

Fig. 9  Radar graph depicting R-Squared values for SVR and HWM models

Fig. 10  Radar graph depicting R values for SVR and HWM models
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models due to the reduced R2 values. Conversely, the 
higher R2 values for the HWM models indicates it capa-
bility to capture underlying patterns.

From Fig.  10 a slight decline in the R values can be 
seen from the training to the testing stages which 
indicates that the models were functioning in a bal-
anced manner. The recorded R values indicated that 
both the models can effectively capture and predict the 
underlying patterns in the dataset. The HWM mod-
els witnessed to perform better somewhat, thus it can 
be further explored and implemented for practical 
applications.

Figure  11 demonstrates the quantitative assessment 
of the models’ performance in both training and testing 
phase. The variations in RMSE values helped understand 
and assess the model’s dependability. In generaliza-
tion, the SVR-M3 performed well, whereas the HWM-
M1 performed better all around. The degree to which 
SVR-M3 and HWM-M1 generalize to new data during 

testing is a positive indication of their resilience. It sug-
gests that these models may have succeeded in striking 
a balance between fitting training data and adapting to 
observations.

As illustrated in Fig. 12, the performance of the six AI 
models, namely SVR-M1, SVR-M2, SVR-M3, HWM-
M1, HWM-M2, and HWM-M3 was assessed using MSE 
values that are acquired during both the training and 
testing stages. For the SVR models, the training MSE 
values exhibit a gradual increase from SVR-M1 (0.0672) 
to SVR-M3 (0.0802). In contrast, during the testing 
phase, the MSE values decrease from SVR-M1 (0.035) 
to SVR-M3 (0.020), indicating improved generalization 
performance. Similarly, for the HWM models, the train-
ing MSE values show a slight decrease from HWM-M1 
(0.0479) to HWM-M3 (0.0428). Notably, during testing, 
the MSE values for HWM-M1 (0.0000236), HWM-M2 
(0.0011274), and HWM-M3 (0.0000042) are remark-
ably low, highlighting the predictive capabilities of the 

Fig. 11  RMSE values obtained from the training and testing phases of SVR and HWM models

Fig. 12  MSE values obtained from the training and testing phases of SVR and HWM models
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models. These results suggest that the HWM models 
outperform the SVR models, particularly in the testing 
phase, showcasing their efficacy in accurately predict-
ing outcomes. Moreover, it is crucial to understand the 
numerical results using a two-dimensional plot known as 
Taylor diagram (Fig. 13). Taylor diagram has been in sci-
ence and engineering to depict the extent of SD, RMSE 
and R values in one plot. From the plot it can be justified 
that HWM-3 proved more reliable than the other mod-
els with RMSE = 0.0021 in testing phase. The predictive 
skills of HWM is not surprising owing to the fact that, 
it is nonlinear system identification approach and we are 
working with pilot plant system to identify the patterns 
and influence of TWW used in agricultural sector.

It is imperative to compare our outcomes with the 
existing state-of-the-art approaches, for instance, 
Poursaeid et  al., [42] employed a hybrid metaheuristic 
AI model known as the wavelet self-adaptive extreme 
learning machine (WSAELM) to simulate groundwater 
parameters in the Mighan Plain, Iran, spanning from 
2002 to 2017. The WSAELM model demonstrated an 
impressive accuracy in predicting salinity, achieving 
a value of 0.991. However, it is noteworthy that the 
proposed hybrid model outperformed our results having 
an R2 value ranging between 77 and 82%. The superior 
performance of WSAELM is attributed to the integration 
of hybrid models than relying on a single model, which 
has been widely acknowledged in the literature to 
outperform single models in various contexts. Likewise, 
in the study conducted by Mosavi et al. [43] ML models 
were employed to forecast groundwater salinity, with 
significant factors identified through simulated annealing 
feature selection. After testing six different models, it 

was discovered that the SVM model performed the best. 
The main variables that were shown to have the biggest 
effects on groundwater salinity prediction were soil 
type, precipitation, land use, elevation, and groundwater 
extraction. The SVM model performed better than the 
others, despite the fact that all models showed excellent 
accuracy levels (above 0.82). A consistent agreement with 
our predicted  output is evident when comparing these 
findings with our results. Furthermore, Tran et  al., [44] 
investigated cutting-edge machine learning methods 
to forecast groundwater salinity in the coastal aquifers 
of Vietnam’s Mekong River Delta, with a testing phase 
goodness-of-fit of 84%, demonstrating the efficacy of 
the approach. Additionally, the results showed a modest 
increase over the current results. In a recent study, 
Trabels et al. [45] focused on evaluating the capabilities 
of the ML models to predict groundwater quality for 
irrigation in Tunisia’s downstream Medjerda river basin. 
Among the models assessed, the AdaBoost stood out 
for its ability to produce more accurate and concise 
predictions with the least amount of input parameters 
(R = 0.89). The outcomes demonstrated a noteworthy 
concordance with our study results which were obtained 
from HWM-M3 (R = 0.88). Looking ahead, it seems that 
the prediction capabilities could be further enhanced by 
introducing cutting-edge machine learning methods. By 
doing so, the accuracy could improve even more.

Conclusions
The thorough analysis of water quality parameters 
integrated with real-time monitoring under supervised 
machine learning fairly contributed towards the 
better understanding of salinity dynamics. Based 
on the performance metrics, the SVR-M1 exhibits 
higher R2 values for both training (0.7300) and testing 
(0.6800) among all SVR models indicating a reasonable 
predictive accuracy. However, the HWM models 
consistently outperformed the SVR counterparts, 
with HWM-M3 highlighting the highest R2 values in 
both training (0.8279) and testing (0.7779) phases. It 
further demonstrated the lowest MSE and RMSE in 
both training and testing, highlighting its superior 
predictive performance compared to other models. 
The potential of HWM-M3 in particular, showed 
superior predictive capabilities which we believe could 
be utilized to assure sustainable irrigation practices. 
Moreover, the comparison of these models further 
pondered on the need for regularization for SVR models. 
It is believed that the emphasis should be placed on 
refining AI models, including exploring novel hybrid 
models and incorporating additional relevant features 
for improved predictive accuracy. Future studies may 
also explore the impact of climate change conditions on 

Fig. 13  Taylor diagram with the SD ranges obtained for the observed 
and predicted salinity
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TWW salinity dynamics, considering potential shifts 
in agricultural practices. Additionally, investigating the 
economic feasibility and social acceptance of adopting 
these predictive models in diverse agricultural contexts 
will contribute to their successful implementation. 
Comparative analyses across various arid regions would 
identify unique challenges and opportunities, guiding the 
development of tailored irrigation strategies. This notable 
study aims to inform policy, optimize water resource 
management, and support the development of smart, 
automated irrigation systems, ultimately contributing 
to agricultural sustainability and food security in arid 
landscapes.
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