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Abstract 

Background The gaps between estrogenic effect and its effect-active compounds exist frequently due to a large 
number of compounds that have been reported to induce this effect and the occurrence of pollutants in environ-
ments as mixtures. Therefore, identifying the estrogen-active compounds is of importance for environmental man-
agement and pollution treatment. In the current study, the effect-directed analysis (EDA) and non-targeted screening 
(NTS) were integrated to identify the estrogen-active compounds in soils of the rural area with different socioeco-
nomic types (industrial, farming and plantation village) in Northeast China.

Results The cytotoxicity results indicated that the industrial and farming villages showed cytotoxic effects. The 
detection rates of estrogenic effects for samples of winter and summer were 100% and 87%, respectively. Of which, 
the effects were found to be stronger in summer than in winter, with significant difference observed from the farming 
village (0.1–11.3 EEQ μg/kg dry weight). A total of 159 chemicals were detected by NTS. By integrating EDA, triphenyl 
phosphate (TPhP) and indole were successfully identified from a raw sample and its fraction, explaining up to 19.31% 
of the estrogen activity.

Conclusions The present study demonstrates that the successful identification of seven estrogen-active compounds 
in rural areas of northeastern China can be achieved through the combination of effect-directed analysis (EDA) 
and non-targeted screening (NTS). This finding is beneficial for risk monitoring and pollution management.
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Background
Estrogens are biologically active hormones that are 
derived from cholesterol and released by the adrenal 
cortex, testes, ovary and placenta in humans and 
animals [1]. Natural estrogens including estrone (E1), 
17β-estradiol (E2), estriol (E3), and 17α-estradiol 
(17α) [2], are mainly derived from human and 
livestock excretion [3]. Many synthetic chemicals have 
estrogen-like effects (e.g., diethylstilbestrol (DES), 
β-hexachlorocyclohexane (β-HCH), polychlorinated 
biphenyls (PCBs), 4-nonylphenol (NP), isoflavones and 
lignans), which can interfere with the normal synthesis, 
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secretion, transport and metabolism of natural estrogens 
in living organisms. In this study, natural estrogens 
and synthetic chemicals with estrogen-like effects are 
collectively referred to as “estrogen-active compounds”. 
Estrogen-active compounds have high estrogenic activity, 
thus affecting the normal physiological functions of living 
organisms or humans, even at nanomolar concentrations 
[4, 5].

Identification of the accurate estrogen-active 
compounds is a prerequisite for effective control. To 
date, many methods have been developed for detecting 
the estrogens, including targeted and non-targeted 
detections. Both of which employ chromatographic 
techniques coupled with mass spectrometry, such as 
liquid chromatography and mass spectrometry (LC–MS) 
[6–8] and gas chromatography and mass spectrometry 
(GC–MS) [9–11]. Targeted detection can identify 
specific estrogens with high sensitivity. In turn, non-
target screening (NTS) is developed, for detecting both 
known and unknown compounds in samples that rely 
on mass spectrometry data acquired from the sample, 
without references [12]. However, only targeted detection 
or NTS cannot identify sufficiently which substances 
contributed the major proportion for the estrogenic 
effects in environment. Hence, bioanalytical tests, 
including both in  vitro and in  vivo assays, are used for 
compensating this limitation and are more accurately 
represent the integrated biological effects of estrogen 
[13], of which, yeast estrogen assay (YES) is widely used 
[14]. The integration of chemical and biological analyses 
has demonstrated promising applications in the detection 
of estrogen [15–17].

Environmental samples are complex mixtures that 
encompass a variety of compounds. Neglecting mixture 
effects can lead to an underestimation of chemical 
risks, as mixtures in complex environments often 
contain estrogen-active compounds. Therefore, the risks 
associated with mixtures should not be overlooked during 
detection. The quantity and composition of contaminants 
change over time, and certain compounds may display 
toxicity even below their individual effect thresholds or 
analytical detection limits [18]. For, example, Carina 
et  al. discovered significant temporal variations in the 
distribution of E2 in the northern South China Sea [19], 
and E2 was also found to undergo transformation into 
E1 in soil [20]. Effect-directed analysis (EDA) serves 
to identify risk factors within intricate mixtures and 
to separate bioactive chemicals that might otherwise 
be concealed by matrix effects [21]. EDA is an effective 
method for analyzing complex environmental samples 
that combines biological testing and chemical analysis 
[22, 23]. Simplifying the sample complexity and 
narrowing down the array of potentially toxic substances 

is a fundamental principle of EDA, essential for the 
successful identification of harmful substances [24]. The 
objective can be accomplished through the application 
of fractionation. After biological testing, fractionation 
can be employed to reduce the complexity of the sample 
by isolating the portion with significant effects [21]. If 
necessary, multiple fractionation steps can be performed 
until the separated fractions are identified through 
targeted and non-targeted chemical analyses [23]. 
Estrogenic compounds, assessed based on their effects, 
can be more accurately reflected for their environmental 
impact through the application of EDA. The concurrent 
application of EDA and NTS overcomes the constraints 
associated with solely conducting NTS, because it fills 
the information gap regarding the potential toxicity 
of compounds in environmental samples [25]. The 
successful application of a combination of EDA and 
NTS has been demonstrated in the identification of toxic 
chemicals in dust, wastewater, sewage sludge, and other 
environmental samples [26–28].

In the rural regions of northeastern China, a multitude 
of traditional small-scale farms operate without adequate 
regulations and disposal practices. Consequently, 
wastewater and manure from livestock farming are 
released and accumulate haphazardly in fields or near 
these farms. The existence of estrogenic compounds in 
these discharges poses substantial risks to both the local 
environment and the health of residents. The objective of 
this study was to employ the EDA for the identification 
of estrogen-active compounds in soil. For this purpose, 
soil samples were collected from farming, industrial, 
and plantation villages in Northeast China based on 
the local socioeconomic types. The farming village is 
the primary area for livestock and poultry farming, the 
planting village is the main region for crop cultivation, 
and the industrial village is the primary area for mineral 
extraction activities. Soil estrogenic activity were 
evaluated via YES, and were compared between summer 
and winter for the three village types. The study is helpful 
to improve the environmental monitoring and pollution 
treatment by estrogenic contamination risk.

Materials and methods
Chemicals
E2 (98% of purity) and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl-2H-tetrazolium bromide (MTT, 98% 
of purity) were purchased from Aladdin (Shanghai, 
China). Dimethyl sulfoxide (DMSO, purity > 99.5%) 
purchased from Sigma-Aldrich. H4IIE rat hepatoma 
cells were kindly provided by the College of Environment 
& Resource Sciences of Zhejiang University. The 
recombinant yeast cells were provided by the Research 
Center for Eco-Environmental Science, Chinese Academy 
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of Sciences. All solvents used for sample processing and 
analyses (n-hexane, acetone, acetonitrile and methanol) 
were HPLC grade.

Study area and field sampling
Field sampling was conducted in Anshan City, Liaon-
ing Province of China during August 2020 (summer) 
and January 2021 (winter), respectively. The sampling 
sites are situated in Northeast China, in the middle lati-
tude zone, significantly influenced by seasonal freezing 
and thawing processes. The area falls within the temper-
ate continental monsoon climate zone, characterized by 
well-developed agriculture, animal husbandry, and abun-
dant mineral resources. Activities such as village life, live-
stock farming, crop cultivation, and mining have resulted 
in severe organic pollution in the rural areas and towns. 
The sampling sites were located in Fengyuan village (FY, 
Pianling town), Goumen village (GM, Chaoyang town) 
and Daling village (DL, Chaoyang town) (Fig.  1), which 
can be classed as industrial, farming and plantation vil-
lage based on the production and lifestyle characteristics. 
All sampling sites were located in cultivated areas near 
residential areas. A total of 22 soil samples were collected 
in aluminum foil bags (26 × 36 cm), transported to the 

laboratory under cold conditions (4 °C), and then stored 
in a refrigerator (− 80 ℃) for use  (see Table 1).

Sample extraction
Soil samples were pre-treated according to the method 
described by Cha [29], with slight modifications. All 
samples were freeze-dried, homogenized and ground 
to pass through a 60 mesh (250  μm) sieve. Twenty 
grams of freeze-dried soils were extracted for 18 h with 
hexane: acetone (1:1, v/v) solvent mixture using a Soxhlet 
extractor (JPSXT-06, Shanghai, China). Afterwards, 
extracts were rotary-evaporated closely to dryness and 
re-dissolved in 1 mL of methanol.

Quality assurance (QA) and quality control (QC)
To avoid introducing plastic contamination during the 
experimental process, plastic products are not used in 
sampling, sample preparation, and sample analysis. All 
glassware and instruments used throughout the experi-
ment are washed three times with ethanol and Milli-Q 
water, then dried at 105  °C for 24  h. During the instru-
ment analysis process, blank samples are prepared using 
deionized water and acetonitrile following the sam-
ple procedure to assess potential instrument residual 

Fig. 1 The location of the study area and sampling sites
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contamination, and blanks are subtracted in subsequent 
analyses.

Cytotoxicity assay
Micro-level cytotoxicity studies focus on the direct 
impact of compounds or factors on individual cells, 
whereas the macro-level distribution of estrogen involves 
widespread effects within the organism. Estrogens 
exert their actions by binding to specific receptors, 
the estrogen receptors (ERs), which in turn activate 
transcriptional processes and/or signaling events that 
result in the control of gene expression [30]. Micro-
level cytotoxicity studies can reveal the direct effects of 
estrogen on individual cells.

In order to avoid cytotoxic effects in the estrogenic 
effects test, the MTT assay was carried out with H4IIE 
rat hepatoma cells according to the method described 
by Shao et al. [31], with slight modifications. Cells were 
cultured at 37  °C with 5%  CO2, and 95% humidity in 
Dulbecco’s modified Eagle’s medium (DEME, BI) supple-
mented with 10% fetal bovine serum (FBS, Gibco) and 1% 
penicillin–streptomycin solution (PS, BI). The maximum 
concentration of the sample extract is 20  mg/mL, suc-
cessively halved to 7.81E−02 mg/mL. Before exposure, a 
volume of 100 μL/well of the cell suspension at a density 
of 2 ×  104 cells/mL was seeded in 96-well plates for 24 h 

at 37  °C. After 24  h incubation, the cells were exposed 
to a 1:2 dilution series of each sample in triplicate [32]. 
After 48 h exposure, 100 μL of MTT (0.5 mg/mL) solu-
tion was added to each well and incubated for 30  min. 
Then the MTT media was exchanged with 200  μL/well 
DMSO. Cell viability estimation was performed with the 
absorbance at 492 nm using a microplate reader (Synergy 
LX, BioTek, USA), which was expressed as the relative 
survival of exposed cells compared to untreated control 
cells, and results were given as percentage of control.

Estrogenicity evaluation
The two-hybrid yeast screen systems were used to assess 
the estrogen receptor-mediated endocrine disruptive 
effects of environmental materials, and the estrogen 
agonist activities of the samples were determined by 
measuring-galactosidase activity [33]. The yeast assay 
was conducted as described by Ma [34], with slight 
modifications. Briefly, yeast was incubated overnight 
at 30 °C until the logarithmic growth phase, the final 
culture was adjusted to an optical density  (OD600) of 0.75, 
and then exposed to a 1:2 dilution series of samples in 
96-well plates for 4 h. The highest concentration of the 
tested samples was defined based on the MTT assay. A 
dilution series of E2 (4, 8, 20, 40, 80, 200, 400, 800, 2000 
pM) and a DMSO solvent control were included in each 

Table 1 Sampling sites and descriptive information

Sample code Sampling date Longitude Latitude Land use

GMS1 August 2020 123.567375 40.477047 Corn cropland

GMS2 August 2020 123.557890 40.460311 Vegetable arable land

GMS3 August 2020 123.569710 40.462388 Corn cropland

GMS4 August 2020 123.560631 40.457163 Corn cropland

GMS5 August 2020 123.550928 40.455371 Corn cropland

GMW1 January 2021 123.561803 40.475719 Riparian

GMW2 January 2021 123.551254 40.468572 Riparian

GMW3 January 2021 123.552300 40.458974 Riparian

GMW4 January 2021 123.564145 40.461070 Cultivated land

GMW5 January 2021 123.555048 40.455832 Cultivated land

FYS1 August 2020 123.154179 40.478143 Cultivated land

FYS2 August 2020 123.150755 40.486239 Arable land

FYS3 August 2020 123.159914 40.479745 Corn cropland

FYS4 August 2020 123.169742 40.489276 Corn cropland

FYS5 August 2020 123.168474 40.477697 Grassland

FYS6 August 2020 123.179189 40.458461 Corn cropland

FYW3 January 2021 123.154179 40.478143 Cultivated land

FYW6 January 2021 123.160951 40.467974 Cultivated land

DLS1 August 2020 123.709129 40.494304 Grassland

DLS2 August 2020 123.693161 40.479381 Cultivated land

DLS3 August 2020 123.678729 40.480573 Corn cropland

DLS4 August 2020 123.698699 40.481174 Grassland
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experiment. Cell density estimation was performed at 
600 nm and the exposure was terminated by addition of 
sodium carbonate  (Na2CO3). β-Galactosidase activities 
were determined by the absorbance at 420 nm, and 
calculated according to the following equations [35]:

where U is the β-galactosidase activity. t, V and D are 
enzyme reaction time, volume and diluting factor. OD600 
is the absorbance measured at 600 nm, OD420 and OD’420 
are absorbance at 420 nm for sample exposure group and 
negative control, respectively. Each sample was tested at 
nine 1:2 serial dilutions. All samples were analyzed with 
three replications, of which each with three internal 
replicates.

Fractionation
The samples were fractionated using an HPLC-
fractionation collector with an Agilent HC-C18 column 
(4.6 × 150 mm, 5 μm, Thermo Fisher Scientific, USA) and 
acetonitrile as the mobile phase. The column temperature 
was 35 °C, the injection volume was 100 μL, the flow rate 
was 500  μL/min, and the total fractionation duration 
was 18 min. Fractions were collected in a 24-well plate, 
separating by every 3 min. Fractions were transferred to a 
2 mL vial and blown dry with nitrogen. The fractionation 
process was done with twice for each sample, of which 
one fraction was fixed to 100  μL with DMSO for 
estrogenic activity assay, and the other one was fixed to 
100 μL with methanol for NTS.

Chemical analysis
Chemicals identification analysis was conducted on an 
UPLC-QExactive Plus orbitrap-HRMS (Thermo Fisher 
Scientific, USA) with an electrospray ionization (ESI) 
source. The liquid chromatograph column was a Hypersil 
Gold C18 (2.1 × 100 mm, 3.0 μm, Thermo Fisher Scientific, 
USA) with the column temperature of 40  °C during the 
measurement. The injection volume was 10  µL, and the 
binary mobile phases were water (A) and acetonitrile (B) 
and both containing 0.1% formic acid, the flow rate was 
400  μL/min. The gradient elution model was carried out 
according to the following conditions: 0–0.5 min (95% 
A phase, 5% B phase), 0.5–20 min (0% A phase, 100% B 
phase), 20–21 min (0% A phase, 100% B phase), 21–21.1 
min (95% A phase, 5% B phase), 21.1–25 min (95% A 
phase, 5% B phase). The electron spray voltage was 40 V, 
the electrospray flow rate was 50  L/h, the ion source 
temperature was 120  °C, the desolvent temperature 
was 350 °C, the scanning frequency was 5 Hz, and the 
excitation voltage was 10/30/50 V. NTS was performed 

U =

OD420 − OD
′

420

t × V × OD600

× D,

using Compound Discoverer 3.2 (Thermo Fisher Scientific, 
USA) software. These chemicals were screened in the 
mzCloud database using the following criteria: deviation 
of primary parent ion mass number less than 5 ×  10–6, 
deviation of retention time less than 0.2 min, and isotope 
matching threshold within 30%. Finally, the compounds 
were screened according to the requirements of peak 
area > 1 ×  105 and pairing fraction > 60.

The “Environmental w Stats Unknown ID w Online and 
Local Database Searches” analysis process in Compound 
Discoverer 3.2 software was used to screen for unknowns, 
with appropriate modifications (Additional file 1: Table S1). 
The core part of this workflow is to perform mzCloud and 
Mass Lists searches to detect unknown compounds. To 
reduce the interference of false positive results, the Mass 
Tolerance were set to 5 (ppm) and the S/N Threshold to 
3 at the Detected Compounds node. After performing 
the analytical workflow, the results were analyzed and 
identified with the identification criteria reference. The 
first step was to subtract the Sample/Blank ratio less than 
5, in order to reduce the number of false positive results 
and the workload of manual identification. The second step 
was to filter the mzCloud matches with scores less than 
60. Lists is a mass spectral information added to the local 
database by itself. After the previous steps, the secondary 
fragment matches need to be manually screened to remove 
compounds that only have parent ion fragment features 
that can be matched to the library.

Statistics analysis
Microsoft Excel™2019 and OriginPro 2023 (Origin Lab 
Corporation) were used for data sorting and mapping, 
respectively. Kruskal–Wallis ANOVA with Dunn’s test 
was used for multiple comparisons when the assumptions 
of homogeneity of variances and normal distribution were 
not met. The level of significance was set at p ≤ 0.05.

To determine the  EC20 and  EC50 of E2 and environmental 
samples in the YES assay, dose–response curves for 
concentration versus β-galactosidase activity were plotted 
and fitted using GraphPad Prism (version 8.0, USA). The 
cytotoxic effect was also curve-fitted using this software. 
The estrogenic equivalent (EEQ) was calculated using the 
following equation [36]:

where  EC20,sample is the concentration corresponding to 
the sample when the estrogenic activity is equal to the 
estrogenic activity at the  EC20 concentration of E2.

EEQbio =
EC20,ref

EC20,sample
,
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Results
Cytotoxicity
Cytotoxicity is a disturbance that can affect the 
assessment results of estrogenic activity [37]. As can be 
seen from Additional file 1: Fig. S1, the samples from the 
plantation village did not exhibit cytotoxicity to H4IIE 
cells, with cell survival rates amounted above 80%. In the 
industrial village, samples FYS1, FYS2, FYS4, and FYW3 
induced slightly cytotoxic effects, with cell survival rates 
of 74.79%, 78.92%, 77.62%, and 72.73%, respectively 
(Additional file 1: Fig. S2). Among the samples collected 
from the farming village, only GMS3 and GMW1 showed 
significantly cytotoxicity (Additional file  1: Fig. S3). The 
cell viability sharply decreased starting from an exposure 
concentration of 2.5  g/L and reaching below 50% at 
an exposure concentration of 20  g/L in GMW1. With 
GMS3, the cell viability slightly drop below 80% only at 
the highest exposure concentration (20  g/L). Overall, 
cytotoxic effects on H4IIE cells were detected at the 
highest exposure concentration, leading to cell survival 
rates of 77.05% and 33.87%, respectively.

Estrogenic activities
The estrogenic activity of soil extracts was assessed 
through the YES test employing two-hybrid yeast 
screen systems. The concentration of soil extract varied 
from 0.39 g/L to 100 g/L. Concentration–effect curves 
were generated, and the samples’ estradiol equivalents 
(EEQ) were computed based on the  EC20 of E2 [38]. As 
shown in Fig. 2, estrogenic activity was detected in all 
samples collected from the plantation village, with EEQ 
ranging from 0.21 to 2.24 μg/kg dry weight (Additional 
file  1: Table  S2). Sample DLS2 exhibited the highest 
estrogenic effect, while DLS3 demonstrated the lowest 
estrogenic effect, with the former’s EEQ being ten times 
more than that of the latter.

Concerning the industrial village, the mean EEQ val-
ues were 0.73 μg/kg d.w. in winter samples and 0.52 μg/
kg d.w. in summer samples, with no significant differ-
ence. FYS6 exhibited the strongest estrogenic effect, 
while FYW3 and FYW5 did not show significantly 
estrogenic effects (Fig. 3).

Fig. 2 Concentration–response curves in the YES assay for the soil in the plantation village (black closed circles), and the E2 standard (red closed 
circles). Concentration values on the x-axis refer to the actual exposure of the sample in the experiment. PC: positive control, DLS: Daling Summer
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Fig. 3 Concentration–response curves in the YES assay for the soil in the industrial village (black closed circles), and the E2 standard (red closed 
circles). Concentration values on the x-axis refer to the actual exposure of the sample in the experiment. PC: positive control, FYS: Fengyuan 
Summer, FYW: Fengyuan Winter
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Regarding the farming village samples, GMS1 demon-
strated the highest estrogenic activity (EEQ = 11.3  μg/
kg dry weight), followed by GMS2, which is closer to the 
farms. Conversely, samples of GMS3, GMS4, and GMS5 
showed mild estrogenic activity and were collected from 
the riverbank along this village (Fig.  4). The research 
findings of Song et al. indicate that the concentration of 
E1 in the soil near a farm in Shenyang, China, reached 
15.15  μg/kg d.w., which is similar to the results of this 
study [39].

The EEQ of the summer samples from the farming vil-
lage is significantly greater than those from the planta-
tion and industrial villages. The average EEQ between the 
industrial village and the plantation village did not show 
significant difference (Fig. 5).

After fractionating sample DLS4, six fractions (G1–G6) 
were obtained. Estrogenic effect testing revealed that G2 
exhibited estrogenic activity (EEQ of 0.28  μg/kg  d.w.), 
while the other fractions did not demonstrate estro-
genic effects in significant level. The ∑EEQ of the frac-
tions accounted for 19.31% of the original sample’s EEQ. 
Nakada et al. [40] found that estrogenic activity in Frac-
tion 3 of municipal sewage treatment plant (STP) sec-
ondary effluent accounted for 10% of the total EEQ of the 
original sample, which is comparable to the results of this 
study.

Non‑target screening
Hollender et  al. [41] defined the general workflow of 
non-targeted screening as: sampling, analysis, data pre-
processing, prioritization, identification. In this study, 
the Soxhlet extraction method was chosen for sample 
processing to extract compounds from the soil. Sam-
ple analysis employed UPLC-QExactive Plus Orbitrap-
HRMS, and data pre-processing utilized Thermo Fisher’s 
Compound Discover 3.2. Estrogen-active compounds 
were identified as the highest priority, and all identified 
estrogen-active compounds were classified based on 
Schymanski et al. [42].

Considering sample DLS4 (EEQ of  1.45  ng/g d.w.) is 
in the middle of the range, and its environment is more 
representative of a rural environment, DLS4 was selected 
as the sample for the NTS. To identify the pinpoint the 
estrogenic effects induced compounds, the sample of 
DLS4 was selected and NTA was employed for DLS4 and 
its six fractionations. A total of 159 chemicals in sample 
DLS4 were identified, with detailed information available 
in Additional file 1: Table S3. From Additional file 1: Fig. 
S4, it can be observed that each fraction was screened for 
13–45 organic chemicals, with the highest quantity found 
in G2, consistent with the estrogenic effect results. Out 
of these 159 chemicals, 7 estrogenic compounds, includ-
ing triphenyl phosphate (TPhP) [43], bis (2-ethylhexyl) 

phthalate (DEHP) [44], indole [45], daidzein [46], gen-
istein, naringenin and glycitein [47] were confirmed. 
The fractions detection indicated TPhP and indole were 
found in G2, DEHP in G4, and indole in G6. Conversely, 
no estrogenic active substances were identified in the 
remaining fractions (G1, G3, and G5).

Discussion
Potential risk of cytotoxicity
In the current study, GMW3 exhibited the strongest 
cytotoxicity, while GMW1, GMS1, and GMW2, which 
are closer to the poultry farm, did not show significant 
cytotoxic effects. The reason may be due to the pollutants 
transport along the river the longitudinal gradients. 
The GMW3 is relatively closer to the chicken farm and 
may be influenced by the wastewater and feces from the 
chicken farm [48]. Soil undergoes changes in physical, 
chemical, and biological properties during the freezing 
process, slowing down the migration and transformation 
of organic pollutants in the soil [49], leading to the 
accumulation of organic pollutants in the soil, consistent 
with the cytotoxicity results of this study.

Effects of soil environment on estrogenic activities
Chicken and duck manure contain a significant amount 
of natural and synthetic estrogenic compounds [50, 
51], leading to estrogen pollution in farms and the 
surrounding soil. Hence, the primary origin of estrogenic-
active compounds in GMS1 and GMS2 is predominantly 
livestock farming excreta. The predominant source of 
estrogens in livestock farming comprises excretions 
and blends of steroids derived from raw materials or 
veterinary medicine [52, 53].

The agricultural industry plays a crucial role in 
Liaoning province of China, encompassing the 
cultivation of various crops including soybeans, corn, and 
wheat, etc. The northeastern region of China experiences 
long and harsh winters [54], where low temperatures and 
insufficient rainfall during the winter limit the growth of 
crops. Therefore, this region engages in more frequent 
agricultural activities during the summer. Studies have 
indicated that certain pesticides may induce estrogenic 
activity [55, 56], and extensive pesticide use is involved 
in summer agricultural practices in this region [57]. 
Chemical pesticides and fertilizers used in agricultural 
activities may contain estrogen-active compounds. These 
compounds can enter water bodies, accumulate in crops, 
and ultimately enter the human body, posing risks to 
human health. Therefore, the estrogenic risks associated 
with pesticides and irrigation wastewater should not be 
overlooked.

The application of animal manure to agricultural land 
has been identified as a main source of estrogens in the 
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Fig. 4 Concentration–response curves in the YES assay for the soil in the farming village (black closed circles), and the E2 standard (red closed 
circles). Concentration values on the x-axis refer to the actual exposure of the sample in the experiment. PC: positive control, GMS: Goumen 
Summer, GMW: Goumen Winter
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environment [58]. In urban areas, livestock and poultry 
are typically raised on a large scale, and waste gener-
ated undergoes centralized management. In rural areas, 
however, most farming is done by individual house-
holds, and the waste is often disposed of openly or 
directly released into fields. While the former generates 
a larger quantity of waste, it generally causes minimal 
or no pollution to the environment after proper treat-
ment. The latter, on the other hand, can result in more 
significant pollution. Rural areas predominantly consist 
of open soil, leading to faster migration of estrogen-
active compounds between soil, surface water, and 
groundwater. In contrast, the presence of hardened 
roads in urban areas slows down the migration process.

Currently, numerous studies have confirmed 
that plasticizers exhibit estrogenic effects [59–61]. 
Microplastics can adsorb estrogenic compounds. 
The higher the crystallinity, the lower the adsorption 
capacity [62], thereby affecting the migration of 
estrogenic compounds in the environment. Agricultural 
cultivation involves the extensive use of plastic films. 
Without effective measures for disposal, aged plastics 
are more prone to adsorb estrogenic compounds, and 
accumulate in soil.

Studies have indicated that kaolin and 
montmorillonite have different adsorption capacities 
for E2 [63]. It has been reported that the wastewater 
discharged from mining areas contains nonylphenol, 
which is a chemical with estrogenic effects [64]. 
Mining activities can disrupt the original structure 
and distribution of ores, affecting the migration and 
transformation of estrogenic compounds in these areas. 
This may be a significant factor contributing to the 

substantial differences in estrogenic activity observed 
in the industrial village.

Freezing can provide a stable environment for soil and 
reduces the transportation of organic compounds, while 
creating a fluid environment in the thawed state and 
promoting the substances’ transportation [65], resulting 
in a greater concentration of estrogen in soil in summer 
than in winter. Soil freezing can cause soil expansion and 
the formation of ice lenses, resulting in soil cracking and 
an increase in the soil infiltration coefficient [66]. As a 
result, the decrease of estrogenic active contaminants in 
winter soils may be due to low hydrophobicity.

Identification of estrogenic active compounds
The detection of two estrogenic compounds (TPhP 
and indole) in fraction G2, coupled with the ability of 
this fraction to induce estrogenic effects, suggests that 
these two compounds may be the primary substances 
responsible for the estrogenic activity in this fraction. 
Many bacteria and plants produce substantial amounts of 
indole, and higher concentrations of indole are found in 
the excrement of animals such as dogs, pigs, and cattle 
[67]. It has been reported that derivatives of indole may 
also contribute to various human diseases, including 
bacterial infections, gastrointestinal inflammation, 
neurological disorders, diabetes, and cancer [68]. TPhP, 
as a flame retardant widely used in various everyday 
chemical products, is frequently detected in the 
environment [69, 70]. TPhP accumulates in human and 
animal bodies, inducing endocrine disruption. It has been 
reported to induce toxicity to the reproductive systems of 
wild fish populations at environmental concentrations, 
pose ecological risk [71]. Moreover, studies have found 
a significant correlation between the lipid content in the 
human body and high levels of TPhP [72]. The estrogenic 
pollution induced by TPhP and indole deserves attention.

Although estrogenic compounds were detected in both 
G4 and G6, the absence of estrogenic effects in these two 
fractions may be attributed to their low concentrations, 
which may not be sufficient to induce estrogenic effects. 
Some natural estrogenic compounds may have been 
overlooked during the pretreatment process (Soxhlet 
extraction), and we will strive to consider these aspects 
in the future to detect a wider range of estrogen-active 
compounds. We will conduct further research on these 
natural estrogenic compounds in the future to explore 
their effects on the ecological environment and human 
health.

In the future, we will investigate other identified com-
pounds to determine if they exhibit estrogenic effects 
and explore the mechanistic reactions they have in 

Fig. 5 Box chart of estrogen equivalent (EEQ) comparison of samples 
from different villages in summer. FY: FengYuan village; GM: Goumen 
village; DL: Daling village. The different letters above the column 
indicate significant difference at the p < 0.05
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comparison to the seven already established estrogen-
active compounds.

Conclusions
In this study, the potential ecological risk in soil of the 
Northeast China was evaluated by cytotoxicity and 
estrogen effect, among different rural socioeconomic 
types and between summer and winter. The results 
indicated that the industrial and farming villages may 
be cytotoxic to H4IIE rat hepatoma cells, which the 
stronger cytotoxic effects were found in winter; whereas, 
the effects of estrogenic were found to be stronger in 
summer, with significantly difference observed from the 
farming village (0.1–11.3 EEQ μg/kg d.w.). The estrogenic 
active compounds were successfully identified by EDA, 
in which Indole and TPhP were identified from both raw 
sample and the fraction by NTS, with the explanation 
of estrogen activity accounting for 19.31% of the raw 
sample. Therefore, the current study is helpful for 
preparing measurements for estrogenic risk control.
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