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Abstract 

Land use and land cover (LULC) analysis is crucial for understanding societal development and assessing changes 
during the Anthropocene era. Conventional LULC mapping faces challenges in capturing changes under cloud cover 
and limited ground truth data. To enhance the accuracy and comprehensiveness of the descriptions of LULC changes, 
this investigation employed a combination of advanced techniques. Specifically, multitemporal 30 m resolution 
Landsat-8 satellite imagery was utilized, in addition to the cloud computing capabilities of the Google Earth Engine 
(GEE) platform. Additionally, the study incorporated the random forest (RF) algorithm. This study aimed to generate 
continuous LULC maps for 2014 and 2020 for the Shrirampur area of Maharashtra,  India. A novel multiple composite 
RF approach based on LULC classification was utilized to generate the final LULC classification maps utilizing the RF-50 
and RF-100 tree models. Both RF models utilized seven input bands (B1 to B7) as the dataset for LULC classification. 
By incorporating these bands, the models were able to influence the spectral information captured by each band 
to classify the LULC categories accurately. The inclusion of multiple bands enhanced the discrimination capabilities 
of the classifiers, increasing the comprehensiveness of the assessment of the LULC classes. The analysis indicated 
that RF-100 exhibited higher training and validation/testing accuracy for 2014 and 2020 (0.99 and 0.79/0.80, respec-
tively). The study further revealed that agricultural land, built-up land, and water bodies have changed adequately 
and have undergone substantial variation among the LULC classes in the study area. Overall, this research provides 
novel insights into the application of machine learning (ML) models for LULC mapping and emphasizes the impor-
tance of selecting the optimal tree combination for enhancing the accuracy and reliability of LULC maps based 
on the GEE and different RF tree models. The present investigation further enabled the interpretation of pixel-level 
LULC interactions while improving image classification accuracy and suggested the best models for the classification 
of LULC maps through the identification of changes in LULC classes.
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Introduction
The vegetation and waterbody maps are  among LULC 
maps that provide a standard land surface outline [1–3]. 
The precise and timely collection of LULC information 
aids in gathering knowledge about human society’s evo-
lution and development. Subsequently, such investiga-
tions will allow active climate and environmental change 
modeling studies to develop, revealing the significance of 
climate change in society. Remote sensing (RS) imaging, 
GEE, and ML programming methods have been exten-
sively used for classifying LULC at local and regional 
application scales [4–6]. However, the mid-1970s were 
a turning point for applying various interpretation 
approaches that aided in compiling LULC  maps and 
change detection studies [7–9]. Owing to the importance 
of timely LULC information and advanced methodolo-
gies, the LULC variation mapping approach has evolved 
over the last five decades [10, 11]. One of the goals of 
scientific communities has been to generate spatially 
explicit LULC maps with the shortest possible temporal 
delay and best spatial resolution. The rapid development 
of RS technology has been accomplished to some extent 
compared with conventional surveying and mapping 
techniques  [12–15]. These patients benefit from multi-
ple  observations and extensive  coverage when  suggest-
ing  high  efficiency [16–18]. The most important aspect 
of modern-day planning is assessing LULC change and 
its implications as a baseline requirement for sustainable 
natural resource development, planning, and manage-
ment [19, 20]. Many researchers have claimed that LULC 
significantly and consistently impacts the functioning of 
socioeconomic and environmental systems, with sub-
stantial trade-offs for sustainability, food security, bio-
diversity, and people’s and ecosystems’ socioeconomic 
vulnerability [21, 22]. Environmental factors such as alti-
tude, geomorphology, hydrology, geological structure, 
soil type, slope, and technological, socioeconomic, and 
institutional characteristics are exclusively influenced 
by  LULC  classes [23–25]. The annual-scale LULC maps 
in the conterminous United States were created from 
1973 to 2000. The dynamic patterns revealed that nearly 
8.6% of the geographical area in the U.S. had  experi-
enced a change in LULC at least once during the analysis 
horizon [26]. Urban and rural population development, 
industrialization, climate change, and deforestation have 
all immediately impacted the LULC classes on the planet 
[27–29]. This has impacted various geo-environmental 
and ecosystem issues, including biodiversity, pollution, 
freshwater, the energy budget, and land use policy [30–
32]. Moreover, LULC changes significantly affect climate, 
biogeochemical cycles, energy fluxes, and livelihoods [30, 
33, 34].

To create long time-series LULC maps, remote sens-
ing data are acquired and subsequently applied to unravel 
the intriguing layers of the Earth’s land surface  [35, 36]. 
Machine learning algorithms have played an essential 
role in LULC mapping and change analysis, particularly 
in optimizing the processing of large volumes of image 
stacks and mining the unique patterns and information 
associated with subsequent LULC modifications [37, 
38]. Likewise, satellite images with improved resolutions 
have been more helpful in acquiring LULC maps with 
considerable knowledge and greater accuracy. Regional 
studies have employed a wide range of techniques, algo-
rithms, and methods to accurately categorize LULC 
change maps  [39, 40]. The utilization of Landsat images 
has proven valuable in providing a comprehensive over-
view of diverse landscapes [41, 42]. Additionally, object 
detection methods, machine learning classifiers, remote 
sensing, and geographic information system (GIS) 
approaches have been implemented to enhance the 
identification of LULC classes, leading to more accurate 
and reliable LULC maps [43]. Unmonitored gradation, 
supervised classification, GEE, machine-learning pro-
gramming, and fuzzy grading are the most often used 
methodologies for image categorization via RS and GIS 
software [44, 45]. [46] prepared LULC variation maps 
based on parcels using a machine learning approach. 
[47] demonstrated future LULC changes and calibra-
tion via an impact assessment of LULC changes in two 
areas of Tehran, Iran. [48] used machine learning mod-
els such as support vector machines (SVMs) and artificial 
neural networks (ANNs) to extract better information 
and improve the accuracy of LULC change patterns in 
Kuwait. These methodologies, in fact, extend beyond 
LULC classification and have demonstrated successful 
applications in understanding a wide range of phenom-
ena. These methodologies have been effectively applied 
in studying hydro-meteorological variations, climato-
logical alterations, and the impacts of natural and anthro-
pogenic disasters, such as floods and droughts. Their 
applications have provided valuable insights into sectors 
such as water resources and agriculture, among others 
[49–52]. To summarize, the studies mentioned above 
provide compelling evidence for the extensive application 
of GEE, ML, and other related platforms. These findings 
collectively highlight the robustness and effectiveness of 
these methodologies in various research domains.

With the advent of cloud computing approaches, sev-
eral powerful platforms have been available for construct-
ing LULC maps. Among these established platforms, the 
GEE has been used to conduct  innovative research with 
greater ease in computational efficiency [53, 54]. The 
GEE has a significant volume of numerous long-term raw 
remote sensing observations and dynamic classification 
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algorithms, such as RF models [55, 56] and support vec-
tor machines (SVMs) [57, 58], which make it potentially 
effective at preparing continuous long-term LULC maps. 
Many studies have been piloted on the GEE and associ-
ated Google Earth platforms, such as global urban land 
clipped, surface water monitoring, land surface tem-
perature, vegetation indices mapping, and LULC map-
ping with Landsat-8 images [59–63]. The combination of 
satellite data with indices and machine learning models 
for correcting demarcated surface water structures was 
based on the GEE for the Thoubal River Watershed, India 
[64]. LULC mapping is most important for understanding 
land changes and ecological systems; hence, all of these 
studies have produced rapid and precise results based on 
ML modeling via the GEE platform [65]. Object-oriented 
LULC extraction was performed using the Google Earth 
Engine platform with the integration of classifier models 
such as SNIC, GLCM, and ML [66]. The RF model was 
used to classify Zambian grasslands based on satellite 
data and feature importance [67]. The LULC mapping 
classification was used to integrate the pixel- and object-
based approach from multi-temporal data, and this map-
ping included a random forest classifier [68]. Long-term 
spatiotemporal changes in surface water bodies in the 
Yellow River Basin from 1986 to 2020 were identified 
using GEE, ML and satellite data [69]. The effect of LULC 
variation on evapotranspiration and ecosystem system 
identification was studied  using an ML model classifier 
via the GEE platform [70]

This study established a rigorous methodology for 
accurate LULC mapping and the identification of LULC 
classes utilizing the GEE platform. This study devel-
oped and compared the performances of two RF mod-
els, namely, RF-50 and RF-100, utilizing satellite data 
and training samples encompassing seven satellite bands 
for the Shrirampur area (in India) based on multi-tem-
poral 30  m Landsat-8 satellite images. These models 
were instrumental in effectively classifying and gener-
ating LULC maps for the years 2014 and 2020. In addi-
tion, many regions across the globe are experiencing 
climate-related issues, yet the reasons behind the con-
stant fluctuations in climate and pollution levels on the 
Earth’s surface remain poorly understood. It is evident 
that various factors, including changes in LULC patterns, 
significantly impact climate and agricultural fields. In 
light of these circumstances, accurate and timely LULC 
maps can be developed with ML models. The present 
study employed the RF algorithm as mentioned before. 
The selection of these models allows the investigation of 
which model yields higher accuracy in classifying images 
for LULC mapping. This study aimed to gain valuable 
insights into the relationships among LULC patterns, 

climate dynamics, and agricultural impacts by adopting 
these approaches.

The specific objectives and aims of this study were to 
(1) develop RF models with 50 and 100 trees to achieve 
accurate LULC mapping within the study area. By 
employing advanced ML, we aim to enhance the preci-
sion and reliability of LULC classification. (2) identify 
changes in LULC mapping by utilizing both the RF-50 
and RF-100 models in conjunction with the GEE plat-
form. This approach enables a comprehensive analysis 
of temporal variations in land use and land cover, facili-
tating a deeper understanding of LULC dynamics over 
time. (3) Analyze the effectiveness of the proposed algo-
rithms in accurately identifying individual LULC classes 
and assessing the classification accuracy. By evaluating 
the performance of the RF models, we can determine 
their ability to distinguish different land cover categories, 
thereby providing insights into the strengths and limita-
tions of the classification approach. (4) Additionally, we 
can compare and determine the optimal tree model and 
input parameters for LULC mapping using GEE and a 
machine learning approach. This comparative analy-
sis will inform the selection of the most suitable model 
configuration and input parameters to achieve high-pre-
cision LULC mapping results. By identifying the optimal 
approach, we aim to improve the overall accuracy and 
reliability of the generated LULC maps. By achieving 
these objectives, the study aimed to offer practical rec-
ommendations for LULC mapping in the study area. The 
outcomes of this research can guide decision-makers in 
implementing efficient and timely management strategies 
based on up-to-date LULC information. A comparison 
between the RF-50 and RF-100 tree models will provide 
valuable insights for selecting the most suitable approach 
for accurate LULC mapping.

Materials and methods
Study area and database
The study area is located at 19.62 N, 74.66 E in the 
western Maharashtra, as shown in Fig. 1. The most sig-
nificant land cover type is farmland. Large patches and 
plain topography characterize the agricultural area, and 
dry land is commonly cultivated with sugarcane, wheat, 
and onion in rotation of the study area. The mean tem-
perature, wind speed, and humidity are 27  °C, 14 km/h, 
and 70%, respectively, for the study area. Sugarcane is 
commonly harvested in December and January, while 
sugarcane fields are sown between June and February. 
Wheat is generally harvested in March, and onion is 
grown between June and August. The annual rainfall is 
400 to 550 mm, mostly confined to the monsoon season 
(June–October). The basin experiences highly undulating 
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topography, with the highest elevation being 541 m in the 
upland locations.

Remote sensing database
The 30-m Landsat-8 top-of-atmosphere (TOA) multi-
temporal satellite images were used for LULC mapping 
for 2014–2020; these images were subsequently accumu-
lated and systematically processed on the GEE platform 
[71]. The revisit phase of Landsat-8 satellites can reach 
16  days, and after one month, two datasets are avail-
able as time series observations. Landsat-8 TOA images 
of 12 varying spectral and thermal bands, with spatial 
resolutions varying from 30 m to 60 or 100 m, individu-
ally serve different purposes. Considering that is  not all 
Landsat-8 satellite images have been geometrically and 
atmospherically rectified [72], the Landsat-8 TOA reflec-
tance datasets under Level 1-C were used in the land use 
mapping for the period 2014–2020. Furthermore, due to 
cloud cover, air pollution, and seasonal, intermittent rain-
fall, this study used < 10% clouds to filter the accessible 

data through the downloading data gateway. All Land-
sat-8 satellite images were acquired for LULC extraction 
during 2014–2020 using 50 and 100 tree RF models. The 
satellite images were obtained and processed using the 
GEE platform and developed algorithm, while the data  
availability were checked by the Google Earth code editor 
platform (Table 1) [73].

Fig. 1 Location map of the study area

Table 1 Specification of the satellite products used

Sensor Landsat-8

Provider U.S. Geological Survey (USGS)

Resolution 30 m

Data Acquisition 2014 and 2020

Data source https:// devel opers. google. 
com/ earth- engine/ datas ets

https://developers.google.com/earth-engine/datasets
https://developers.google.com/earth-engine/datasets
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Training and validation datasets
This study identified and collected random field datasets 
for each LULC class with some selected data points using 
the visual interpretation method from Google Earth 
images. To ensure the accuracy and robustness of the 
image classification, 800 samples were collected for each 
year, as shown in Fig. 2. The collected sample data were 
divided into 70% and 30% for the training and validation 
periods, respectively, for both the 50 and 100  tree clas-
sification models. These datasets have been used in the 
classification models for 50 and 100 tree RF models using 
the GEE interface.

Image classification protocols
The GEE is a cloud-based and web-based graphical user 
interface (GUI) platform. The GEE serves as a repository 
for a vast collection of remote sensing datasets. The GEE 
combines a multipetabyte catalog of satellite imagery and 
geospatial datasets with planetary-scale analysis capabili-
ties  [35, 36]. Developers use GEE to detect changes and 
map trends and quantify differences on the Earth’s sur-
face. The public data archive includes more than thirty 
years of historical imagery and scientific datasets that 
are updated and expanded daily. GEE can enable pro-
cessing of large datasets using the JavaScript code editor 
platform, which shortens the correction and process-
ing of satellite datasets [74]. In this research, the LULCs 
were classified using the RF-50 and RF-100 tree models 
in the GEE platform, which included processing, atmos-
pheric correction, cloud-free image creation, missing and 
gap data filling, training, testing, and confusion matrix 
preparation. In this study, we compared 50 and 100 RF 
tree models, which yielded more accurate LULC map-
ping based on the machine learning approach and GEE 
platform. Cloud-free satellite data are available for the 
selected dates and subsequently estimated to improve 
the discriminatory ability of various land cover patterns. 
During image processing, composites are formed and 

used for land cover data to avoid missing information and 
cloudy images, and land cover maps are derived using the 
GEE platform. We have been selected  a two-year data-
set for the periods 2014 and 2020 for the preparation 
of LULC maps and subsequently used it to analyze the 
spatiotemporal distribution of the LULC maps using the 
RF-50 and RF-100 tree models and observed the LULC 
changes in the study area.

The classification procedure was separated into three 
steps: data collection, segmentation, and classification. 
Two approaches characterize the conventional LULC 
classification method: unsupervised and supervised clas-
sifications, wherein the former is based on a radiomet-
ric resolution-based algorithm-specific classification. It 
was later characterized by ground truthing-based user-
defined classification. In the present study, the super-
vised classification algorithm was chosen to evaluate 
the potential of existing image classification approaches. 
During classification, ground truthing was performed 
using the GEE, wherein at least 200 training samples 
were chosen for individual LULC classes. To apply the RF 
model, two basic parameters are needed: the number of 
trees (ntree) for building an entire forest and the num-
ber of selected features utilized for node splitting. The 
selected study locations inside the study area chosen for 
analysis were identified on the basis of satellite images, 
as presented in Fig. 3. LULC change detection was per-
formed using RF-50 and 100 tree models, and the model 
that exhibited better results is recommended for effective 
LULC mapping at the location of interest. A flowchart 
of the adopted novel methodology is shown in Fig.  4, 
Table 2a to d and Table 3 a to d.

Random forest machine learning model
It is a bootstrap resampling-based combinatorial classi-
fier that extracts numerous subsets of training samples 
from the original data to generate multiple subdatasets 
[75, 76]. Furthermore, various iterations of the deci-
sion process are performed using the previously gener-
ated datasets to train the model. The decision trees are 
treated as classification trees operated based on a set of 
binary rules to estimate a target value. The RF algorithm 
computes response variables such as the land cover class 
by generating numerous decision trees (in the order 
of 100  s). Subsequently, each object to be modeled is 
attached below the decision tree. The response from 
individual decision trees was evaluated, and the most 
predicted class was assigned as the targeted LULC class. 
Hence, the efficiency of the RF-based model is highly 
dependent on the mode of creation of the decision trees.

In general, the random selection process in the tree for-
mation stage of the RF algorithm is executed in two steps. 
In the first step of tree formation, random selection is Fig. 2 Training points (field location-based) in the study area
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accompanied by the replacement of data from the train-
ing sample. For an individual tree, a subset of the train-
ing data is used for decision-making, and reaming data, 
known as the “out-of-bag (OOB)” sample, are used for 
testing the model accuracy. The second step uses the 
binary rule to determine the split condition at each node. 
The splitting rule primarily includes the maximum infor-
mation gain, the maximum information gain rate, and the 
minimum Gini index. In the process of partitioning, the 

purity of the node increases, i.e., the sample contained by 
the node is included in the same category. When a large 
number of trees are generated, voting for the most popu-
lar class is performed; hence, this approach is treated as 
the RF technique.

The RF classifier consisted of a collection of decision 
tree classifiers, as given below [77]:

(1)
{

h(x,�,) k = 1,...
}

Fig. 3 The selected sites of the LULC classes from 2014 to 2020: a built-up land of 2014, b agricultural land of 2014, c built-up land of 2020, d 
agricultural land of 2020, e waste land of 2014, f water body of 2014, g waste land of 2020, and h water body of 2020
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where x is the input vector and {Θk} is the independent 
identically distributed random vector.

The OOB elements are used to estimate the model 
performance; this metric is termed an unbiased estima-
tor of generalization error and is given as follows:

where V (xi) is the mean decrease in the accuracy score, 
et is the OOB error in each decision tree of the RF, and eit 
is the new ith OOB error computed by altering the values 
of variable xi.

The present study adopted two RF classification mod-
els considering the models’ varying decision degrees. 
The first model consists of 50 decision trees, and the 
second model consists of 100 decision trees, referred 
to as RF-50 and RF-100. The training of the supervised 
classification algorithm was performed individually by 
the two abovementioned models. Finally, the land cover 

(2)V (xi) =
1

N

t=1
∑

N

(eit − et)

classification for the two analysis years, 2014 and 2020, 
was achieved using the two classification algorithms. 
The overall methodology framework adopted in the 
present study is described in Fig. 4.

Accuracy assessment for LULC maps of classification
An accuracy assessment of any prepared LULC map is 
a standard statistical procedure that cannot be avoided 
for obtaining a perfect LULC scenario for the region of 
interest. The steps followed to accomplish the accuracy 
assessment are detailed as follows:

1. Initially, 50 random points were generated within 
the spatial extent of interest with the ‘create random 
sample’ tool of ArcGIS 10.3.

2. Furthermore, the corresponding LULC classes at 
predefined random locations were extracted and 
updated in the attribute table belonging to the “ran-
dom point raster”.

Fig. 4 Flowchart of the methodology framework of the study
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3. A random point raster file was opened on Google 
Earth Pro., and individual random points were com-
pared with the ground truth LULC classes derived 
from Google Earth Pro.

4. The corresponding match between the ground truth 
LULC class and the image-derived class is assigned a 
true value.

5. Finally, the overall accuracy was estimated as follows:

A generalized discrete multivariate technique, i.e., the 
kappa coefficient-based accuracy approach, is further 

(3)AccuracyOverall =
Total sumof all the correctly accessed points

Total number of randompoints taken
× 100

adapted to increase the confidence in the classification 
accuracy. This approach ensures confidence in the class 
division within the map. It provides information about 
the actual accuracy obtained and the agreement expected 
by chance. Different ranges of the kappa coefficient indi-
cate that a map with a degree of accuracy in the range 
of 0.85–0.99 is treated as a better model. This approach 
could be adopted for future LULC preparation. The 
kappa coefficient is calculated as follows:

(4)

Kappa coefficient =
Observed accuracy− chance agreement

1− chance agreement

Table 2 Resubstitution error and confusion matrix for the random forest (RF) 50 model

(a) Resubstitution error matrix for 2014

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 55 1 4 0

Built-up land 0 78 0 0

Wasteland 0 1 295 1

Waterbody 1 0 1 62

Training Overall accuracy = 0.98

(b) Confusion matrix for 2014

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 11 0 13 3

Built-up land 1 17 7 3

Wasteland 3 3 109 5

Waterbody 1 2 4 19

Testing (Validation) accuracy = 0.78

(c) Resubstitution error matrix for 2020

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 50 0 2 0

Built-up land 0 76 2 0

Wasteland 0 0 309 0

Waterbody 0 0 3 60

Training Overall accuracy = 0.98

(d) Confusion matrix for 2020

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 16 4 14 1

Built-up land 1 27 0 0

Wasteland 2 1 101 4

Waterbody 0 1 8 18

Testing (Validation) accuracy = 0.82
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where Observedaccuracy is the accuracy obtained from 
the total accuracy and chanceagreement is the sum of the 
products of the row and column totals for each class.

The points that needed to be validated were generated 
in the ESRI ArcGIS 10.3 software using the stratified 
random sampling method of randomly creating control 
points. The control points of the respective LULC classes 
were established in the same way as the training poly-
gons were created. The control points were uploaded to 
the GEE, where the inbuilt classifier package was used 
to validate the classification. Specifically, the classifier.
confusionMatrix() function and the errorMatrix() func-
tion of the GEE constructed the confusion matrix and 
overall accuracy of classification, followed by the Con-
fusionMatrix.kappa() function for the estimation of the 
kappa index. The kappa index was estimated for each 
combination of input parameters, and the combination 

corresponding to the highest kappa index was selected to 
determine the overall accuracy.

Results
LULC thematic (spatial) maps and accuracy assessment 
for the maximum likelihood, RF-50, and RF-100 tree 
models
The LULC thematic maps of the Shrirampur area for 
2014 and 2020 obtained using the RF-50 tree model 
and RF-100 tree model are presented in Figs.  5 and 6, 
respectively. The four LULC classes, agricultural land, 
built-up land, wasteland, and land covered with water 
bodies, were identified as the essential classes and are the 
focus of the present investigation. Spatially, the central 
region of the study site broadly represents built-up land 
(zoomed region marked as “B”), which is dominantly sur-
rounded by wasteland (region “C”). While the water bod-
ies are limited in the built-up region, their availability is 

Table 3 Resubstitution error and confusion matrix for Random Forest (RF)-100 model

(a) Resubstitution error matrix for 2014

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 66 0 2 0

Built-up land 0 89 0 1

Wasteland 0 0 309 0

Waterbody 1 0 1 102

Training Overall accuracy = 0.99

(b) Confusion matrix for 2014

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 16 0 14 2

Built-up land 1 22 8 9

Wasteland 6 2 118 7

Waterbody 5 2 10 29

Testing (Validation) accuracy = 0.74

(c) Resubstitution error matrix for 2020

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 68 0 1 0

Built-up land 0 92 0 1

Wasteland 0 0 312 0

Waterbody 0 0 3 103

Training Overall accuracy = 0.99

(d) Confusion matrix for 2020

Land-use type Agriculture land Built-up land Wasteland Waterbody

Agriculture land 16 2 11 2

Built-up land 1 31 3 2

Wasteland 2 3 121 4

Waterbody 1 0 19 23

Testing (Validation) accuracy = 0.79
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Fig. 5 LUC thematic map for the Shrirampur region in Maharashtra for a 2014 and b 2020; developed using the RF-50 tree model
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Fig. 6 LUC thematic map for the Shrirampur region in Maharashtra for a 2014 and b 2020; developed using the RF-100 tree model
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localized primarily in the North and North‒West regions 
(regions “C” and “D”), with one major water source in 
the East (region “D”). Agricultural practices are the pri-
mary occupation of the study site. They are located at the 
peripheries of the study boundary (region “A”) in close 
vicinity with large numbers of micro- and medium-scale 
water bodies. Qualitatively, significant changes occurred 
across 2014 and 2020 in the LULC types described above, 
as evident from the spatial plots; however, the RF-50 Tree 
and RF-100 Tree models depicted the alterations differ-
ently. Therefore, a quantitative analysis was conducted 
and is presented in Sects.  "Advantages, limitations, and 
future research on the GEE and RF models" to ascertain 
the essential changes in the LULC classes. This aspect 
motivated the study to assess each model for the same 
study site to quantify the models’ suitability.

The RF models developed for the present study 
site were assessed for accuracy and suitability for the 
Shrirampur study site. This was performed by developing 
a resubstitution error matrix and confusion matrix for 
each LULC type in 2014 and 2020. Table 2a, b, c, d show 
the matrixes for the RF-50 tree model and RF-100 tree 
model, respectively. For the RF-50 Tree model, the find-
ings indicated 98% accuracy under overall training for 
both 2014 and 2020, while 78% and 82% accuracy were 
recorded under the validation phase for the same years 
(Fig. 7). Conversely, for the RF-100 Tree model, the find-
ings indicated 99% accuracy under overall training for 
both 2014 and 2020, while 74% and 79% accuracy were 
recorded under the validation phase for the same years 
(Fig. 7b; Table 3a, b, c, d). The developed RF models and 
derived high-accuracy LULC maps were inferred to be 
highly suitable for conducting spatiotemporal investiga-
tions and pattern analysis at the present study site.

Analysis of RF-50 tree model-estimated spatiotemporal 
changes and patterns of LULC
To quantitatively assess and compare the spatial and tem-
poral changes in different LULC types in the Shrirampur 
area, the regions estimated from the RF-50 tree model 
and the cumulative ratio for each class for 2014 and 2020 
were computed and are presented in Fig.  8. It can be 
inferred that agricultural land cover is the most dominant 
land use, with an area proportion of 84%. This was fol-
lowed by area cover under the wasteland occupying 7% 
of the study site. In general, agricultural land use coupled 
with wasteland remained less altered in view of individ-
ual area proportion alterations between 2014 and 2020. 
In contrast, the area proportions of built-up land and 
water bodies underwent significant changes across the 
same years. For example, the area proportion of built-up 
land decreased from 6% in 2014 to 4% in 2020, whereas 

the area proportion of water bodies increased from 3% in 
2014 to 5% in 2020.

Changes in different LULC types are more appar-
ent in Fig.  10, where a drastic positive shift in the area 
covered with water bodies, as high as 42% (from 25  km2 
to 36   km2), was observed. Conversely, a drastic nega-
tive change in area cover under built-up conditions was 
observed, reaching 26% (from 47  km2 to 35  km2). A com-
parison of the percentage (%) change between RF-50 Tree 
and RF-100 Tree revealed that the area of built-up land 
decreased, as shown in Fig. 9. We compared the results 
of both models for built-up land and found that the 
RF-100 tree model extracted less built-up land because 
of the decrease in built-up land, as shown in Fig.  9. In 
this paper, we found that the RF-50 tree better classified 
built-up land than did the RF-100 tree, and the RF-100 
tree had a slightly lower performance in classifying built-
up land overall. In contrast, the field investigation and 
qualitative interviews revealed rising households (built-
up land) and a reduced water quantity across the study 
site. To argue, the increase in the area covered by water 
bodies and decrease in built-up land area are opposite to 
the prevailing (general) trends in the Shrirampur region. 
Despite these facts, the RF-50 Tree model yielded contra-
dicting results (at least in the case of built-up spaces and 
water bodies). The aforesaid findings suggested redoing 
the analysis using the RF-100 Tree model to ascertain the 
suitability of a specific RF model in coherence with the 
study site conditions. Moreover, it is important to high-
light here that merely applying an RF model to a study 
site, just because its accuracy assessment is appropriate 
(as observed for the RF-50 Tree model in the present 
case), is insufficient to determine the different degrees of 
alternation in LULC. There is a need to develop multiple 
models of such types (for example, the two models devel-
oped for the present study area, viz., the RF-50 Tree and 
RF-100 Tree models) to compare their findings and, if 
possible, coupled with field investigations (ground truth-
ing) to validate the results.

Analysis of RF-100 tree model-estimated spatiotemporal 
changes and patterns of LULC
This section aimed to quantitatively assess and compare 
the spatial and temporal changes in different LULC types 
in Shrirampur Province via area estimations generated by 
the RF-100 tree model. These parameters were computed 
statistically (the cumulative ratios for each class for 2014 
and 2020 were computed) and are presented in Fig.  10. 
Like in the RF-50 Tree model, in the RF-100 Tree model, 
agricultural land cover was the most common land use, 
with an area proportion of nearly 84% (a slight increase of 
1% between 2014 and 2020 was observed). This was fol-
lowed by area cover under the wasteland occupying 7% 
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of the study site, as observed in the RF-50 Tree model. 
In general, agricultural land use coupled with wasteland 
also remained less impacted in view of individual area 
proportion alterations between 2014 and 2020. The area 
under built-up land was also observed to be more or less 
the same during the study period (4%); however, water 
bodies changed across the same years, decreasing from 
6% in 2014 to 5% in 2020 (against the increasing trend, as 
indicated by the RF-50 Tree model).

Changes in different LULC types are more apparent in 
Fig. 11, where a drastic positive shift in area cover under 
built-up land, as high as 24% (from 34   km2 to 42   km2), 
was observed. However, a moderate negative change 
in the area covered with water bodies, which was 6% 
(from 46   km2 to 56   km2), was observed. These findings 
are in agreement with the observations drawn from field 
investigations and qualitative interviews and contrary to 
the findings of the RF-50 Tree model. Importantly, even 
though both the RF-50 and RF-100 models satisfied the 

(a)

(bb)

98

78

98

82

0

20

40

60

80

100

Resubstitution error

matrix (Training

overall accuracy)

Confusion matrix

(Testing/validation

accuracy

Resubstitution error

matrix (Training

overall accuracy)

Confusion matrix

(Testing/validation

accuracy

RF50 Tree (2014) RF50 Tree (2020)

Pe
rc

en
ta

ge
 (%

) a
cc

ur
ac

y

Random Forest (RF) 50 Tree Model Assessment

99

74

99

79

0

20

40

60

80

100

Resubstitution error

matrix (Training

overall accuracy)

Confusion matrix

(Testing/validation

accuracy

Resubstitution error

matrix (Training

overall accuracy)

Confusion matrix

(Testing/validation

accuracy

RF100 Tree (2014) RF100 Tree (2020)

Pe
rc

en
ta

ge
 (%

) a
cc

ur
ac

y

Random Forest (RF) 100 Tree Model Assessment

Fig. 7 Accuracy assessment of random forest (RF) models, viz., a for the RF-50 tree model and b RF-100 tree model, using the resubstitution error 
matrix and confusion matrix



Page 14 of 23Pande et al. Environmental Sciences Europe           (2024) 36:84 

accuracy assessment criteria, their area demarcation abil-
ity and area proportion were observed to vary, thereby 
resulting in different results for the same study site. In 
the case of the former, the trend of LULC alterations for 
water bodies and built-up land was observed to increase 
and decrease, respectively; however, the trend almost 
reversed when it was subjected to the latter. For the other 
two land use types, viz., wasteland and agriculture, their 
performances were similar. There is a need to quantify 
the difference in performance between these two mod-
els (done in the next section). Furthermore, developing a 
model for multiple study sites may provide contradictory 
results whose validation could not be performed unless 
a multiple model development approach is considered 
(as happened in the present case with the RF-50 Tree 
and RF-100 Tree models). Hence, the findings and infer-
ences suggest considering a multiple model development 

approach for deciding the suitability of RF models along-
side conducting accuracy assessments.

Discussion
Typewise comparisons between LULC classes generated 
by the RF-50 tree and RF-100 tree models
The present section describes the varying results yielded 
by the RF-50 and RF-100 models for the Shrirampur 
study area. The objective here is to quantify the suitability 
of these two models by comparing their area estimations. 
Figure 12 shows the spatial plots for different LULC types 
developed using the RF-50 and RF-100 models for 2014 
and 2020. These two models provide insight into the vis-
ual interpretation of alterations in LULC. LULC classes 
such as agricultural land, built-up land, wasteland, and 
water bodies were estimated by the RF-50 and RF-100 
models, as shown in Fig. 13. In general, the findings for 
each LULC type indicated a substantial difference in area 
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estimations for 2014 and 2020, especially for water bod-
ies and built-up land (as was also identified in the previ-
ous sections). For example, in the case of water bodies, 
the area estimated by the RF-50 Tree model for 2014 was 
25   km2, while that estimated by the RF-100 Tree model 
was 46  km2. A large positive difference (meaning that the 
estimated area increased from the RF-50 Tree model to 
the RF-100 Tree model) was observed for a total of 81% 
of the water bodies in 2014. However, the area estimation 
for water bodies in 2020 was positive at 20%. Similarly, 
in the case of built-up areas, a large positive difference of 
27% was observed for 2014, and a large negative differ-
ence (meaning that the estimated area decreased from 
the RF-50 Tree model to the RF-100 Tree model) of 21% 
was observed for 2020. The difference in the area estima-
tions for water bodies and built-up land was significant 
for both 2014 and 2020. However, it would be interest-
ing to observe the periodwise variation in the case of the 
other two land use types to ascertain the aforementioned 
phenomena for these two models.

According to Fig. 13a, c, it can be inferred that the dif-
ferences in the estimated area cover for wasteland and 
agricultural land using the RF-50 Tree and RF-100 Tree 
models, respectively, exhibited negative differences of 
5% and 0.7% for 2014 and a mere 2% and 6% for 2020. 
In light of the evidence shown, this study revealed that 
both the RF-50 Tree and RF-100 Tree models are suitable 
for estimating the area covered by agricultural land and 
wasteland and thus can be employed for future land-use 

investigations in the present study area. However, when 
these models are subjected to estimating the areal cover 
under built-up spaces and water bodies, the RF-100 Tree 
model performed better than the RF-50 Tree model. The 
reason may be attributed to the LULC characteristics, 
as dominant land uses (agricultural land and wasteland) 
were estimated better by both models than was reces-
sive land use (built-up and water bodies). In addition, 
the better fit of the RF-100 Tree model can also be attrib-
uted to its slightly better accuracy than that of the RF-50 
Tree model. Since the RF-100 Tree model corresponded 
well with the realistic trend of a declining cover of water 
bodies coupled with an increasing cover of built-up land 
(against the findings of the RF-50 Tree model), this study 
suggested the application of the RF-100 Tree model for 
future investigations.

Advantages, limitations, and future research on the GEE 
and RF models
The present study adopted the RF-based classifica-
tion algorithm for characterizing the long-term change 
in LULC in the corresponding study region, which has 
the following advantages over the existing approaches. 
The ability of RF to process large amounts of data upon 
excluding feature selection helps in balancing the clas-
sification error, thereby providing a greater degree of 
accuracy in classification. Since the RF-based method-
ology requires minimal manual intervention, the RF 
design becomes simpler and requires less effort from 
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the modeler. The inherent potential of RF for the char-
acterization of a variety of data assists in evaluating the 
importance of individual land use classes by estimating 
the generalization error, and the overall accuracy of clas-
sification has improved. The enhanced computational 
speed of the RF algorithm enhances the parallelization in 
the building of decision trees for classification and sub-
sequently reduces the time required for classification. In 
general, the RF algorithm behaves more as an ensemble 
tree approach than does conventional approaches, viz., 
boosting and stacking; hence, the RF algorithm becomes 
overly sensitive to the quality of training data, and insta-
bility persists with slight alterations in the training sam-
ples. This investigation provided a better understanding 
of several important characteristics. The utilization of 
GEE has revolutionized the process of generating LULC 
maps in a highly efficient and organized manner, thereby 

surpassing the limitations of previous approaches [78]. In 
the past, generating LULC maps involved cumbersome 
tasks such as processing satellite data using local comput-
ers. This process was not only challenging but also inef-
ficient, particularly when dealing with image processing 
tasks such as cloud removal, atmospheric correction, 
and mosaicking. However, with the introduction of GEE, 
these challenges have been effectively addressed. The 
GEE offers a cloud-based platform with powerful com-
putational capabilities that streamline the generation of 
LULC maps. This platform facilitates seamless data pro-
cessing, including automated cloud removal, atmospheric 
correction, and mosaicking. As a result, the entire work-
flow has become significantly more efficient, allowing for 
faster and more accurate LULC mapping.

Moreover, the motivation behind using RF-50 and 
RF-100 trees, despite the default mtree value being 500, 
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is to explore the performance and accuracy of the RF 
algorithm with different numbers of trees in the con-
text of this study. When the default value of mtree is set 
to 500, this does not necessarily imply that this is the 
optimal or most effective number of trees for all cases. 
By selecting RF-50 and RF-100 tree models, the study 
could investigate the impact of reducing or increasing 
the number of trees on the classification accuracy and 
performance of the RF algorithm in the specific appli-
cation of LULC mapping. This approach allowed for a 
comparative analysis and determination of whether 
a lower or higher number of trees can yield improved 
results for the given study area and data. This approach 
thus provides valuable insights into the performance 
characteristics of the RF algorithm with varying tree 
numbers, surpassing the default setting of mtree.

As a complete large dataset cloud-based platform 
for resource combination, GEE is a satellite data pro-
cessing and analysis platform that can aid in large stor-
age and robust calculations [78]. Users can quickly 
access interactive satellite images and algorithms to 
conduct research-related scientific investigations and 
display spatial and nonspatial data [79]. The GEE plat-
form is currently the best option for data collection 
and includes a set of geospatial datasets and satellite 
images from remote sensing satellites that cover more 
than 40  years, with some vector data also presented 
in the GEE platform [78]. While GEE has been used 
extensively to create maps of different types of land use 
and land cover [80], investigations of the estimation of 

soil qualities rarely employ it. As a result, additional 
research and development are required for the imple-
mentation of GEE in the random forest model. As a 
result, implementing GEE  can significantly increase 
researcher productivity through the use of machine 
learning models [71], and GEE has been regularly used 
in scientific analysis in several domains at the local, 
regional, and international levels [80–84].

The present study acknowledges certain limitations 
that need to be addressed for a more robust under-
standing. First, the RF-50 and RF-100 tree classifier 
models were selected for the Landsat-8 satellite data-
sets, but it was observed that some bare soil and built-
up land pixels exhibited similar spectral characteristics. 
This similarity resulted in mixed classes during the 
LULC mapping process, impacting the accuracy of the 
RF model [1]. Second, the absence of field data and 
object data points hindered the proper identification 
of LULC classes based on the RF models. Specifically, 
the water body and wasteland classes were not effec-
tively classified using the RF-50 tree model on the GEE 
platform. It was observed that increasing the number 
of trees in the RF model could improve land use clas-
sification and change detection maps. Future studies 
could explore the integration of popular remote sens-
ing indices, such as the normalized difference vegeta-
tion index (NDVI), normalized water index (NWI), and 
spectral vegetation index (SVI), to enhance the over-
all performance of image classification. Considering 
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these limitations, future research endeavors will focus 
on developing and testing more comprehensive and 
suitable machine learning models based on GEE. This 
approach aims to incorporate precise land use and land 
cover mapping methodologies and image classification 
techniques to enhance accuracy. By leveraging the GEE 
cloud-based platform and minimizing the reliance on 
field information, the objective is to generate more pre-
cise LULC maps.

Conclusions
This study aimed to analyze the spatiotemporal varia-
tion in LULC classes over two distinct analysis periods. 
Additionally, the performance of the RF machine learn-
ing model-based classification algorithm was evaluated 
with 50 and 100 trees for accurately identifying indi-
vidual LULC classes. While numerous machine learning 

models and classification tools are available, they often 
produce errors and incorrect maps within short periods. 
To address this issue, this study developed RF models 
with 50 and 100 trees using seven input bands as a vari-
ables  used in  the GEE platform. The primary objective 
was to determine which model performed better when 
applied to satellite data from 2014 to 2020. By compar-
ing the performances of RF-100 on 2014 and 2020 satel-
lite data and achieving similar accuracies, this model has 
demonstrated its ability to leverage time series datasets. 
This capacity allows for the creation of LULC maps span-
ning 30 years within a minimal timeframe. The findings 
of this study hold substantial significance for sustainable 
development, as they enable the efficient monitoring of 
LULC changes and their associated climate effects on the 
Earth’s land surface. These results contribute to a com-
prehensive understanding of the dynamic relationships 

Fig. 12 Land use/land cover (LULC; spatial plot) thematic map for the different types of LULC in the Shrirampur region in Maharashtra; a built-up 
land, b agricultural land, c waste land and d water body data shown in 2014 using the RF-50 tree model; e built-up land, f agricultural land, g waste 
land, and h water body data shown in 2020 using the RF-50 tree model; i built-up land, j agricultural land, k waste land, and l water body data 
shown in 2014 using the RF-100 tree model; and m built-up land, n agricultural land, o waste land, and p water body data shown in 2020 using 
the RF-100 tree model
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among land use, climate, and environmental sustainabil-
ity. The following conclusions can be drawn from the pre-
sent study:

1. While the classification accuracy of the RF-50 model 
demonstrated significant improvement throughout 
the entire analysis period, reaching 98%, it is impor-
tant to critically examine specific findings within the 
results. One noteworthy observation is the seemingly 
disproportionate 2% increase in waterbodies over 
a six-year analysis period, which warrants further 
investigation and consideration. In addition, another 
notable observation is the lack of variation in the per-
centage of agricultural land throughout the analysis 
period. These findings raise questions regarding the 
stability of agricultural practices and land use pat-
terns within the studied area during the designated 
timeframe.

2. The RF-100 classification algorithm exhibited excep-
tional performance during the analysis period, 
achieving an impressive classification accuracy of 
99%. This algorithm effectively captured the transi-
tions between wasteland and built-up land, provid-
ing valuable insights into the dynamics of these land 
cover classes. The study emphasized the robust per-
formance of the RF-100 classification algorithm, as 
demonstrated by its high accuracy and ability to cap-
ture fine-scale transitions, underscoring its suitabil-
ity for comprehensive LULC mapping applications. 
These findings provide a strong foundation for future 
research and potential implementation in large-scale 
mapping endeavors.

3. The proposed machine learning-based classification 
algorithms demonstrated improved performance 
compared to the existing classification approaches. 
However, slight disagreement was observed between 
the classifications of bare land and built-up land pix-
els. To address this issue, the present study urged 
the incorporation of commonly used remote sens-
ing-based indices, such as the normalized differ-
ence vegetation index (NDVI), normalized water 
index (NWI), and spectral vegetation index (SVI), 
to enhance the accuracy and performance of image 
classification. This suggestion aligns with established 
practices in the field of remote sensing and machine 
learning, where the integration of spectral indices 
has proven effective in improving the performance 
of image classification algorithms. By leveraging 
these widely used indices, we can leverage additional 
information and improve the overall robustness 
and accuracy of our classification model. The utili-
zation of the proposed 50 and 100 trees based on a 
machine learning model significant improvements in 

the identification and segregation of distinct LULC 
classes. Through rigorous evaluation, we assessed 
the accuracy of the RF-50 and 100  tree models and 
determined their effectiveness in accurately identify-
ing LULC classes using the GEE platform and satel-
lite data. This methodology has broader applicability 
beyond specific study areas, as it can be adopted in 
various global regions that encompass diverse LULC 
classes. By incorporating a greater number of train-
ing samples, a substantial enhancement in classifica-
tion accuracy is anticipated. Increasing the training 
sample size enables machine learning models to learn 
more comprehensively from a diverse range of exam-
ples, leading to improved discrimination and classifi-
cation of LULC classes.
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