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Abstract 

Obtaining accurate spatial maps of soil organic carbon (SOC) in farmlands is crucial for assessing soil quality 
and achieving precision agriculture. The cropping system is an important factor that affects the soil carbon cycle 
in farmlands, and different agricultural managements under different cropping systems lead to spatial heterogene-
ity of SOC. However, current research often ignores differences in the main controlling factors of SOC under different 
cropping systems, especially when the cropping pattern is complex, which is not conducive to farmland zoning man-
agement. This study aims to (i) obtain the spatial distribution map of six cropping systems by using multi-phase HJ-
CCD satellite images; (ii) explore the stratified heterogeneous relationship between SOC and environmental variables 
under different cropping systems by using the Cubist model; and (iii) predict the spatial map of SOC. The Xiantao, 
Tianmen, and Qianjiang cities, which are the core agricultural areas of the Jianghan Plain, were selected as the study 
area. Results showed that the SOC content in rice–wheat rotation was the highest among the six cropping systems. 
The Cubist model outperformed random forest, ordinary kriging, and multiple linear regression in SOC mapping. The 
results of the Cubist model showed that cropping system, climate, soil attributes, and vegetation index were impor-
tant influencing factors of SOC in farmlands. The main controlling factors of SOC under different cropping systems 
were different. Specifically, summer crop types had a greater influence on spatial variations in SOC than winter crops. 
Paddy–upland rotation was more affected by river distance and NDVI, while upland–upland rotation was more 
affected by irrigation-related factors. This work highlights the differentiated main controlling factors of SOC under dif-
ferent cropping systems and provides data support for farmland zoning management. The Cubist model can improve 
the prediction accuracy of SOC under complex cropping systems.
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Introduction
Soil organic carbon (SOC) in farmland plays a pivotal 
role in both soil fertility and vegetation growth [1, 2]. 
The spatial heterogeneity of SOC in farmland is notably 
pronounced, influenced by diverse factors including cli-
mate, topography, soil properties, and human activities 
[3]. These factors collectively determine the input of SOC 
in farmland to a significant extent. Obtaining accurate 
spatial map of SOC in farmlands is conducive by the fact 
that it facilitates monitoring the changes over time, play-
ing a crucial role in assessing farmland soil quality [4–6].

The current studies often use easy-to-measure environ-
mental variables in prediction of SOC spatial distribu-
tion. The philosophy of utilizing environmental variables 
was established after introducing SCORPAN model [7]. It 
includes soil properties, climate, organisms, topography, 
parent material, time factor and spatial position [8–10].

In recent years, the accuracy of farmland SOC digital 
mapping has been remarkably improved by combining 
farmland planting and management systems, including 
cropping system, crop type, multiple cropping index, 
stubble index, and distance to irrigation canals [5, 11–
15]. However, existing studies only address typical crop-
ping systems in certain regions, where the systems are 
relatively straightforward [16–18]. Examples are tra-
ditional rice–wheat and wheat–corn rotation systems. 
Complex cropping systems will exacerbate the spatial 
heterogeneity of farmland SOC, which brings challenges 
to SOC spatial prediction.

Soil-landscape prediction models have been numer-
ously performed multiple linear regression (MLR). It is 
commonly used algorithm in predicting SOC [19]. The 
model explores the joint influence of multiple variables 
and is simple, intuitive, and highly interpretable [20]. 
However, it is limited to linear relationship assumptions 
and low prediction accuracy [21, 22]. Commonly used 
machine learning algorithms, such as artificial neural 
network, support vector machine (SVM), random for-
est (RF) [23–25], has a high prediction accuracy and can 
reflect the relative importance of variables. However, 
these algorithms cannot reveal the relationship between 
SOC and environmental variables and have poor inter-
pretability [26–29].

The Cubist model is a rule-based predictive model, 
each rule is associated with a MLR sub-model [30, 31]. 
This rule and model matching completes the shortcom-
ings of a single model, thereby improving the predictive 
accuracy of the model. More importantly, it fits nonlin-
ear relationships in the form of stratified linear regression 
[32–34]. Therefore, the use of Cubist can not only reveal 
the stratified linear relationship between SOC and envi-
ronmental variables, but can also contribute to acquiring 
a high-precision SOC spatial distribution map.

In this study, spatial distribution maps of local cropping 
systems were derived using multi-period “Environment 
and Disaster Monitoring and Forecasting Small Satellite 
Constellation System” (abbreviated as HJ-CCD) images 
in Tianmen, Qianjiang, and Xiantao cities situated in 
the Jianghan Plain. Subsequently, the Cubist model was 
employed to investigate the stratified linear relationship 
between SOC and environmental variables within the 
region. The primary controlling factors influencing SOC 
under various cropping systems were identified, leading 
to the creation of a spatial distribution map for SOC.

Materials and methods
Study area and soil samples
The study area is located in the hinterland of the Jiang-
han Plain, Hubei Province, China (112° 29′–113° 49′ E, 
30° 04′–30° 54′ N). The land was formed by the alluvial 
deposits of the Yangtze and Han rivers, with a total area 
of ~ 7133 km2. The region has a typical subtropical mon-
soon climate, which is warm and humid, and has an aver-
age annual rainfall of 1135  mm and an average annual 
temperature of 17.3  °C. Rainfall in the area is mainly 
concentrated in the summer, accounting for 70% of the 
total annual precipitation. The terrain is flat, with an 
average elevation of 30 m above sea level, and the water 
level drop is small, making the area prone to flooding. 
The predominant soil in this area is fluvisols, with a small 
amount of gleysols also present. Rivers crisscross this 
area, and the soil is fertile, creating favorable natural con-
ditions for crop growth. On this fertile land, crop cultiva-
tion is mainly carried out using biannual or triple-season 
planting methods, making it one of the important grain 
production areas in Hubei Province.

For this research, a total of 12,041 soil samples were 
collected from agricultural fields in 2015 (Fig. 1). Due to 
insufficient preparation of auxiliary variables in the pre-
liminary stage and considering the challenges of access-
ing certain areas, we opted for a relatively simple random 
sampling method. The sampling depth was 30  cm. The 
samples were air-dried in the laboratory. After removing 
plant roots and gravel, they were pulverized and sieved 
through a 20-mesh nylon sieve. Soil organic carbon con-
tent was determined using Walkley–Black wet oxidation 
method [35].

Acquisition of environment variables
Based on the SCORPAN model [7], 17 environmen-
tal variables were selected considering four aspects: 
soil properties, climate, organism, and spatial position 
(Table 1). The study area is located in a plain, the terrain 
undulation is small, and the correlation with SOC is low, 
so topographic factors are not included in the model. 
Additionally, residuals in the study area did not exhibit 



Page 3 of 15Ou et al. Environmental Sciences Europe           (2024) 36:80 	

Fig. 1  Location of the study area and sampling points

Table 1  Influencing factors of SOC

Category Environment variable Resolution/scale Source

Soil properties Soil types 250 m Soil grids

Clay content 250 m Soil grids

Silt content 250 m Soil grids

pH 250 m Soil grids

Total nitrogen, TN 90 m National Earth System Science Data Center

Total phosphorus, TP 90 m National Earth System Science Data Center

Total potassium, TK 90 m National Earth System Science Data Center

Climate Mean annual temperature, MAT 30 m Chengdu Institute of Mountain Hazards and Environment, Chinese 
Academy of Sciences

Mean annual precipitation, MAP 30 m Chengdu Institute of Mountain Hazards and Environment, Chinese 
Academy of Sciences

Organism Annual NDVI maximum, NDVImax 30 m Institute of Geographic Sciences and Natural Resources Research, 
Chinese Academy of Sciences

Annual NDVI average, NDVImean 1 km Institute of Geographic Sciences and Natural Resources Research, 
Chinese Academy of Sciences

Spatial position Administrative district (AD)
Distance from the nearest irrigated canal
Distance from the nearest rural settlement

Based on the boundaries of county-level administrative districts
Based on land use map

Distance from the nearest pond
Distance from the nearest river
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spatial correlation, and as a result, no further processing 
was applied to the residuals. The formula for the SCOR-
PAN model is as follows:

where SaorSc represents soil properties or soil type; s rep-
resents other soil information at the same point; c  rep-
resents climatic factors;   o represents biological factors; 
r represents topographic and geomorphological fea-
tures;  p  represents soil parent material or lithological 
characteristics; a represents the time factor of soil forma-
tion; n  represents spatial location; and  ε  represents the 
residuals with spatial autocorrelation.

Acquisition of spatial distribution map of cropping system
The spatial distribution map of the cropping system is 
based on time series and is calculated from summer and 
winter crops. By investigating the growth cycles of win-
ter rapeseed and winter wheat, we discovered that the 
flowering period of winter rapeseed occurs in March to 
April, while this time coincides with the jointing stage 
of winter wheat. During this period, winter wheat and 
winter rapeseed have distinct differences. Therefore, we 
selected an image (ID: 2365654) from late March taken 
by the HJ-CCD with no cloud cover. Environmental sat-
ellites, characterized by high temporal and spatial reso-
lution, have a spatial resolution of 30 m and a temporal 
resolution of 2 days, which surpasses what is achievable 
by other images. They are often specifically utilized for 
monitoring environmental changes and assessing dis-
aster risks. This environmental satellite image serves as 
the foundation for obtaining a distribution map of win-
ter crops. From the true-color remote sensing image 
observation (Fig. 2), the winter rapeseed flowers appear 
yellow–green, which distinguishes the yellow–green 
regions as winter rapeseed fields. Winter wheat, being 
in its jointing stage, shows rapid leaf area growth and 
appears as a deep green color on the image. Fallow land 
is depicted in shades of pink–purple. A combination of 
standard false-color composite images was employed to 
enhance vegetation characteristics and improve interpre-
tational accuracy. Under the standard false-color com-
posite image, winter rapeseed is depicted as a pale pink 
color, winter wheat is represented in red, and fallow land 
appears as a dark green color. The two vertical viewing 
tools in ENVI software was used to compare the standard 
false-color composite image and the true-color image to 
establish areas of interest. The supervised classification 
method using SVM was applied to classify the images. 
The classified results were then compared with the vali-
dation samples. The overall accuracy and kappa coeffi-
cient of the classification were as high as 91.28% and 0.86, 
respectively. The distribution map of summer crops was 

Sa or Sc = f (s, c, o, r, p, a, n)+ ε,

created using 30 m resolution land use data from Hubei 
Province, China. The paddy fields and dry land areas 
were extracted from the land use types to determine the 
geographic distribution of summer crops. The cropping 
system distribution map was obtained using the ArcGIS 
10.8 platform. Initially, the distribution maps for summer 
and winter crops were imported into the ArcGIS inter-
face. The two raster images were separately reclassified. 
The final map was generated using the raster calculator 
tool (Fig. 3).

Acquisition of other environment variables
Soil types, clay content, silt content, and pH are from the 
Soil Grids website (https://​www.​soilg​rids.​org/) with a 

Fig. 2  Remote sensing images of winter crops in true color 
and standard false color

https://www.soilgrids.org/
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resolution of 250 m. The spatial distribution map of the 
total contents of nitrogen, phosphorus, and potassium 
content with a resolution of 90 m was obtained from the 
National Earth System Science Data Center (http://​soil.​
geoda​ta.​cn/​ztsj.​html). The average annual temperature 
and average annual rainfall data were obtained from the 
Chengdu Institute of Mountain Hazards and Environ-
ment (https://​mp.​weixin.​qq.​com/s/​FPBT3​9rBDG​zXe9s​
dunO-​9Q), Chinese Academy of Sciences (Fig. 4). These 
meteorological data consist of a 30-year average from 
1991 to 2020, and its resolution is 30 m. The maximum 
resolution of the annual normalized vegetation index is 
30  m, and the average resolution of the average annual 
normalized vegetation index is 1  km, both from the 
Data Center for Resources and Environmental Sciences 
(http://​www.​resdc.​cn/​DOI), Chinese Academy of Sci-
ences. Dis_IC, Dis_River, Dis_RS, and Dis_Pond were 
calculated on the ArcGIS 10.8 platform by using the 
’Near’ tool in the ’ArcToolbox’ (Table 1). Administrative 
district data were obtained by filtering the county-level 

administrative boundaries through the attribute table by 
using ArcGIS 10.8.

Spatial prediction model
Ordinary kriging
Kriging is a geostatistical interpolation technique that is 
an optimal linear unbiased spatial interpolation method 
[36, 37]. This interpolation method is characterized by 
the introduction of a semivariogram when estimating 
the interpolation coefficients to measure the spatial cor-
relation of sample data with distances. Several kriging 
methods are used in the interpolation formula, and ordi-
nary kriging (OK) is the most commonly used method in 
resource reserve estimation in kriging method valuation 
[38]. The estimation formula for OK method is as follows:

Z∗(x) =

n
∑

i=1

�iZ(xi),

Fig. 3  Spatial distribution of cropping systems

http://soil.geodata.cn/ztsj.html
http://soil.geodata.cn/ztsj.html
https://mp.weixin.qq.com/s/FPBT39rBDGzXe9sdunO-9Q
https://mp.weixin.qq.com/s/FPBT39rBDGzXe9sdunO-9Q
http://www.resdc.cn/DOI
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where Z∗(x) is the value of the point to be estimated, 
Z(xi) is the observation at location xi , and �i is the weight 
factor of Z(xi).

Random forest
Random forest (RF), one of the most popular machine 
learning algorithms, employs the concept of ensemble 
learning to integrate multiple decision trees. RF can han-
dle not only classification tasks, but also address regres-
sion problems; it is now widely applied in estimating 
agricultural yields [39]. The algorithm performs mul-
tiple random selections on the sample set through the 
specified number of features and the number of decision 
trees; each new set of samples after random selection 
corresponds to a decision tree [40, 41]. Subsequently, 
the results of each decision tree are voted, and that with 
the most votes is the result of RF. In this study, RF was 
implemented using the ‘randomForest’ package in R [40]. 
RF has two key parameters, namely “mtry” and “ntree”, 
where “mtry” represents the number of features chosen 
for each tree, and “ntree” represents the total number of 

decision trees in the ensemble. In this study, the default 
parameters were found to be optimal, with the parame-
ters set as follows: ntree = 500, mtry = 5.

Cubist model
Cubist comes from Quinlan’s M5 model decision tree 
algorithm [30]. The Cubist model splits the dataset by 
establishing several rules. The principle of splitting is 
that the prediction error of the model and the depend-
ent variable is minimized, and each subset of data after 
being split is simulated; a linear regression model of each 
subset is then established separately [42]. Similar to RF 
models, the Cubist models employ an ensemble learning 
strategy, in which the final prediction result is equal to 
the weighted average of all model tree predictions.

The two important parameters that need to be set when 
using the Cubist model are “committee” and “neigh-
bors”. The “committees” parameter signifies the number 
of decision trees used during model construction, while 
the “neighbors” parameter is exclusive to the prediction 
phase, representing the number of neighbors to consider 

Fig. 4  Spatial distribution of environmental variables. a MAP: mean annual precipitation. b MAT: mean annual temperature. c Soil types. d 
NDVImean: annual NDVI average. e NDVImax: annual NDVI maximum. f Clay content. g pH. h Silt content. i TN. j TP, and k TK
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during prediction. The “committees” parameter can be 
set between 1 and 100, while “neighbors” range from 0 to 
9. When predicting a specific point, the final prediction 
is the sum of the predicted value and the average of the 
“neighbors” residuals. In the Cubist model, the model can 
calculate the proportion of independent variables used in 
all “committee” to showcase the importance of independ-
ent variables in the calibration process. These proportions 
are utilized for rule formulation and model establishment. 
These proportions include the conditional contribution 
rate (%) and the modeling contribution rate (%).

The calibration process for Cubist in this study was 
implemented through the “Cubist” package in R [43]. After 
validation, the optimal parameter values of “committee” 
and “neighbors” are 100 and 9, respectively.

Model validation
In this study, 12,041 sampling points were randomly 
divided into calibration set and validation set, of which 80% 
sampling points were used for calibration (n = 9633) and 
20% sampling points were used for validation (n = 2408).

We conducted tenfold cross-validation on the calibration 
set, employing this cross-validation method to enhance the 
credibility of the model results. In order to better reflect 
the performance differences between models, we per-
formed external validation on the validation set. Evaluation 
metrics such as root mean square error (RMSE), coefficient 
of determination (R2), and Lin’s concordance correlation 
coefficient (LCCC) were chosen for assessment. RMSE val-
ues reflect the degree of deviation between the actual and 
observed values. R2 verifies the fitting degree of the model 
to the data, while LCCC considers the accuracy, consist-
ency, and bias of the model. A powerful model typically 
exhibits low RMSE values as well as R2 and LCCC values 
close to 1. The formula for calculating the four evaluation 
indicators is as follows:

RMSE =
2

√

1

n

∑n

1
(oi − Pi)

2,

R2
= 1−

∑n
1(oi − Pi)

2

∑n
1

(

oi − O
)2

,

where n is the number of validation samples, oi is the 
observation at sample point i, Pi is the predicted value at 
sample point i, O is the average of the observations, P is 
the average of the predicted values, R is the Pearson cor-
relation coefficient between the observed and predicted 
values, SO is the standard deviation of the observation, 
and SP is the standard deviation of the predicted value.

Results
Descriptive statistics
The descriptive statistics of the sample point data include 
minimum, maximum, mean, standard deviation, skew-
ness, and kurtosis (Table  2). The SOC varies between 
0.60 and 54.20 g/kg, the mean of the divided calibration 
set and the validation set is not different from the total 
data set, and the standard deviation of the divided data 
set is similar to that of the total sample set. The skewness 
and kurtosis of the dataset are 1.063 and 2.083, respec-
tively. A skewness of 1.063 indicates that the data are 
generally right-skewed, indicating the existence of some 
extreme values in the data; a kurtosis of 2.083 indicates 
that the data distribution is flatter than the normal distri-
bution, indicating few extreme values. The RStudio plat-
form was used to test the normal distribution of K-S, and 
the results confirmed that the data satisfied the normal 
distribution.

Soil properties in different cropping systems
This study employed SPSS 24 software for one-way 
ANOVA to explore variations in SOC content and soil 
properties under different cropping systems. The SOC 
content under paddy–upland rotation is ~  16  g/kg, and 
that under upland–upland rotation is ~  12  g/kg. The 
SOC content in paddy field is significantly higher than 
that in dry land (Table 3). Duncan’s post hoc test follow-
ing the one-way ANOVA demonstrated significant differ-
ences in SOC content among different cropping systems. 
Rice–wheat rotation has the highest SOC content. As the 
TN content increases, the SOC content also increases, 
suggesting the positive correlation between SOC content 

LCCC =
2rSOSP

S2
O
+ S2

P
+

(

O − P
)2

,

Table 2  Descriptive statistics for soil organic carbon samples

SDE standard deviation of the error

Samples Number Min (g/kg) Max (g/kg) Mean (g/kg) SDE Skewness Kurtosis

All data 12,041 0.600 54.200 14.190 0.564 1.063 2.083

Calibration set 9633 0.600 54.200 14.180 0.564 1.085 2.164

Validation set 2408 1.200 52.400 14.240 0.560 0.976 1.755
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and total nitrogen content. Significant differences in TN 
content under different cropping systems, with the high-
est TN content in rice–fallow rotation and the lowest 
TN content in dry crops–rape rotation. pH varies among 
the different cropping systems in the study area, with the 
highest pH value in rice–fallow rotation and the lowest 
pH value in dry crop–wheat rotation; the pH of the high 
SOC value area is weakly alkaline.

Cubist model results
Analysis of main controlling factors
Based on the analysis of the calibration process of the 
Cubist model and the contribution of each environmen-
tal variable, variations in conditional contribution were 

particularly pronounced. The contribution rates of CS 
and MAP were high, reaching 85% and 46%, respectively 
(Fig.  5). The SOC varies under different CS and MAP 
conditions, making CS and MAP as critical stratifying 
variables. The top five contributors to the modeling in 
terms of contribution rates are MAP, TN, Silt, Clay, and 
NDVImax. Climate and soil attributes were the most 
influential variables. The importance of MAP was par-
ticularly substantial, accounting for 83% of the influence. 
Prior research highlighted the significance of climate on 
a global scale [44]. However, this study demonstrates its 
equally important role at a local level, with precipita-
tion being more significant than temperature in this area. 
Regarding soil nutrients, the importance of TN content 
stood out, whereas the importance of TP and TK con-
tents was lower. The influence of pH was found to be the 
weakest. Soil texture emerged as a key factor influencing 
SOC, with clay and silt contents playing significant roles 
in this study. In terms of remote sensing data, NDVImax 
emerged as a critical variable, while NDVImean’s impor-
tance was weaker. Among distance-related factors, the 
importance of water-related factors such as Dis_IC, Dis_
Pond, and Dis_River was higher than that of Dis_RS.

Stratified linear model results
The stratified rules of the Cubist model and the linear 
regression results for each layer are presented in Fig. 6. 
Zoning rules were primarily based on summer crop 
type, precipitation, and NDVImax. Rule 1 corresponds 
to the cultivation of summer dry crops. The majority of 
this rule is located in Tianmen City and Qianjiang City, 
while Xiantao City mostly consists of scattered culti-
vation. Rule 1 is influenced by irrigation channels and 

Table 3  Soil properties under different cropping systems

Duncan’s multiple range test: values with same superscript letters are 
insignificantly different (p > 0.05)

SOC soil organic carbon, TN total nitrogen, TP total phosphorus, TK total 
potassium

Cropping 
system

Mean and significance tests

SOC (g/kg) TN (g/kg) TP (g/kg) TK (g/kg) pH

Dry crops–
wheat

12.633c 1.197d 0.402a 10.927c 6.936e

Dry crops–fal-
low

12.193d 1.221c 0.389c 11.105b 7.027c

Dry crops–
rapeseed

11.013e 1.169e 0.389c 10.826d 6.951d

Rice–wheat 16.694a 1.251b 0.395b 10.911c 7.027c

Rice–fallow 16.621a 1.287a 0.369d 11.486a 7.089a

Rice–rape-
seed

16.162b 1.221c 0.387c 10.916c 7.065b

Fig. 5  Cubist importance ranking chart. MAP mean annual precipitation, Silt silt content, Clay clay content, NDVImax annual NDVI maximum, 
Dis_IC distance from the nearest irrigated canal, Dis_Pond distance from the nearest pond, MAT mean annual temperature, Dis_River distance 
from the nearest river, Dis_RS distance from the nearest rural settlement, NDVImean annual NDVI average, CS cropping system, ST soil types, AD 
administrative district
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ponds, whereas Rules 2–4 remain unaffected. Rule 2 is 
mainly situated in the northern part of Tianmen City 
and the western part of Qianjiang City. As inferred 
from the stratified rules, Rules 1 and 2 are also influ-
enced by Dis_RS. Rule 3 is predominantly distributed 
in the eastern part of Xiantao City and the southwest-
ern part of Qianjiang City. The classification of Rules 3 
and 4 is primarily based on precipitation, with Rule 3 is 
more influenced by precipitation than Rule 1. However, 
Rule 3 is not affected by soil texture. Under the premise 
of precipitation-based division, Rules 3 and 4 further 
partition zones based on NDVImax. Compared with 
Rule 3, Rule 4 is significantly influenced by NDVImax. 
These findings indicate the stratified heterogeneity 
between SOC and environmental variables. Moreover, 
main controlling factors vary significantly under differ-
ent cropping systems.

Model evaluation results
RMSE, R2, and LCCC were used to evaluate the predic-
tion accuracy of the models (Table 4). The Cubist model 
has the highest R2 (0.292), followed closely by the RF 
model (0.263), then the OK model (0.211), while the 
MLR model has the lowest R2 (0.207). The Cubist model 
has the lowest overall deviation level, while the MLR 
model exhibits the highest deviation, indicating less 
accurate predictions by the MLR model. When observ-
ing the LCCC values, the Cubist model still performs the 
best (0.482). These findings suggest that the Cubist model 
is optimal, followed by the RF and OK models, while the 
MLR model demonstrates the weakest performance in 
the study area.

SOC spatial distribution map
By observing the spatial distribution map of SOC pre-
dicted through the Cubist model (Fig. 7), an overall trend 

Fig. 6  Cubist modeling zoning plot and zoning coefficient plot. RW rotation of rice with winter wheat, RF rotation of rice with fallow land, 
RR rotation of rice with winter rapeseed, DW rotation of dry crops with winter wheat, DF rotation of dry crops with fallow land, DR rotation 
of dry crops with winter rapeseed, Silt silt content, Clay clay content, MAP mean annual precipitation, MAT mean annual temperature, Dis_IC 
distance from the nearest irrigated canal, Dis_Pond distance from the nearest pond, Dis_River distance from the nearest river, Dis_RS distance 
from the nearest rural settlement
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can be found in the spatial distribution of SOC in the 
research area, with higher values in the south and north 
and lower values in the east and west. Numerous local-
ized high-SOC regions exist in the eastern part. These 
high-SOC regions are primarily situated in the southern, 
northern, southeastern, and northeastern parts of the 
research area, with a few also found in the southwest. The 
average SOC content in the study area is 13.5 g/kg, rang-
ing from 2.7  g/kg to 34.17  g/kg. These high-SOC areas 
share a common characteristic: they are all located near 

ponds, with this feature being particularly pronounced 
in the southern and northeastern parts of the study area. 
Based on analysis of Figs. 2 and 3, the paddy fields have 
significantly higher SOC values than the dry land, and 
regions with higher MAP values, such as the eastern part 
of the study area, exhibit lower SOC content. The spatial 
distribution maps of clay and silt exhibit similar trends 
to the SOC spatial distribution map, with areas having 
higher clay content corresponding to higher SOC con-
tent. When analyzing the distribution map of TN in con-
junction with SOC, a high TN content corresponds to a 
high SOC content, consistent with the analysis in Table 3.

Discussion
Relationship between SOC and environmental variables
The results from the Cubist model indicate that the spa-
tial distribution of SOC is influenced by cropping system, 
climate, soil nutrients, soil texture, and vegetation. The 
cropping system has the greatest conditional contribu-
tion rate.

The climate makes very important contributions in 
terms of modeling contribution rate and conditional 

Table 4  Comparison of accuracy among OK, MLR, RF, and Cubist 
predictive models

OK ordinary kriging, MLR multiple linear regression, RF random forest, RMSE 
root mean square error, R2 coefficient of determination, LCCC​ Lin’s concordance 
correlation coefficient

OK MLR RF Cubist

RMSE (g/kg) 0.497 0.499 0.481 0.479

R2 0.211 0.207 0.263 0.292

LCCC​ 0.380 0.342 0.431 0.482

Fig. 7  SOC spatial distribution map via the Cubist model
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contribution rate. Numerous large-scale studies found 
that under natural conditions, SOC is significantly 
positively correlated with precipitation and negatively 
correlated with temperature [45–48]. Increasing the tem-
peratures can enhance microbial activity, thereby accel-
erating the mineralization rate of SOC [49, 50]. However, 
this result contrasts our study findings, which could be 
attributed to the relatively small scope of our study area 
(predominantly consists of cultivated land with well-
developed irrigation facilities). In such cases, higher 
temperatures could enhance vegetation photosynthe-
sis, leading to increased input of crop residues, thereby 
favoring SOC accumulation. Excessive rainfall might 
potentially result in soil erosion and leaching of SOC, 
leading to its volatilization [51]. Given the study area’s 
location between the Yangtze River and the Han River, 
excessive rainfall could result in the erosion of soil parti-
cles carrying SOC.

Soil nutrients and texture are important influencing 
factors of SOC, and nitrogen to a certain extent pro-
motes the sequestration of SOC. An increase in nitrogen 
content can promote the production of plant biomass, 
thereby facilitating the input of carbon into the soil [52, 
53]. In the present study, we revealed that an elevated 
nitrogen content augments the sequestration capacity of 
SOC. This outcome aligns harmoniously with the con-
clusions drawn from the majority of antecedent research 
endeavors [54–56]. Clay and silt have the capability 
to adsorb organic carbon onto their surfaces, thereby 
impeding the microbial decomposition of SOC [57, 58]. 
Additionally, a high clay content enhances soil aggregate 
stability, leading to a reduction in the mineralization rate 
of SOC. Consequently, soils characterized by a clayey 
texture often exhibit elevated levels of organic carbon 
[59, 60], consistent with our findings.

The vegetation index serves as a crucial metric for 
assessing vegetation productivity and health status [61–
64]. A higher vegetation index, on one hand, indicates 
improved vegetation growth and higher soil nutrient 
content. On the other hand, it signifies elevated input 
of plant residues [65, 66]. A positive correlation exists 
between the vegetation index and SOC, consistent with 
the outcomes of the present research.

Planting wheat in winter has the highest SOC con-
tent, followed by fallow and planting rape. Winter wheat 
cultivation during the winter season increases tillage 
intensity, which may lead to soil structure disruption, 
hindering the accumulation of SOC [67, 68]. Therefore, 
the local practice of straw returning has been adopted. 
This approach can directly increase the content of SOC 
while improving soil structure and enhancing soil fertility 
[69–71]. This finding may explain why the SOC content 
in winter wheat is higher than that in fallow land. At the 

same time, fallow has a higher SOC content than rape-
seed, which may be related to tillage intensity [72, 73]. In 
most areas of the study region, a double cropping rice–
rape rotation is practiced, and this high-intensity planting 
often leads to soil nutrient loss. This finding may be a key 
reason for the low SOC content in rapeseed fields. The 
carbon sequestration capacity of the rice–wheat rotation 
system is higher than those in other rotation systems. 
The above analysis is an important aspect explaining why 
rice–wheat rotation soil has a higher SOC content. On 
the other hand, this can be attributed to the benefits of 
alternate wetting and drying. Such a rotation stimulates 
carbon and nitrogen cycling, leading to an increase in 
SOC [74, 75].

Stratified heterogeneous relationship analysis of SOC 
and impact factor
The Cubist model has the smallest RMSE and possesses 
the highest R2 and LCCC values, making it the optimal 
model for the study area. This rule-based Cubist model 
effectively reveals the stratified heterogeneity between 
SOC and environmental variables. Cropping system 
stands out as a prominent stratifying variable within the 
Cubist model, with a substantial conditional contribution 
rate of 85%. The stratification rules indicate varying main 
controlling factors under different cropping systems.

The differences in cropping systems lead to significant 
disparities in SOC (Table  3). However, the influence of 
winter crops appears to be less pronounced, while sum-
mer crops predominantly determine the input of SOC. 
The stratified outcomes from the Cubist model validate 
this observation. The results highlight that paddy fields 
exhibit higher SOC content than drylands. This dis-
crepancy could be attributed to the prolonged flooding 
of paddy fields, leading to poor soil aeration and sup-
pressed decomposition of SOC [76, 77]. Consequently, 
SOC content in paddy fields tends to be higher than in 
well-aerated drylands, consistent with previous research 
outcomes.

The stratified results of the Cubist model also partly 
reflect a characteristic. During summer, when dry crops 
are cultivated (upland–upland rotation), they are influ-
enced by factors, such as ponds and irrigation channels, 
which are water-related. However, when rice is cultivated 
during the summer (paddy–upland rotation), there is 
no impact from ponds or irrigation channels. This find-
ing might be closely tied to the land use types. In dry 
land rotations, the soil moisture content is low, mak-
ing upland–upland rotations highly sensitive to water. 
In paddy field rotations, the soil remains flooded year-
round, maintaining a high moisture content; thus, it is 
less responsive to subtle water changes. Regardless of 
whether it is upland–upland rotation or paddy–upland 
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rotation, both are influenced by ‘distance from rural 
residential areas.’ This finding could be attributed to the 
proximity to residential areas, which facilitates fertiliza-
tion and irrigation, thereby promoting crop growth and 
the accumulation of organic carbon. Hence, geographical 
location to some extent influences SOC dynamics.

Rules 3 and 4 have precipitation exceeding 1114.6 mm 
and are paddy–upland rotations; the distinction lies in 
their different vegetation indices. Rule 4 is significantly 
influenced by the vegetation index compared with Rule 
3. The vegetation index is a crucial indicator of vegeta-
tion coverage and health. With NDVImax > 0.845 in Rule 
4, this result indicates a very healthy vegetation state. 
Under conditions of abundant precipitation, Rule 4 can 
greatly enhance the input of SOC.

These results underscore a significant relationship 
between changes in SOC content and different cropping 
systems. The control of SOC is closely associated with 
human agricultural management. The main controlling 
factors vary under different cropping systems. Tailoring 
agricultural management practices based on the main 
controlling factors for different regions might contribute 
to increased crop yields.

Limitations
In this study, the influence of factors such as cropping 
system on SOC is explored, and mapping is realized 
based on the quantitative relationship between the fac-
tors. The R2 of the model is only 29.2%, which may be 
limited by the following points. The year of soil attributes 
is inconsistent with the sampling year, soil nutrient data 
are predicted from 2010 to 2018, and soil texture data are 
predicted in 2019.

The study area falls within China’s significant grain and 
material production region, the Jianghan Plain, charac-
terized by frequent human activities. Human activity 
indicators related to SOC, such as fertilization amount, 
land ownership, and methods of straw returning, are 
challenging to quantify spatially and do not effectively 
reflect changes in SOC [78]. Moreover, the study area has 
a per capita arable land area of 1.48 mu, with varying cul-
tivation and management practices among different land-
owners, leading to substantial random errors.

Conclusion
This study investigated the main controlling factors 
under a complex cropping system and employed Cub-
ist, RF, OK, and MLR models to predict the spatial dis-
tribution of SOC. Overall, the SOC content in the study 
area ranged from 2.70 g/kg to 34.17 g/kg, with the high-
est content observed in rice–wheat rotation. The Cubist 
model outperformed other models, indicating its feasibil-
ity in explaining SOC variations under intricate cropping 

systems. Cropping system, MAP, TN, clay content, silt 
content and NDVImax as the main controlling factors 
for farmland SOC, highlighting that lower rainfall, higher 
soil attributes, and increased vegetation cover contrib-
ute to SOC accumulation. The main controlling factors 
for SOC differed significantly across various cropping 
systems. Summer crops exhibited a more pronounced 
impact on SOC spatial variation compared with winter 
crops. For paddy–upland rotation, factors such as river 
distance and NDVI played a key role; for upland–upland 
rotation, irrigation-related factors were more influential. 
This finding underscores the need for a greater focus on 
cultivating summer crops and implementing appropri-
ate planting density in paddy–upland rotations as well 
as considering irrigation factors in upland–upland rota-
tions. This work reveals the variations in main control-
ling factors of SOC under different cropping systems and 
highlights the significance of field zoning management.
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