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Abstract 

Evidence about associations of phthalates metabolites with increased serum uric acid (SUA) levels in pregnant 
women remains unknown. To address this, we conducted a cross-sectional population-based study including 851 
pregnant women from Zunyi birth cohort in southwest China. Multiple linear regression models were used to explore 
single relationships between ten urinary phthalate metabolites with SUA and estimated glomerular filtration rate 
(eGFR). And then, the overall relationship of phthalate mixture with SUA and eGFR were determined by principal 
component analysis (PCA) and quantile g-computation (Q-g) analysis. The multivariable linear regression showed 
that mono-butyl phthalate (MBP), mono-octyl phthalate (MOP) and mono-benzyl phthalate (MBzP) were positively 
associated with SUA, while mono (2-ethylhexyl) phthalate (MEHP) and mono (2-ethyl-5-hydroxyhexyl) phthalate 
(MEHHP) were associated with increased eGFR level. Moreover, PCA analysis suggested that phthalate mixture 
was positively associated with SUA, and MOP, MBzP and MEHP appeared to be the major contributors. Furthermore, 
Q-g regression showed that each quantile increase in phthalate mixture was associated with 3.27% higher SUA (95% 
CI 0.21%, 6.41%). Our results imply that phthalate metabolites were associated with higher SUA in late pregnant 
women, and MBP, MBzP and MOP might be the major drivers. So, a health perinatal duration should be seriously taken 
to counteract the environment-related dysregulated kidney function.
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Introduction
In recent years, phthalates, commonly used as plasti-
cizers in personal care products, food packaging, and 
other consumer goods, have raised health concerns. 
The National Health and Nutrition Examination Survey 
(NHANES) of 2015–16 revealed that over 90% of women 
of childbearing age had detectable levels of at least one 
urine phthalate metabolite, highlighting widespread 
exposure [1]. These metabolites have also been found 
in various bodily secretions and excreta [2], prompting 
increased concern among pregnant women due to poten-
tial risks to fetal health. Epidemiological studies have 
linked pre-gestational and perinatal exposure to phtha-
lates with adverse birth outcomes, underlining the threat 
they pose to maternal and infant well-being by disrupting 
essential biological functions [3–5].

Animal studies suggest that phthalates contribute to 
renal dysfunction by inducing oxidative stress and apop-
tosis, leading to renal fibrosis [6–8, 28]. Similarly, epi-
demiological research has identified potential negative 
impacts on renal function [9]. Kang et al. found positive 
associations between phthalate and urinary albumin cre-
atinine among Korean female population [10]; Similarly, 
the positive relationships between phthalate metabolites 
and parameters of renal dysfunction: albumin creatinine 
ratio (ACR), β2-microglobulin (B2M), and N-acetyl-β-d-
glucosaminidase (NAG) were also uncovered [11]. How-
ever, there has been no consistent results about the effect 
of phthalates on eGFR, which is the surest indicators for 
renal function. Some studies showed a positive correla-
tion between eGFR and phthalates [12, 13], but others 
found their negative association [14, 15].

Given the altered glomerular hyperfiltration and pro-
found physiological changes during pregnancy, pregnant 
women’s renal function is expected to be greater suscep-
tibility to phthalates exposure, especially for late pregnant 
women. Therefore, maintaining balanced renal func-
tion is important for the health of the mother and deliv-
ery. However, to our best knowledge, only two studies 
explored the influence of phthalate on the renal function 
of pregnant women: One study found that exposure to 
phthalate increased the level of microalbumin and NAG 
in the third trimester [16]; And another one reported that 
it is more likely to cause an increased renal injury indica-
tors when pregnant women during the third trimester are 
exposed to both phthalates and melamine simultaneously 
[17]. Despite the recognition of microalbumin and NAG 
as early markers of renal injury, routine prenatal screen-
ings seldom include these tests. Instead, serum uric acid 
(SUA) and serum creatinine levels, which are commonly 
measured during pregnancy, may offer alternative indica-
tors of phthalate exposure effects for kidney injury. Con-
sidering that elevated SUA has been associated with an 

increased risk of renal dysfunction during pregnancy [19, 
20], highlighting the need to identify potential influenc-
ing factors to safeguard maternal and fetal health.

Although some evidences have implied that phthalates 
exposure associates with increased SUA levels in the gen-
eral population, whether this association also exists in 
pregnant women has yet been studied. This study, there-
fore, seeks to examine the relationship between urinary 
concentrations of phthalate metabolites and kidney func-
tion among late-stage pregnant women in the Zunyi birth 
cohort. Considering the high multicollinearity among 
phthalate metabolites, we employed Quantile-g com-
putation (Q-g) to assess the potential adverse effects of 
chemical mixtures. Additionally, we conducted subgroup 
analyses to determine if lifestyle factors might influence 
the relationship between phthalate exposure, SUA, and 
eGFR, aiming to identify particularly susceptible popu-
lations. Our findings aim to enrich the understanding of 
how phthalate metabolites affect kidney function during 
pregnancy, providing crucial insights for future research 
and public health policies.

Methods
Study population
The Zunyi Birth Cohort study was carried out in four 
hospitals within the Zunyi region of Southwest China, 
including the First and Second Affiliated Hospitals of 
Zunyi Medical University, People’s Hospital of Meitan 
County, and People’s Hospital of Xishui County, starting 
from May 2020 and April 2022. The primary objective of 
this cohort is to assess the impact of environmental fac-
tors on pregnant women and their fetuses, with detailed 
methodologies previously described [21]. Women aged 
18 to 45 years, experiencing a singleton pregnancy, were 
initially recruited. After excluding individuals lacking 
comprehensive data on uric acid, creatinine, phthalate 
metabolites, covariates, and chronic kidney disease, 851 
participants were selected for further analysis, as shown 
in flowchart (Additional file 1: Figure S1). All participants 
provided informed consent, with the study receiving 
ethical approval from Zunyi Medical University (Ethics 
Approval No. KLL-2019-006).

Measurement of phthalate metabolites
High-performance gas chromatography mass spectrom-
etry (GC-MS/MS, Agilent 7010b, Santa Clara, CA, USA) 
was used to quantify ten urinary phthalate metabolites in 
samples, stored at − 80 °C until analysis, from 851 partic-
ipants. These included mono-methyl phthalate (MMP), 
mono-ethyl phthalate (MEP), mono-isobutyl phthalate 
(MiBP), mono-butyl phthalate (MBP), mono-octyl phtha-
late (MOP), mono-benzyl phthalate (MBZP), mono(2-
ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) 
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phthalate (MEOHP), mono-(2-ethyl-5-carboxypentyl) 
phthalate (MECPP), and mono(2-ethyl-5-hydroxyhexyl) 
phthalate (MEHHP). Detailed quality control and pro-
cedure has been listed in a prior publication [21]. We 
presented the retention time, ion pairs, collision energy, 
recovery rate, precision, determination coefficient, and 
detection limit in Additional file 1: Table S2.

Renal function measurements
Maternal renal function was evaluated by detecting 
SUA and creatinine concentrations. Because the most 
of those participants’ age were less than 40, we esti-
mated the eGFR by Chronic Kidney Disease Epidemiol-
ogy Collaboration (CKD-EPI 40) (Björk et al., 2020): eGF
R = 144 × (0.993)Age × (Scr/62)−0.320, if the Scr is less than 
62  mol/L; eGFR = 144 × (0.993)Age × (Scr/62)−1.209, if the 
Scr is greater than 62  mol/L. Scr represents the meas-
ured serum creatinine, and MA means age at the time of 
blood sample collection. The unit of eGFR is showed in 
ml/min/1.73  m2. Well-trained technicians utilized full-
automatic biochemical analyzer (BECKMAN-AU5800) 
to test serum creatinine and uric acid, and used a fully 
automatic urine analysis workstation to test urine creati-
nine (URIT-1600).

Covariates
Based on the published literature and the possible bio-
logical mechanism, we included the following covariates: 
Maternal age, pregestational body mass index (BMI), 
maternal educational level, parity, household income, 
seasons for sample collection, urine creatinine, and ges-
tational age; Regular physical exercise was defined as 
exercising at least once a week for more than 30  min; 
exposure to smoking is defined as passive smoking for at 
least half an hour, ethnicity, the diagnosis of gestational 
diabetes, and gestational hypertension were obtained 
from the electronic medical records.

Statistical analysis
Continuous data with normal and skewed distribution 
were described as means ± SD and medians (interquartile 
range) (IQR), respectively, and categorical variables were 
described as frequency (percentage). Urinary phtha-
late metabolites and SUA with skewed distribution were 
natural ln-transformed. Phthalate metabolites concentra-
tions below the limit of detection (LOD) were assigned 
the value of LOD/√2. Given the link between eGFR 
and creatinine, we included urine creatinine instead 
of the adjustment of specific gravity of urine in mod-
els for reducing collider problem [14, 23]. Spearman 

correlation coefficients among ten phthalate metabolites 
were counted and visualized in heat map by using the 
“ggcorrplot” and “corrplot” R package.

Multivariable linear regression model was conducted 
to estimate the association of each urinary phthalate 
metabolite with SUA and eGFR. The percent changes of 
SUA were calculated by applying a back transformation 
of {100 × [exp (β)-1]} to the corresponding regression 
coefficients. Trend analysis was calculated by taking 
the median phthalate metabolites of each quartile into 
multivariable linear regression model. In addition, the 
overall associations of phthalate mixture with SUA and 
eGFR were estimated by Q-g and principal component 
analysis (PCA). The results of Q-g were interpreted as 
the changes of parameters of kidney function with per 
increment of quantile of phthalate mixture level. This 
method can effectively control the multi-collinearity 
and simultaneously identify the major contributor, and 
estimate the overall association [24, 25]. In PCA, vari-
max rotation was used to divide them into factor 1–3, 
and identified the main components of ten chemicals. 
The chemicals accounting for more than 70% of the 
total variance of each factor were retained [14], then 
multiple linear regressions were used to identify the 
relationship of each factor with renal function. Strati-
fied analyses were applied to examine whether any fac-
tors such as education level, gestational hypertension, 
regular physical exercise, and exposure to smoking 
atmosphere could modify the associations of phtha-
lates with SUA levels. A two-sided p-value < 0.05 was 
regarded statistically significant. Statistical analy-
ses were conducted by SPSS version 25.0 (IBM Corp. 
Armonk, NY, USA) or R software (version 4.2.2).

Results
Characteristics of study population and urinary chemicals
Sociodemographic characteristics of the enrolled 851 
women are summarized in Table 1. The mean of mater-
nal age was 27.22 ± 4.99, their pre-pregnancy BMI was 
22.52 ± 3.56 kg/m2, and 73.0% of pregnant women were 
multiparous. 47.5% of pregnant women participated in 
this study during winter and 3.6% participated during 
summer. The prevalence rates of pregnancy hyperten-
sion and pregnancy diabetes were 12.7% and 21.3% 
(Table 1).

The distributions of ten urinary phthalate metabo-
lites concentrations were shown in Table  2. MECPP 
had the highest median concentration with the value of 
71.14 μg/L. Besides, the median concentration of MBzP 
was the lowest with the value of 0.06  μg/L. Besides, a 
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positive correlation between the majority of phtha-
late metabolites was found with correlation coefficient 
ranged from 0.01 to 0.8 (Fig. 1).

The association between individual phthalate metabolites 
and SUA
Table  3 displayed the association of urinary phthalate 
metabolites with SUA after adjusting for covariates. A 
onefold increase in MBP, MOP, and MBZP concentra-
tions were associated with increments of 1.51% (95% CI 
0.10, 3.05), 1.92% (95% CI 0.50, 3.25), and 1.41% (95% 
CI 0.20, 2.74) in SUA, respectively. Moreover, there 
was a positive trend of MBZP and MOP with SUA 
(P-trend < 0.05). In addition, MEHP and MEHHP, but not 
other phthalate metabolites, showed the positive associa-
tions with eGFR (Table 4).

Q‑g computation and PCA analysis
As shown in Fig. 2, of Q-g regression displayed that with 
each quartile increase of phthalate mixture, the mean 
estimated changes in SUA and eGFR were 3.27% (95% 
CI 0.21%, 6.41%) and 0.0870 (95% CI − 0.8823, 1.0563), 
respectively. We found that MBP, MBZP, MOP, MEHHP, 
and MIBP (all weights > 10%) were the dominant phtha-
late metabolites for the positive association with SUA, 
while MEP, MEHP and MEOHP (all weights > 10%) 
mainly contributed to negative associations with SUA 
(Fig. 2A). No significant association was found between 
phthalate mixture with eGFR (Fig. 2B).

The details of varimax-rotated factor loadings were dis-
played in Additional file  1: Table  S1. MMP, MEP, MIPB 
and MBP were highly loaded in factor 1. MEHP, MOP 
and MBZP were highly loaded in factor 2, and MEOP, 
MEHHP and MECPP were highly loaded in factor 3. 
Both the multiple-factor and single factor model consist-
ently indicated factor 2 was significantly positively asso-
ciated with SUA. However, no any statistical significance 
between eGFR and these factors was presented (Table 5).

Subgroup analyses
The results of subgroup analysis of phthalate metabolites 
and SUA are presented in Table 6. For pregnant women 
without regular exercise, onefold increase in MOP and 
MBzP were associated with 2.43% and 1.71% increase of 
SUA; for pregnant women who are exposed to smoking 
for ≥ 6 days per week, onefold increase in MBP and MOP 
were associated with 1.82% and 2.12% increase of SUA. 
The results of subgroup analysis of phthalate metabolites 
and eGFR presented in Additional file 1: Table S3.

Sensitivity analysis
We performed a sensitivity analysis by excluding preg-
nant women with hyperuricemia and abnormal blood 
creatinine levels, and the associations of MBP, MOP, and 
MBZP with SUA (Additional file  1: Table  S4) and the 
association of MEHP with eGFR were still robust (Addi-
tional file 1: Table S5).

Table 1 Characteristics of study subjects (N = 851) in the study

BMI body mass index, SD standard deviation, IQR interquartile range

Characteristics N Mean ± SD or percent (%)

Age (years) 27.22 ± 4.99

BMI (kg/m2) 22.5 ± 3.6

Annual household income (Yuan)

 < 100000 71 8.3

 100000–150000 550 64.6

  ≥ 150000 220 25.9

 Unknow 10 1.2

Education

 Middle school or below 482 56.6

 High school and middle special 
school

260 30.6

 College degree or above 109 12.8

Exposure to smoking status

  <  = 2 day/week 38 4.5

 3-5 day/week 57 6.7

 6-7 day/week 756 88.8

Han nationality

 Yes 835 98.1

Gestational diabetes mellitus

 Yes 181 21.3

Gestational hypertension

 Yes 108 12.7

physical activity during pregnancy

 Yes 112 13.2

Sample collection season

 Spring 249 29.3

 Summer 31 3.6

 Fall 167 19.6

 Winter 404 47.5

Parity

 Nulliparous 230 27.0

 Multiparous 621 73.0

Skin care products

 Daily use 652 76.6

 Not daily use 199 23.4

Cosmetics

 Daily use 754 88.6

 Not daily use 97 11.4

Urinary creatinine, mg  dL−1 median 
(IQR)

5.87(3.15, 11.50)

Estimated glomerular filtration rate, 
ml/min/1.73 m2 1.73  m−2

132.87 ± 8.85

Serum uric acid, mg  dL−1 median (IQR) 283.00 (243, 329.0)

hyperuricemia 81 9.5

Abnormal serum creatinine 1 0.1
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Table 2 Distribution of urinary phthalate metabolite concentrations among pregnant women (N = 851)

GM geometric mean, MMP mono-methyl phthalate, MEP mono-ethyl phthalate, MIBP mono-iso-butyl phthalate, MBP monobutyl phthalate, MEHP mono-ethylhexyl 
phthalate, MOP mono-n-octyl phthalate, MBzP mono-benzyl phthalate, MEOHP mono-(2-ethyl-5-oxo-hexyl) phthalate, MEHHP mono-(2-ethyl-5-hydroxyhexyl) 
phthalate, MECPP mono-(2-ethyl-5-carboxypentyl) phthalate

Phthalate metabolites Detection rate (%) GM Selected percentiles

Analyte (μg/L) 25th 50th 75th 95th

MMP 78.03% 0.75 0.1577 1.2842 3.1448 15.7018

MEP 99.06% 7.63 3.7655 7.8416 16.9680 55.5253

MIBP 99.88% 21.85 12.2864 21.0838 40.1828 112.6000

MBP 100.00% 53.91 26.9886 52.2072 102.0250 220.8104

MEHP 93.65% 9.10 2.3564 8.7840 61.1521 352.0550

MOP 78.61% 0.18 0.0767 0.1691 0.3434 0.7074

MBzP 61.69% 0.09 0.0286 0.0664 0.2138 0.9942

MEOHP 81.79% 5.42 1.8640 5.8229 12.9289 52.4802

MEHHP 95.89% 5.26 3.2443 6.9182 13.7948 40.1024

MECPP 71.80% 100.46 16.5728 71.1382 267.8368 3828.0591

Fig. 1 Spearmon correlation coefficients matrix for the phthalate metabolites concentrations visualized as heatmap. *P < 0.05; **P < 0.01; 
***P < 0.001
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Discussion
Our findings reveal significant associations between 
increased SUA levels and higher concentrations of mono-
butyl phthalate (MBP), mono-octyl phthalate (MOP), and 
mono-benzyl phthalate (MBzP) in third-trimester preg-
nant women. Both PCA and Q-g regression underscore 
the positive correlation of mixed phthalate metabolites 
with SUA, highlighting MBP, MBzP, and MOP as primary 
contributors. This evidence supports the hypothesis that 
phthalate metabolites may adversely affect kidney func-
tion. Notably, the detectable rates of ten phthalate metab-
olites in our cohort ranged from 61.7 to 100%, indicating 
widespread exposure among pregnant women in South-
west China and underling the need for further research 
to evaluate its safety implications for perinatal health.

To date, limited research has focused on the impact of 
phthalates on renal function in pregnant women. Our 
study aligns with two prior epidemiological investiga-
tions identifying phthalates as nephrotoxic agents dur-
ing pregnancy. One cohort study linked urine phthalate 
levels with increased ACR and NAG among late-stage 
pregnant women in Taiwan [16]. Another study observed 
elevated levels of NAG and ACR due to combined expo-
sure to phthalates and melamine, compared to exposure 
to either agent alone [17]. Urinary NAG is a sensitive 
marker of renal tubular injury [32], and the definition 
of microalbuminuria is urine ACR higher than 3.5  mg/
mmol. While urinary NAG is a recognized marker for 
renal tubular injury, routine prenatal screenings seldom 
include NAG and microalbumin tests. Instead, SUA and 

Table 3 Association of urinary phthalate metabolites with UA in pregnant women (N = 851)

The bold to highlight the statistically significant P values

Adjusting maternal age at deliver, BMI, annual household income, education, exposure to smoking, parity, nationality, gestational diabetes mellitus, gestational 
hypertension, physical exercise during pregnancy, gestational week at the time of Uric Acid measurement, sample collection season

Phthalate 
metabolites

% Change (95% CI) by 
continuous PAEs

Relative change (95% CI) by quartile of PAEs P trend

Q1 Q2 Q3 Q4

MMP 0.10(− 0.60, 0.80) ref − 1.29(− 5.45, 2.94) 0.50(− 3.63, 4.92) 0.60(− 3.54, 4.92) 0.662

MEP − 0.20(− 1.29, 1.01) ref 2.12(− 2.08, 6.50) 0.40(− 3.73, 4.81) 0.03(− 4.21, 4.39) 0.860

MIBP 1.11(− 0.40, 2.63) ref 2.94(− 1.29, 7.25) 2.74(− 1.49, 7.27) 3.46(− 0.90, 7.90) 0.144

MBP 1.51(0.10, 3.05) ref 3.67(− 0.60, 8.11) 2.63(− 1.59, 7.14) 4.92(0.40, 9.53) 0.053

MEHP 0.10(− 0.50, 0.70) ref − 2.37(− 6.39, 1.71) − 0.30(− 4.40, 3.98) 0.04(− 4.11, 4.39) 0.739

MOP 1.92(0.50, 3.25) ref 3.98(− 0.20, 8.44) 2.84(− 1.39, 7.25) 5.76(1.41, 10.41) 0.018
MBZP 1.41(0.20, 2.74) ref 2.22(− 2.76, 7.36) 4.50(0.50, 8.65) 4.39(0.30, 8.65) 0.025
MEOHP − 0.10(− 1.19, 1.01) ref 0.81(− 3.34, 5.13) − 0.60(− 4.69, 3.67) 0.40(− 3.73, 4.81) 0.974

MEHHP 0.10(− 0.80, 0.90) ref 2.33(− 1.88, 6.72) 3.87(− 0.40, 8.22) 2.84(− 1.39, 7.25) 0.135

MECPP 0.30(− 0.50, 1.11) ref 0.10(− 4.11, 4.50) 1.71(− 2.37, 6.08) 1.51(− 2.66, 5.87) 0.404

Table 4 Association of urinary phthalate metabolites with eGFR in the pregnant women (N = 851)

The bold to highlight the statistically significant P values. Adjusting age, BMI, annual household income, education, exposure to smoking, parity, nationality, 
gestational diabetes mellitus, gestational hypertension, regular physical exercise during pregnancy, gestational week at the time of eGFR measurement, sample 
collection season

Phthalate 
metabolites

Exp (β) (95% CI) Exp (β) (95% CI) by quartile of PAEs P trend

Q1 Q2 Q3 Q4

MMP 0.031(− 0.203, 0.265) ref 0.177(− 0.944, 1.298) − 0.495(− 1.595, 0.605) 0.394(− 0.717, 1.505) 0.855

MEP 0.312(− 0.069, 0.692) ref − 0.133(− 1.227, 0.962) 0.104(− 0.999, 1.207) 0.829(− 0.282, 1.939) 0.072

MIBP 0.160(− 0.346, 0.666) ref − 0.603(− 1.707, 0.501) 0.909(− 0.196, 2.015) − 0.047(− 1.165, 1.070) 0.526

MBP 0.054(− 0.432, 0.539) ref 0.521(− 0.578, 1.620) − 0.116(− 1.220, 0.988) − 0.143(− 1.282, 0.996) 0.965

MEHP 0.278(0.075, 0.481) ref − 0.314(− 1.412, 0.785) 0.401(− 0.700, 1.501) 0.917(− 0.207, 2.042) 0.027
MOP − 0.249(− 0.708, 0.211) ref − 0.117(− 1.227, 0.993) 0.148(− 0.951, 1.248) − 0.487(− 1.615, 0.642) 0.381

MBZP − 0.105(− 0.526, 0.316) ref 0.316(− 1.156, 1.789) − 0.091(− 1.195, 1.013) − 0.073(− 1.202, 1.056) 0.881

MEOHP − 0.175(− 0.544, 0.194) ref − 1.055(− 2.167, 0.056) 1.046(− 0.056, 2.147) − 0.869(− 2.003, 0.266) 0.237

MEHHP 0.306(0.015, 0.596) ref 0.327(− 0.789, 1.443) 0.136(− 0.970, 1.242) 0.191(− 0.927, 1.308) 0.385

MECPP − 0.042(− 0.324, 0.240) ref 0.180(− 0.980, 1.340) 0.256(− 0.850, 1.361) − 0.203(− 1.320, 0.913) 0.959
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serum creatinine, which are regularly measured, offer 
an alternative means to detect potential kidney injury 
earlier.

Previous studies suggest that more than 70% of urate 
excretion occurs via the kidneys, with insufficient uric 
acid salt excretion being a primary cause of hyperurice-
mia [33]. Previous studies speculated that phthalate 
metabolites affect the excrete of SUA by decreasing eGFR 
or interfering organic anion transporters of the proximal 
tubular epithelial cell membrane [27]. Our results sug-
gest that phthalates may elevate SUA levels by diminish-
ing eGFR or disrupting organic anion transport across 
proximal tubular epithelial cell membranes. Notably, 

MEHP and MEHHP showed positive correlations with 
eGFR, without a clear negative association with other 
metabolites.

Comparatively, research on a general American 
adult population found positive correlations between 
MECPP, MEHHP, MBzP, and MiBP with SUA levels 
[27]. Our study corroborates these findings for MBzP 
and introduces moderate associations with MBP and 
MOP. Given that evidence from Western populations 
has limited applicability for exploring the association 
between phthalate metabolites and SUA levels among 
Chinese individuals. And, the southwestern region of 
China is an economically underdeveloped region with 

Fig. 2 Estimates the effects of one-quartile increase of phthalate metabolites mixtures in UA (A) and eGFR (B) and scaled weights corresponding 
to the proportion of the effect for each chemical in Quantile g-computation. Models adjusted for age, BMI, annual household income, education, 
exposure to smoking, parity, nationality, gestational diabetes mellitus, gestational hypertension, regular physical exercise during pregnancy, sample 
collection season, gestational week at the time of Uric Acid measurement

Table 5 Associations of PAEs scores with UA and eGFR in the pregnant women principal component analysis

Factor 1 is highly loaded with MMP, MEP, MIBP and MBP. Factor 2 is highly loaded with MEHP, MOP and MBzP. Factor 3 is highly loaded with MEOHP, MEHHP and MECPP
a Adjusted for age, BMI, annual household income, education, exposure to smoking, parity, nationality, gestational diabetes mellitus, gestational hypertension, regular 
physical exercise during pregnancy, sample collection season, gestational week at the time of Uric Acid measurement
b Adjusted for age, BMI, annual household income, education, exposure to smoking, parity, nationality, gestational diabetes mellitus, gestational hypertension, regular 
physical exercise during pregnancy, sample collection season, gestational week at the time of eGFR measurement

Single‑factor Multiple‑factor

β (95% CI) P value β (95% CI) P value

Total (n = 851) Ln-UAa Factor1 0.008(− 0.007, 0.023) 0.277 0.006(− 0.009, 0.021) 0.452

Factor2 0.018(0.003, 0.033) 0.020 0.018(0.003, 0.034) 0.018

Factor3 − 0.002(− 0.017, 0.013) 0.754 − 0.001(− 0.016, 0.013) 0.862

eGFRb Factor1 0.276(− 0.320, 0.872) 0.363 0.291(− 0.198, 0.780) 0.243

Factor2 − 0.231(− 0.827, 0.364) 0.445 − 0.011(− 0.503, 0.482) 0.966

Factor3 0.024(− 0.572, 0.620) 0.937 0.066(− 0.412, 0.544) 0.788
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weak supervision over the use of plasticizers in pregnant 
women’s specialized products. This variation emphasizes 
the unique environmental and regulatory landscape in 
Southwest China, necessitating region-specific stud-
ies to inform local public health policies. The present 
study, based on pregnant women in southwest China, 
reflected that phthalate metabolites were associated with 
higher SUA. However, the causal relationships between 
phthalates metabolites and SUA levels are still needed 
to be clarified by prospectively designed and multicenter 
studies with larger sample sizes. This study may provide 
reference for the future development of standards for 
pregnant women’s products in southwest China.

While exploring the relationship between phthalates 
and eGFR has yielded mixed results, our analysis indi-
cates a discernible,  and positive association between 
certain metabolites and eGFR. The significance of eGFR 
as a renal function marker, especially considering physi-
ological changes during pregnancy such as glomerular 
hyperfiltration, merits cautious interpretation of these 
findings. As MEHP was positively correlated with higher 
eGFR in a research of 9989 people in the United States 
[12]; Another study of 538 American adolescents aged 
0–17 showed a positive association between low molec-
ular weight phthalates and eGFR [13]. More evidences 
also observed their negative correlation [14, 15]. In our 
study, although mixed effects analysis (Q-g and PCA) 
showed no obviously significant relationship between 
phthalate metabolites and eGFR, but univariate analysis 
displayed a positive association of MEHP and MEHHP 
with eGFR. Thus, the impact of phthalate on eGFR can-
not be ignored. In addition, for the general population, 
eGFR is thought as the most useful marker to reflect the 
renal function [34]. However, the glomerular hyperfiltra-
tion is considered to be the hallmark for the profound 
physiological change during pregnancy peroid. Since 
renal vasodilation increases renal plasma flow which 
further leads to a greater than 50% rise in glomerular fil-
tration rate during pregnancy [35, 36]. Previous studies 
have found that the optimal range of eGFR in the second 
trimester is 120–150 ml/min/1.73  m2. It should be note-
worthy that the prevalence of premature delivery and low 
birth weight infants was significantly higher in pregnant 
women with an eGFR higher than 150  ml/min/1.73   m2 
[37]. Therefore, the positive correlation between MEHP, 
MEHHP and eGFR should not be directly interpreted as 
a potential protective effector.

The health benefits of physical exercises are widely 
known and recognized. There are a lot of evidence that 
physical exercise improves the health of pregnant women 
[38, 39]. In addition, our study highlights lifestyle fac-
tors, such as physical activity and exposure to smoke, 
that may influence the relationship between phthalate 

exposure and SUA levels. This underscores the impor-
tance of addressing modifiable lifestyle factors to mitigate 
potential health risks. This may be due to the higher renal 
blood flow of people who exercise regularly [40]. Previous 
studies on this population showed that the urine concen-
tration of phthalate metabolites in passive smokers was 
significantly higher [21]. Whether passive smoking and 
phthalates jointly cause the increased uric acid in preg-
nant women deserves further studies. These results may 
indicate that future efforts should be made to improve 
the unhealthy lifestyles of pregnant women.

This investigation, while robust, is not without limita-
tions. Firstly, its cross-sectional nature precludes causal 
inferences between phthalate exposure and SUA levels. 
Additionally, the reliance on single urine samples may 
not fully capture variations in phthalate exposure. Nev-
ertheless, to our certain knowledge, considering our 
study population has relatively regular lifestyle habits and 
a stable living environment, we may think that phtha-
late exposure levels are relatively steady. Thirdly, previ-
ous researches have exhibited that purine rich dietary 
habit has a substantial effect on serum uric acid lev-
els [41]. However, we failed to conduct a complete diet 
questionnaire in this study. Notably, considering uric 
acid is not the specific biomarkers of renal function, 
the positive association between phthalate metabolites 
and SUA  observed in this study couldn’t entirely illus-
trate the significant relationship of phthalate metabo-
lites with renal function. Besides, covariate-adjusted 
creatinine standardization, which controls for potential 
confounding by kidney function, was usually employed 
to adjust urine dilution. Unfortunately, in our popula-
tion there is no significant correlation between age, BMI, 
eGFR, and ln transformed urinary creatinine creativ-
ity concentration, leading to failure of modeling, so the 
covariate-adjusted standardization may not be applicable 
to our study. In addition, due to the limitations of cross-
sectional study, the positive association between eGFR 
and MEHP, MEHHP found in this study might originate 
from the reverse causation, more prospective studies are 
needed.

Despite these constraints, our application of PCA and 
Q-g computation to analyze the data helps overcome 
issues related to collinearity and multiple comparisons, 
providing a clearer representation of real-world phtha-
late exposure scenarios. Besides, we firstly conducted 
the above association at pregnant women in southwest-
ern region of China, contributing to fill this knowledge 
gap regarding phthalate exposure positively associated 
with dysregulated kidney function under the Southwest 
China human geography scenario. In summary, our 
study contributes significantly to the understanding of 
phthalate exposure’s impact on kidney function among 
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pregnant women in Southwest China, filling a criti-
cal gap in the literature and laying the groundwork for 
future longitudinal and interventional research to elu-
cidate causal relationships and develop targeted public 
health interventions.

Conclusion
In conclusion, our study establishes a clear association 
between elevated exposure to both individual and com-
bined phthalate metabolites and increased SUA lev-
els. This relationship underscores the potential adverse 
impact of phthalate exposure on renal health during 
pregnancy. To substantiate these findings and elucidate 
the underlying biological mechanisms by which phtha-
lates influence SUA levels, future research should employ 
longitudinal study designs.
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