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Abstract 

Currently, the Water Quality Index (WQI) model becomes a widely used tool to evaluate surface water quality 
for agriculture, domestic and industrial. WQI is one of the simplest mathematical tools that can assist water operator 
in decision making in assessing the quality of water and it is widely used in the last years. The water quality analysis 
and prediction is conducted for Johor River Basin incorporating the upstream to downstream water quality moni-
toring station data of the river. In this research, the numerical method is first used to calculate the WQI and identify 
the classes for validating the prediction results. Then, two ensemble and optimized machine learning models includ-
ing gradient boosting regression (GB) and random forest regression (RF) are employed to predict the WQI. The study 
area selected is the Johor River basin located in Johor, Peninsular Malaysia. The initial phase of this study involves 
analyzing all available data on parameters concerning the river, aiming to gain a comprehensive understanding 
of the overall water quality within the river basin. Through temporal analysis, it was determined that Mg, E. coli, SS, 
and DS emerge as critical factors affecting water quality in this river basin. Then, in terms of WQI calculation, feature 
importance method is used to identify the most important parameters that can be used to predict the WQI. Finally, 
an ensemble-based machine learning model is designed to predict the WQI using three parameters. Two ensemble 
ML approaches are chosen to predict the WQI in the study area and achieved a R2 of 0.86 for RF-based regression 
and 0.85 for GB-based ML technique. Finally, this research proves that using only the biochemical oxygen demand 
(BOD), the chemical oxygen demand (COD) and percentage of dissolved oxygen (DO%), the WQI can be predicted 
accurately and almost 96 times out of 100 sample, the water class can be predicted using GB ensembled ML algo-
rithm. Moving forward, stakeholders may opt to integrate this research into their analyses, potentially yielding eco-
nomic reliability and time savings.

Keywords Water quality index, Gradient boosting regression, Random forest, Johor River

*Correspondence:
L. M. Sidek
Lariyah@uniten.edu.my
Ozgur Kisi
ozgur.kisi@th-luebeck.de; ozgur.kisi@iliauni.edu.ge
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-024-00897-7&domain=pdf


Page 2 of 17Sidek et al. Environmental Sciences Europe           (2024) 36:67 

Introduction
Water is classified as a renewable resource due to its con-
tinual circulation through the hydrologic cycle, and the 
fact that approximately 70% of the Earth’s surface is cov-
ered by water [1]. River water plays a significant role as 
primary sources for drinking, water supply, hydropower 
generation, agricultural, industrial activities, livestock 
production and other economic sectors [2]. In various 
developing countries, water quality is tremendously dete-
riorating due to natural effect and human activities that 
lead to pollution. Pollution to rivers or any controlled 
waters can be classified into three distinct categories i.e., 
isolated pollution incidents, non-point (diffused) sources 
of pollution and point sources pollution. Isolated pollu-
tion incidental spillage, illegal dumping of pollution or 
failure of treatment processes or plants lead to bad qual-
ity effluent being discharged to the river. The natural fac-
tors that deteriorate water quality are hydrological cycle, 
atmospheric, climatic, and topographic changes over 
time. Meanwhile, the example of environmental pollution 
caused by human activities is from industrial, municipal 
and agricultural production and disposal of waste, animal 
husbandry, mining, sedimentation or soil erosion due to 
rapid land use changes and contribution of heavy metals 
into the water body [3].

Emergence of threats or pollution to the water 
resources, urges the related parties to conduct a water 
quality monitoring as a part of measures to improve in 
managing this valuable resources. Currently, there are 
recommendations to apply integrated river basin man-
agement as an integration in managing water resources. 
This approach must meet several listed criteria to ensure 
the river basin comply with water quality standards and 
these also considering protection of aquatic ecology and 
its habitat [4]. For instance, Malaysia is currently devel-
oping and already completed numbers of Integrated 
River Basin Management (IRBM) frameworks and docu-
mentation. This approach also aims in managing water 
resources in terms of its quality, quantity, sufficiency, 
and to improve the environment. Water quality assess-
ment consists of three main aspects which are chemi-
cal, biological, and physical characteristics of water. All 
aspects are being determined by a set of standards known 
as National Water Quality Standards (NWQS) and clas-
sified based on the water beneficial uses as endorsed by 
Department of Environment (DOE). Currently, the Water 
Quality Index (WQI) model becomes a widely used tool 
to evaluate surface water quality for agriculture, domes-
tic and industrial [3, 5]. WQI is accepted to be used in 
assessing the quality of water because it is one of the sim-
plest mathematical tools that can assist water operator in 
decision making.

WQI calculation is based on NWQS focus on the spe-
cific parameter and climate condition [6] and has cer-
tain uncertainty and risk of faulty results. According to 
Bui et  al. [7], there are many disadvantages of conven-
tional WQI Equation including requirement of lengthy, 
complex and inconsistent techniques. One need to have 
complete details parameter results to calculate the cor-
rect WQI. If one parameter is missing, the WQI Equation 
cannot be computed. At present, assessing water quality 
involves costly and time-intensive procedures involving 
laboratory testing and statistical analysis. This process 
entails the collection of water samples, their transporta-
tion to laboratories, and a substantial amount of time and 
computational work. This approach is not very efficient, 
especially considering that water can easily transmit con-
taminants, and prompt action is crucial if the water is 
contaminated with disease-causing waste. Consequently, 
the dire consequences of water pollution underscore 
the need for a more rapid and cost-effective alternative. 
In many decades, researchers and water operators have 
used different approaches to determine the quality of 
surface water. Numerous types of water quality models 
have been applied to improve the accuracy of water qual-
ity predictions to ease in decision making. Development 
of model for surface water quality related parameters 
becomes a crucial issue in terms of its efficiency and reli-
ability to produce a good result. The reliable water quality 
model may result in significant reduction of costing since 
it is indirectly able to determine the values of water qual-
ity-related parameters [8]. Apart from that, the usage of 
WQI calculation is time consuming and unintentionally 
associated with errors during data collection and sub-
index calculation [9]. In terms of classification principles, 
WQI categorization is classified as supervised pattern 
recognition method [10].

Nowadays, many studies opted artificial intelligence 
(AI) to predict WQI method [11–17]. The application 
of Artificial Neural Network (ANN) as part of machine 
learning is the powerful computational method as it 
can represent a complex mathematical model and it has 
the capability to learn based on the concepts, patterns, 
observations or any series of data by the process called 
training the model [18, 19]. This method implements a 
model structure of neural network to capture intricate 
non-linear connections, especially in  situations where 
the relationships between variables are not well under-
stood. There are many water-quality studies have been 
conducted the implement the application of machine 
learning. Rankovic et al. modeled dissolved oxygen (DO) 
in the Gruza reservoir, Serbia using ANN and obtained 
promising results [20]. A study conducted at Cheong-
pyeong Dam, Korea has applied ANN to predict eight 
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water quality parameters which are temperature, DO, 
pH, conductivity, TN, TP turbidity and Chlorophyll-a 
using three years observed daily data and found that 7 
parameters except for turbidity have an R2 higher than 
0.85, meanwhile 5 parameters; temperature, DO, pH, TN 
and TP shows have an RMSE of 1.0 [21]. Another pre-
vious study carried out in Gomti River, India has tested 
ANN to compute two parameters DO and biochemical 
oxygen demand (BOD) levels. It employs eleven water 
quality parameters as inputs that measured monthly for 
10 years. It has been identified that the optimal networks 
are able to analyze long-term trends observed data for 
the sensitive parameters like DO and BOD. The study 
also proposes that neural networks model is suitable 
to be used to compute and predict river water quality 
and can determine the pollution trends [22]. Sakizadeh 
employed an ANN with Bayesian regularization to pre-
dict the WQI using 16 water quality parameters as inputs 
[23]. The study achieved correlation coefficients of 0.94 
and 0.77, demonstrating a strong predictive performance. 
Abyaneh, on the other hand, focused on predicting the 
Chemical Oxygen Demand (COD) and BOD using con-
ventional methods, including ANN and multi-linear 
regression [24]. They utilized four-parameter, namely 
pH, total suspended solids (TSS), temperature, and total 
suspended (TS), to forecast COD and BOD. An unsuper-
vised technique (average linkage hierarchical clustering) 
was adopted by Ali and Qamar to classify water sam-
ples into distinct water quality groups. However, their 
approach omitted essential parameters related to WQI 
and did not employ a standardized water quality index 
for assessment [25]. However, their approach omitted 
essential parameters related to WQI and did not employ 
a standardized water quality index for assessment. Gaz-
zaz et  al. applied ANN to predict WQI and achieved 
a model that explained nearly 99.5% of the data’s varia-
tion. Their model utilized 23 parameters, which could 
be costly when implementing it in an Internet of Things 
(IoT) system due to sensor prices [9]. Single feed-forward 
ANN was employed by Ahmad et  al. to predict WQI, 
utilizing 25 WQ input parameters [26]. Through a com-
bination of backward elimination and forward selective 
combination approaches, R-squared values of 0.9270 
and 0.9390 and MSE values of 0.1200 and 0.1158 were 
achieved. However, the use of 25 parameters might be 
impractical for a cost-effective real-time system, con-
sidering the expense of parameter sensors. It’s worth 
noting that many studies either relied on manual lab 
analysis without estimating a standardized water qual-
ity index or utilized an excessive number of parameters, 
which could hinder efficiency. Moreover, the WQI of 
Malaysia is calculated using numerical methods and use 
6 parameters. It is obvious that, the above mentioned 6 

parameters might not be available in all areas. For exam-
ple, the AN and SS parameters need to be sampled in 
lab after collecting for the study area which make the 
research expensive and time consuming. Therefore, 
based on the historical data, a machine learning method 
can predict the WQI of a river using less parameters and 
thus can reduce the cost of research. In this study, two 
ensembled and optimized machine learning models are 
being proposed to predict the WQI of Johor River. Devel-
oping an ensembled machine learning model involves 
combining multiple individual machine learning mod-
els to improve predictive performance. These models 
could be of different types or variations of the same type, 
trained on the same data or different subsets. Ensemble 
methods leverage the diversity of these models to reduce 
overfitting and improve generalization, often resulting in 
more robust and accurate predictions compared to sin-
gle models. Common ensemble techniques include bag-
ging, boosting, and stacking. There are various types of 
machine learning models that can be used in ensemble 
methods. Some common types include Decision Trees, 
Random Forest, Neural Networks, Logistic Regression 
and Gradient Boosting Machines. This research first 
analyzes all the parameters available in that river. Then 
feature importance method will identify the most impor-
tant parameters. Finally, ensemble-based machine learn-
ing models are designed to predict the WQI using three 
parameters.

Materials and methods
Study area
In this research, the study area selected is the Johor River 
basin located in Johor, Peninsular Malaysia. The catch-
ment area is around 2636  km2 and the mainstream length 
is around 122.7 km as shown in Fig. 1.

The tributaries of the Johor River include the Seluyut 
River, Sengi River, Redan River, Temon River, and Tiram 
River. According to the hydrological data, the aver-
age flow rate of the Johor River is 37.5   m3/s. Mean-
while, the annual mean rainfall intensity in this region 
is about 2360  mm, with mean temperature around 
27  °C. In nature, river is categorized geographically into 
three zones: headwater (Upstream), transition (or mid-
dle stream) and depositional zone (or downstream) [27]. 
Based on the land-use activities and the pollution points, 
the study area is mapped into three streams as well 
shown in Figs. 1 and 2. In the Johor River, the upstream 
comprises the mountains with areas forest, very steep 
gradients with high ridges and deep valleys. The riv-
ers originate in this zone within a channel network. The 
middle stream zone comprises the lower mountains and 
hills and has steep slopes but with mixed vegetation with 
alternate human activities such as oil palm plantation. 
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The downstream zone begins when the river leaves the 
hills. The Johor River starts to meander due to low level 
of gradient. The upstream of the river systems is impor-
tant for covering downstream ecosystems because they 
are closely linked. However, the terms ‘upstream’ and 
‘downstream’ also relatively depend on the upstream and 
downstream relationships occur at different locations 
and scales, and the magnitude and nature of river, land 
use change and runoff generation [23]. The upstream 
area is located at the upper part of the Johor River domi-
nated by of palm-oil plantation followed by forest, sand 
mining industrial area and residential. Meanwhile, the 
middle of the river covered by palm oil plantation, forest 
at the eastern part of the catchment and the mixed devel-
oped area (amenities, residential, commercial, and vacant 
land). Downstream area still dominated by the green 
area followed by vacant land and other mixed developed 
area (including high and low-density development area). 
Water quality for various parameters is decreasing from 

upstream to the downstream of the river stretch due to 
anthropogenic and land use activities in the catchment 
[28–30].

Therefore, this paper will investigate the relationship 
of water quality located in these three different segments 
with the effect of land use activities using temporal analy-
sis at the beginning of analysis. Then the correlation of 
water quality parameters with the WQI and an ML-based 
feature importance analysis will be done to identify the 
most important parameters for WQI prediction. The 
water quality for Sungai Johor and its tributaries has been 
subjected to periodic monitoring and assessment by the 
Department of Environment (DOE), Malaysia. DOE cur-
rently provides a total of 43 stations in the catchment of 
Johor River. The water quality at these stations is moni-
tored five to six times a year depending on the stations. 
The stations are usually situated downstream of known 
point pollution sources to monitor the river quality. 
Other stations are located to provide baseline or ambient 

Fig. 1 Johor River Basin consists of all the land use and point source of pollution
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water quality data. The locations of DOE monitoring sta-
tions in Johor River basin are within the three segments 
as shown in Fig. 2.

The monitoring system comprises both automatic 
monitoring stations as well as the manual mode of moni-
toring. The automatic stations are located upstream of 
water intake points and provides water quality data with 
respect to pH, DO, temperature, conductivity (& salin-
ity), turbidity and ammoniacal nitrogen. Threshold values 
are established that act as a trigger to activate appropri-
ate actions when breached. In the manual component 
of the program, sampling activities and in  situ meas-
urements are undertaken at the designated sampling 
stations on a pre-determined monitoring frequency. 
Reports are submitted monthly while a summary yearly 
report is presented to the DOE within the first quarter 
of the following year to be incorporated into the DOE’s 
Annual Environmental Quality Report. In addition, pol-
lution events observed during sampling activities and at 

the automatic stations are also reported. For this study, 
11 stations are categorized in the upstream segment, 22 
stations in the midstream segment and the rest 11 sta-
tions in the downstream segment. The selected stations 
of this category are based on the geographic location on 
the river stretch.

Water quality index
The usual approach of the water quality indices is to 
process the water quality data into a single numeri-
cal value that able to represent overall status of water 
quality with a score ranging from 0 to 100. Typically, 
WQI consists of four general processes: (1) selecting  
desired water quality parameters for analysis, (2) reading  
of water quality data and convert the concentration 
of each parameter into a single-value dimension-
less sub-index, (3) determining the weighting factor 
for each water quality parameter and (4) calculation 
of final single value of water quality index using the 

Fig. 2 The Department of Environment monitoring stations in Johor River basin
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calculated sub-indices with the weighting factors [4, 
31, 32]. The Malaysian Water Quality Index (MWQI) 
that was developed by DOE Malaysia is used to assess 
and classify the surface water quality, then categorized 
them based on the beneficial uses of water locally. The 
framework for WQI was developed according to the 
four-common process of WQI models as mentioned 
above. The first process of MWQI model to determine 
the water quality and its classification is the parameter 
selection. There are six typical physicochemical water 
quality parameters used; BOD, COD, DO, ammoniacal 
nitrogen  (NH3-N), SS and pH value [3]. Second process 
is the calculation of sub-index value for each selected 
parameter where specific best fitted equations were 
developed to transform the measured water quality 
value to a non-dimensional sub-index value [4, 33, 34]. 
The existing WQI equation developed by Department 
of Environment (DOE) is as shown in Eq. 1.

where SIDO = 0, for x ≤ 8; SIDO = 100, for x ≥ 92 and SID
O = − 0.395 + 0.030x2 − 0.00020x3, for 8 < x < 92.

SIBOD = 100.4 − 4.23x, for x ≤ 5 and SIBOD = 108e 
−0.055x − 0.1x, for x > 5.

SICOD = − 1.33x + 99.1; for x ≤ 20 and SICOD = 103e 
−0.0157x − 0.04x, for x > 20.

SIAN = 100.5 − 105x for x ≤ 0.3; SIAN = 94e−0.573x  
− 5|x − 2|, for 0.3 < x < 4 and SIAN = 0, for x ≥ 4.

SISS = 97.5e − 0.00676x + 0.05x, for x ≤ 100; SISS = 71e 
−0.0061x − 0.015x, for 100 < x < 1000 and SISS = 0, for 
x ≥ 1000.

SIPH = 17.2 − 17.2x + 5.02 × 2, for x < 5.5; SIPH = − 242  
+ 95.5x − 6.67 × 2, for 5.5 ≤ x < 7; SIPH = − 181 + 82.4x − 
6.05 × 2, for 7 ≤ x < 8.75 and SIPH = 536 − 77.0x + 2.76x2, 
for x ≥ 8.75.

The third process is to identify parameters weighting 
factor where each parameter is assigned to have differ-
ent weight value as per expert panel opinions. Accord-
ing to the WQI Eq. (Eq. 1), the sum of weight values in 
six parameters is equal to 1. Among six parameters, the 
weighting factor for DO and BOD are the highest with 
value of 0.22 and 0.19, respectively. There is also same 
weight value (0.16) was used for COD and SS, while 
0.15 was assigned for  NH3–N and the lowest value was 
determined for pH with value 0.12. The final process is 
for WQI evaluation where DOE has classified the index 
into 5 classes and categorized them to three categories 
to evaluate the surface water quality as shown in Eq. 2. 
Different class will serve in different purpose as stated 
in the National Water Quality Standards of Malaysia

(1)WQI = (0.22 ∗ SlDO)+ (0.19 ∗ SIBOD)+ (0.16 ∗ SICOD)+ (0.15 ∗ SIAN)+ (0.16 ∗ SISS)+ (0.12 ∗ SIpH)

In this research, at first the numerical method is used 
to calculate the WQI and identify the classes for validat-
ing the prediction results. It is obvious that WQI calcula-
tion methods are quite lengthy and required more cost to 
get results from sampling, then only can be calculated for 
WQI. This research collected the DOE data from the year 
2008 until 2018 and the data distribution based on three 
major streams and the class of water are shown in Fig. 3.

The research collected other parameters too and 
the analysis is shown in Fig.  4. Some parameters are 

(2)

Class = f (WQI) =



























I, WQI > 92.7

II, 92.7 ≥ WQI > 76.5

III, 76.5 ≥ WQI > 51.9

IV, 51.9 ≥ WQI > 31.0

V, WQI ≤ 31.0

distributed while others are too insignificant to show any 
pattern.

Machine learning models
Gradient Boosting Regression (GB)
Gradient Boosting Regression (GB) belongs to the cat-
egory of supervised machine learning (ML) regression 
tree models using the concept of ensemble learning. As 
a regression model, the goal of GB is to build a func-
tion that guaranteed a robust link between an ensemble 
of inputs and one output variables. By developing an 
ensemble of weak learners at successive steps, a weighted 
strategy for all generated weak learners is adopted for 
providing a final strong model. The combination of weak 
learner can achieve better generalization and good pre-
dictive accuracies. From a mathematical point of view, 
the GBR can be formulated as follows [35, 36]:

where n corresponds to the number of iterations, σn 
the parameters of the regression tree model, δn(x, σn) is 
the regression tree function, and ϑn(x) is the regression 
model. The model parameters are estimated by reducing 
a loss function (Fig. 5).

Random Forest Regression (RF)
Random forest regression (RF) is a machine-learning 
model that uses several trees to train a regression model. 
The RF is a bagging method and it is defined as an 

(3)ϑn(x) = ϑn−1(x)+ δn(x, σn)
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ensemble of classification and regression tree (CART). 
The RF model can be developed by generating a large 
number of trees using a bootstrap strategy. Each single 
tree, that is a weak learner, is trained using a subset of 
predictors and the final model is provided by a voting 
strategy. During the training process, the out-of-bag 

is used during the fitting of the trees for performing 
a cross-validation strategy [37]. For developing a RF 
model, we need to determine three user-defined param-
eters, which are: (i) the number of variables used at each 
tree, (ii) the number of trees in the forest, and (iii) the 
minimum number of terminal nodes [37] (Fig. 6).

Fig. 3 Distribution of WQI parameters among the three streams and sub classes
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Fig. 4 Pollution materials (Cl, Cr, K and Ca) in Johor River basin, based on three streams and sub classes

1( ) 2( ) 3( ) ( )

Fig. 5 Architecture of the Gradient Boosting Regression (GB)
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Models development
The prediction of WQI will largely depend on the 
water quality parameters. In this research the corre-
lation among the parameters is identified then ML-
based feature importance method is applied. After 
identifying the most predictive variables, two ensem-
bled ML approach was developed to predict the WQI. 
We have implemented GB and RF methods consider-
ing the scores of feature importance. These algorithms, 
particularly tree-based regression techniques, were 
selected due to their ability to handle data with diverse 
measurement scales. Moreover, they are robust against 
missing values and outliers while simplifying predic-
tions for individual cases and intricate relationships 
between variables [38]. Given the dataset’s varying 
dimensions, we opted for the RF and GB methods. To 
assess model accuracy, we performed a random split of 
the dataset for both model training and testing. Addi-
tionally, we fine-tuned the machine learning models’ 
hyperparameters using the ‘Randomized Search CV’ 
method based on cross-validation (CV) scores. Four 
hyperparameters such as “n_estimators”, “min_sam-
ples_split”, “min_samples_leaf ” and “max_depth” of RF 
and GB algorithms have been optimized as maximum 
depth to 10 to prevent overfitting of the data [39]. Our 
implementation of machine learning was carried out 
using Python’s scikit-learn tools and the prediction 
accuracy is measured using coefficient of regression 
i.e., R2 values. Also, the water class can be calculated 
from the WQI and the results of ML-based prediction 
and the observed data using Eq. 4.

(4)Accuracy =

∑

∣

∣(Obs− Pred)
∣

∣

D
× 100

where D is the Total number of test data, Obs is the 
Observed water class and Pred is the Water class based 
on Predicted WQI.

Results and discussion
The WQI is calculated using all the parameters and the 
dataset is prepared to validate the ML-based prediction 
results. Figure  7 shows the WQI distribution among all 
the streams and sub classes. After completed the prelimi-
nary analysis, we recommend focusing on the examina-
tion of 13 selected parameters in a temporal context. For 
this analysis, we’ve identified seven water quality stations 
within the Johor River basin. These stations include one 
station upstream, two stations in the middle stream and 
four stations at downstream part of the basin. The dis-
tribution plot of those selected 13 parameters is shown 
in Fig. 8. The concentration of each parameter was com-
pared with Class II permissible value which adopted from 
NWQS.

According to Fig. 8, the DO parameter at the upstream 
station falls below the Class II value, but it exhibits an 
increasing trend over time. The midstream part, DO 
is better than upstream and above than 5  mg/L fol-
lowed the Class II while in the downstream part, DO is 
mostly lower and does not exceed 5 mg/L as it is possi-
ble since the area is populated by industrial activity and 
possible to contribute to the pollution. Parameters BOD 
and COD recorded at the upstream part, are exceeding 
Class II and they improve by time (correlate with DO val-
ues). Midstream part shows both parameters are better 
than upstream but they still exceed 3 mg/L for BOD and 
25 mg/L for COD which a bit higher than Class II. High 
BOD value is mainly contributed by human activities 
at the surrounding areas. However, in the downstream 

Dataset (X)

Tree-1 Tree-2 Tree-3

Majority Voting  

Fig. 6 Architecture of the random forest regression (RF)
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section, the levels of these parameters are generally 
higher and often exceed the Class II values for both BOD 
and COD with one exception being a station at one of 
the Johor River tributaries; Tiram River, that is quite low 
compared to other downstream station. This is also due 
to the low dense industrial activity at that area.

Suspended Solid (SS), Dissolved Solid (DS) and Total 
Solid (TS) are also crucial parameters to be considered in 
Johor River Basin due to their non-compliance to Class 
II. The temporal analysis reveals that the SS values con-
sistently surpass the Class II limit of 50 mg/L, but there 
is an improvement in these values over time, particularly 
at the upstream station. This explanation finds roots in 
the distribution of mining industries in the area where 
more than five sand-mining industries were operating 
in the river basin during the study period. Other area at 
the upstream is experiencing current agricultural activity 
mainly in palm oil plantation. In the midstream section, 
SS values are somewhat better than those at the upstream 
part, although they still occasionally exceed Class II 
standards. The recorded levels of SS are being related 
to human activities and sedimentation at the surround-
ing areas. On top of that, downstream also recorded low 
value of SS below than Class II. Only on certain period, 
the value spike up exceeds Class II and suspected due to 
local seasonal changes. Meanwhile, at the downstream 
part, the value is high and more than Class II. Total 
solid can come from suspended solid and dissolved solid 
which can be contributed from any discharges either 
sewage treatment plants, industrial plant, or extensive 
crop irrigation.

The temporal analysis for pH shows similar trend for 
upstream and midstream part of Johor River Basin where 
its value is within the Class II. Same to downstream part 
in which mostly the value is within Class II value except 
for the fluctuated value at one of the Johor River tributar-
ies i.e., Perembi River. The  NH3-N and  PO4 parameters 
present that the upstream value is above Class II and 
improve by times. These values exhibit a correlation with 
the dissolved oxygen (DO) readings and are influenced 
by changes in land use. They can result from various fac-
tors, including sedimentation due to site clearing or agri-
cultural activities in the surrounding areas.  NH3-N and 
 PO4 are usually can be found in fertilizer, detergent, and 
pesticide. However, the midstream part recorded better 
reading than upstream even the reading spike up at cer-
tain time, but still exceed Class II (0.3 mg/L for  NH3–N). 
In contrast, in the downstream portion, both  NH3–N and 
 PO4 consistently exhibit high readings and frequently 
surpass the Class II standards.

Other parameters to be considered are E-Coli and 
Total Coliform. Both parameters recorded at the 
upstream and midstream part have values that exceeded 
the Class II. However, the value for the upstream part is 
improved by time. The downstream part shows certain 
station detected to have high E-Coli and Total Coli-
form as this part is monopolized by industrial activity. 
Both parameters are usually contributed by human and 
animal feces. In this case, Total Coliform is more cru-
cial compared to E-Coli as it is not only can be found 
in feces but also from other sources. According to Envi-
ronmental Protection Agency in United States, generally 

Fig. 7 The numerical WQI distribution among different class and streams
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Fig. 8 Temporal analysis distribution
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Coliform are bacteria that are not harmful and naturally 
present in environment where it also function as indica-
tor to detect the presence of fecal bacteria like E-Coli 
[40]. Magnesium (Mg) and Iron (Fe) also being plot for 
the temporal analysis. The Mg recorded that, from the 
upstream to have high value of Mg downstream mostly 
and the highest is recorded at the downstream. Usu-
ally, Mg is either contained in sediment, location is 
near to seawater, ores and mining or limestone area. In 
terms of Fe, the upstream value presents high value in 
certain times and slightly above Class II value. It is pos-
sible that it is affected by plantations activities and cer-
tainly it comes from sediment. It is common that Fe is 

found in minerals and some industrial activities. How-
ever, in the midstream and downstream parts the value 
slightly exceeds Class II and it is also recorded that the 
value spikes up at the certain times. In this research, 28 
parameters of water quality data are being collected and 
the Pierson correlation heatmap among those param-
eters are shown in Fig. 9. As mentioned in previous sec-
tion explaining the WQI equation, there are only six 
parameters involved in the numerical calculations. How-
ever, the main objective of this article is to reduce those 
six parameters to 4 and predict the WQI. Those four 
parameters are chosen from the 28 parameters that are 
used as experimental.

Fig. 9 Heatmap of Pierson correlation of Johor River basin WQ parameters
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This research assessed the impact of water quality 
parameters using the Index of Pearson Correlation (PCI), 
which quantifies the strength of the relationship based 
on coefficient values (0.9–1; very high, 0.7–0.89; high, 
0.5–0.69; moderate, 0.26–0.49; weak, 0–0.25; very weak). 
In the PCI matrix, negative values indicate an inverse 
relationship between parameters. When one parameter 
decreases, another tends to increase. For instance, in 
Fig. 7, we observe a moderate positive correlation among 
most parameters. Whereas a strong positive correlation 
value found among DO and DO% with WQI and nega-
tive correlation values were found for BOD, COD and 
AN with WQI. This negative correlation implies that if 
these parameters increase then the WQI could decrease 
of that state. Given the absence of significant correlations 
among most parameters, we turn to feature importance 
analysis for further investigation. Identifying important 
parameters from the correlation table can be challenging. 
Therefore, we incorporated feature importance analysis 
to enhance the efficiency and effectiveness of predictive 
models, particularly for generating the WQI in the Johor 
River basin, Malaysia. Figure  10 presents the feature 

importance graph of water quality parameters considered 
in our study.

This ML-based feature importance model assigns an 
importance score to each variable, with a higher score 
indicating greater importance [40]. Notably, DO/DO% 
emerges as the variable with the highest predictive power 
for WQI. Consequently, the ML model includes DO% as 
a major factor in predicting WQI within the study area. 
The chart presented in Fig. 8 explained one of the prac-
tices before applying machine learning model into any 
dataset called Feature Importance Score (FIS). This is 
the usual practices to determine how impactful of each 
independent variable to the dependent variable. The 
score is in the range between 0 and 1. The FIS was cal-
culated using random forest algorithm where this model 
build up a decision trees. The feature importance is com-
puted based on the following two principles called Gini 
Impurity and Average Decrease in Impurity. The Gini 
Impurity is a measure of how often a randomly chosen 
element would be incorrectly classified. It is used as a cri-
terion to split the data in decision trees. For each tree in 
the Random Forest, the Gini Impurity is calculated for 

Fig. 10 Feature importance scores of Johor River basin WQ parameters
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each split point based on each feature. The feature that 
leads to the greatest reduction in Gini Impurity is chosen 
as the splitting feature for that node. Followed by next 
principle which is Average Decrease in Impurity. Once 
the Random Forest is trained, the feature importance is 
calculated by aggregating the impurity decrease over all 
trees. For each feature, the total decrease in Gini Impu-
rity across all trees is averaged. Features that result in a 
higher average decrease in impurity are considered more 
important because they contribute more to the overall 
performance of the Random Forest.

Furthermore, from Fig. 10 it is evident that, although 
AN has a moderate correlation value but in feature 
importance the predictive power became too low. Also, 
few parameters which are used in numerical WQI cal-
culation such as SS and pH have low predictive power 
as the feature importance score is too low. It is found 
that, only the DO%, BOD and COD have moderate 
predictive power. Thus, the ML model will predict the 
WQI based on these three parameters only. After iden-
tifying the most important parameters the dataset is 
being split into training and validation for implement-
ing the ML model. Two ensembled machine learning 
models, GB and RF are employed to predict the WQI 
for Johor River basin of Malaysia. Total 1637 data 
points are used in this research, among those data 
328 data points i.e., 20% is used for validating the ML 
model and the rest used for training the ML model. 
The samples are divided randomly for training and 

validation. After train those 2 optimized ensembled ML 
models, the predicted WQI values are compared with 
the observed (numerically calculated) WQI in Johor 
River basin. The comparison graph is shown in Fig. 11. 
The blue lines indicated the observed values whereas 
the red lines are the GB-based predicted values and the 
green line is RF-based predicted values.

Figure  11 clearly shows that the ML model predic-
tions are very close to the numerical WQI calculations. 
Although in numerical method six parameters are 
required but in ML-based prediction, we are using only 
three parameters. Thus, we can say that the ML-based 
prediction surely reduces the cost of analysis as well as 
the WQI calculation. Moreover, after analyzing the test-
ing dataset the water class is generated and the summa-
rized results are shown in Table 1. The R2 values obtained 
in predicting the WQI are 0.86 and 0.85 for RF and GB 
models, respectively. According to the table we also 
observed that the ensembled results have more than 95% 
accuracy in predicting the water class, which is very sig-
nificant based on our previous temporal analysis. In this 
research, we are not only predicting the WQI using ML 
model but also determining the most important param-
eter in the river using temporal analysis. The ML results 
sometimes depended on the study area and may show 
different accuracies in different zones. Therefore, tem-
poral analysis is done to determine the continuity of ML 
analysis which identifies the most significant parameter 
in the river based on three different zones (upstream, 

Fig. 11 Comparison between ML-based WQI prediction results

Table 1 Comparison of ML models

No of test data No of true prediction No of false prediction Accuracy (%) in water class R2 value in WQI 
prediction

RF GB RF GB RF GB RF GB

328 278 282 50 46 95.73 96.35 0.86 0.85
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middle stream and downstream) that need to be tackle by 
manually observed.

Further comparison between the models using graphi-
cal representation is done using scatterplot as shown in 
Fig. 12. While the RF seems to be slightly more accurate 
compared to the GB, the two ML models were character-
ized by less scattered data and high fitting capabilities. 
Finally, based on the Boxplot and Violin plot reported in 
Fig. 13, it is clear that the two machine learning models 
were able to correctly predict the WQI with slightly supe-
riority in favor to the RF model especially in correctly 
handling the outliers.

As previously discussed, generating the Water Qual-
ity Index (WQI) necessitates both in-situ and labora-
tory analyses, which yield results for each parameter as 
required by the WQI formula. This process entails sig-
nificant costs, particularly when frequent monitoring and 

analysis are necessary to generate time series data. From 
an economic standpoint, this study proposes alternative 
methods aimed at reducing the number of parameters 
analyzed while still accurately obtaining the WQI using 
three predicted parameters derived from machine learn-
ing analysis. Over the long term, acquiring more data 
enables further analysis of water quality, facilitating the 
determination of WQI at specific locations.

Conclusions
Water, being an indispensable resource for survival, 
relies on the WQI to assess its quality. Tradition-
ally, evaluating water quality has required researchers 
to engage in costly and intricate laboratory analyses. 
However, this research ventured into an alternative 
approach, harnessing machine learning to forecast 
water quality using just three readily available water 

Fig. 12 Scatterplot of numerical WQI versus ML prediction

Fig. 13 Boxplot and violin plot comparison of numerical WQI and ML prediction
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quality parameters. The dataset for this study was 
sourced from DID Malaysia and comprised 1637 sam-
ples collected from 44 distinct water quality stations 
located within the Johor River basin in Malaysia. This 
research first analyzes all the parameters data avail-
able for the river to acquire the overall picture of water 
quality condition in the river basin. From temporal 
analysis, Mg, E-Coli, SS, and DS are identified as the 
critical parameters in this river basin that possibly 
degrade the water quality. ML-based feature impor-
tance method was applied to identify the parameters 
with the most predictive powers. Finally, two ensem-
bled ML approaches were developed to predict the 
WQI in the study area and achieved a R2 of 0.86 was 
achieved for RF-based regression and 0.85 for GB-
based ML technique in validation dataset (328 sam-
ples). The ensembled GB approach outperformed and 
achieved to identify water class with more than 96% 
accuracy as well. Therefore, this research proves that 
using only BOD, COD and DO% the WQI can be accu-
rately predicted and almost 96 times out of 100 sample, 
the water class can be predicted using GB ensembled 
ML algorithm. In the future, researchers or decision-
makers may choose to include this research as one of 
the methods to consider in their analyses. These find-
ings could offer benefits in terms of economic reliability 
and time savings.
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