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Abstract 

Potentially toxic elements (PTEs), including heavy metal exposures, have been associated with numerous nega-
tive pregnancy and birth outcomes. However, the association between PTE exposure and gestational diabetes 
mellitus (GDM) has not yet undergone a comprehensive systematic review. Consequently, this study undertook 
the first-ever systematic review and meta-analysis of observational studies concerning this association. All relevant 
articles published in English were searched in Scopus, PubMed, and Web of Science until November 6, 2023, adher-
ing to the MOOSE guidelines. The quality of retrieved studies was evaluated based on the Gascon et al. method. 
The meta-analysis of association estimates was performed using random effects meta-analysis. Egger’s regression 
was employed to evaluate publication bias. In total, 16 articles (n = 116,728 participants) were included in our review, 
with 11 eligible for meta-analysis. Quality assessment categorized five studies (31%) as excellent, nine studies (56%) 
as good, and two studies (13%) as fair. Maternal high levels of Hg during pregnancy were associated with an increased 
risk of GDM (for each one-quartile increase in Hg: 1.20, 95% CI 1.08, 1.31), while serum Cd levels during the second 
trimester were associated with a lower risk of GDM (for each one-quartile increase in Cd: 0.76, 95% CI 0.65, 0.87). 
Furthermore, exposure to Pb was not associated with higher risk of GDM. In summary, our comprehensive review 
and meta-analysis underscore the possible negative influence of Hg exposure on GDM.
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Introduction
Gestational diabetes mellitus (GDM) is a common preg-
nancy complication characterized by varying degrees of 
glucose intolerance that emerge or are identified for the 
first time during pregnancy [1, 2]. Over the past two dec-
ades, there has been a global increase in the prevalence 
of GDM, reaching 16.7% in 2021 [17], 2020). GDM has 
been linked to immediate maternal complications (such 
as preeclampsia and primary cesarean section) [16], as 
well as enduring effects (such as cardiovascular disease, 
chronic kidney disease, and cancer susceptibility) [60]. 
Furthermore, an emerging body of evidence suggests 
that GDM is associated with heightened risks of obesity 
and overweight [46], insulin resistance [33], and neuro-
cognitive development [76] in the offspring’s later life. 
Noteworthy risk factors for GDM include obesity, hypo-
thyroidism, advanced maternal age, and family history of 
diabetes [21, 74]. In addition, a growing body of research 
has indicated a potential link between exposure to poten-
tially toxic elements (PTEs) and elevated GDM risk [12, 
66, 69, 70]. These elements, including cadmium (Cd), 
arsenic (As), mercury (Hg), antimony (Sb), and lead (Pb), 
can be ingested through contaminated food and water, 
absorbed through the skin, or inhaled from polluted air 
[52]. It is hypothesized that PTE exposure may disrupt 
insulin secretion and increase insulin resistance by dam-
aging pancreatic β cells, resulting in heightened oxidative 
stress [8, 73]. Nevertheless, the existing body of litera-
ture presents contradictory results, as some studies indi-
cate a notable positive association between urinary and 
serum levels of As [42], Hg [27, 42], and Cd [31, 32] and 
GDM, while others report inconclusive associations [39, 
41, 59]. Moreover, recent research suggests that certain 
metals such as selenium (Se), zinc (Zn), and copper (Cu) 
may mitigate oxidative stress and regulate insulin secre-
tion [29, 40] potentially reducing the risk of type 2 diabe-
tes [14, 63] and GDM [79]. However, dissenting findings 
have been reported, especially regarding Zn [62, 75, 77]. 
Hence, to arrive at a comprehensive conclusion based on 
the available data, it is imperative to perform a system-
atic review and meta-analysis of the existing evidence. 
This research endeavors to undertake such an analysis 
of observational studies investigating the link between 
maternal PTEs exposure during pregnancy and gesta-
tional diabetes mellitus (GDM). In addition, this study 
incorporates an appraisal of the quality of the screened 
studies and an evaluation of publication bias.

Methods
Strategy for searching and procedures for selection
To conduct this comprehensive review, a systematic 
exploration was undertaken utilizing Web of Science, 
PubMed, and Scopus, following the guidelines outlined 

in the Meta-analysis Of Observational Studies in Epide-
miology (MOOSE) framework [64]. The search aimed 
to identify pertinent articles investigating the correla-
tion between potential toxic elements (PTEs) exposure 
during pregnancy and GDM. The search spanned until 
November 6, 2023. Our search strategy, elaborated in 
Table S1 of the Supplementary Materials, employed key 
terms related to PTEs and GDM, without temporal limi-
tations. Utilizing the "OR" operator, we combined various 
PTE-related keywords and GDM terms, while the "AND" 
operator was used to merge exposure and outcome con-
cepts within our search. To ensure comprehensiveness, 
the reference lists of retrieved papers were manually 
checked. The search process was carried out indepen-
dently by two review authors (MLN and RTH) and any 
discrepancies were resolved through discussion and con-
sensus between them.

Criteria for inclusion and exclusion and process of data 
retrieval
This review considered various types of observational 
study designs, including cohort, cross-sectional, and 
case–control studies, to explore the relationship between 
prenatal exposure to PTEs and the development of GDM. 
Our analysis encompassed a wide array of PTE types, 
including AS, Pb, Hg, Ni, Cr, and others, without impos-
ing any restrictions or filters. Maternal exposure routes 
to PTEs, such as occupational, dietary, and ambient 
exposure, were all considered, as were diverse methods of 
assessing PTE exposure in pregnant women. The primary 
study outcome focused on diagnosing GDM during preg-
nancy, irrespective of factors such as parity, gestational 
age, maternal age, and the method used to ascertain 
GDM. To ensure homogeneity, only English language 
papers were incorporated, while animal studies, reviews, 
and clinical trials were deliberately excluded from the 
review.

To extract vital general and methodological details 
from each study, a data extraction sheet (refer to Table 1) 
was employed. This sheet encompassed crucial infor-
mation such as the author’s name and publication year, 
study location, participant demographics, sample size, 
timing of GDM assessment during gestation, PTE expo-
sure and outcome definitions, PTE concentration, study 
design, and the measure of association. This measure of 
association encompassed various forms including cor-
relation coefficient (r), beta-coefficient (β), relative risk 
(RR), and odds ratio (OR), among others.

Quality assessment
We evaluated the quality of each article included in 
the review through an extensive 8-criterion check-
list (Additional file 1: Table S2) developed by [20] that 
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has been developed for and implemented in the pre-
vious systematic reviews of the available evidence on 
the human health effects of the environmental expo-
sures [19, 37, 38]. After adapting the checklist to align 
with the present study’s objectives, each criterion was 
assigned a point score ranging from 0 to 2, contribut-
ing to a cumulative score of 0 to 11. Subsequently, the 
total score for each study was converted into a percent-
age relative to the maximum potential score, enabling 
the categorization of study quality. Specifically, the 
percentage ranges were as follows: ≤ 20% denoted very 
poor quality, 21–40% represented poor quality, 41–60% 
indicated fair quality, 61–80% signified good quality, 
and ≥ 81% defined excellent quality [27, 29]. The assess-
ment of article quality was conducted independently by 
two authors, with any disparities resolved through con-
sensus between them.

Statistical analysis
The associations reported across various studies were 
harmonized into standardized units [43, 45, 48, 50, 
68]. We only combined the results of studies that were 
reported based on the same measure of association and 
exposure assessment (method of measurement, media 
of measurement and exposure metrics). We systemati-
cally gathered eligible studies that met our inclusion cri-
teria, extracting the relevant effect estimates along with 
their standard errors or confidence intervals and sample 
sizes. We thoroughly assessed heterogeneity among the 
selected studies using established statistical tests such as 
Cochran’s Q and the I2 statistic. We considered hetero-
geneity both in the choice of the statistical model and in 
the interpretation of the results. Based on the degree of 
heterogeneity, we employed appropriate statistical mod-
els. Effect sizes were estimated by the restricted maxi-
mum-likelihood approach with weighted random effects 
and are expressed as standardized odds ratio (ORs) with 
95% CIs. We also performed the sub-group analysis to 
determine the potential impacts of exposure timing dur-
ing pregnancy and sample type. Because of the limited 
number of studies included in each meta-analysis and 
the resulting limited statistical power of Cochran’s Q 
test, a cautious approach was taken, we utilized a ran-
dom-effect model, allowing for variation both within and 
between studies [4, 25]. To evaluate potential publication 
bias, Egger’s regression and Funnel plots were utilized 
[13]. In this study, statistical significance was defined 
as p < 0.05. The statistical analysis was carried out using 
Stata software version 16 (Stata Corp LP, 100 College Sta-
tion, Texas). The leave-one-out sensitivity analyses was 
conducted for each meta-analysis result to illustrate the 
robustness of the results.

Results
Characteristics of selected studies
We retrieved a total of 1579 articles in our initial search 
after omitting 374 duplicate ones. The screening title 
resulted in extracting 23 articles and among them, 18 
remained after completing screening abstracts (Fig.  1). 
During the full-text screening step, two articles were 
excluded after careful review due to lack of exposure 
and outcome of interest, leaving a total of 16 articles 
(n = 116,728 participants) included in our review. Among 
these, 11 articles were utilized for the meta-analyses [27, 
31, 32, 41, 54, 62, 66, 69, 70, 78].

In the final review and meta-analysis, the selected 16 
studies exhibited diverse characteristics. Among these, 
six studies (37.5%) employed a cross-sectional design 
[41, 53, 54, 62, 66, 70], five studies (31.3%) had a cohort 
design [31, 32, 69, 77, 78], and the remaining five stud-
ies (31.2%) utilized a case–control design [27, 42, 71, 72, 
79]. Geographically, the majority of the studies (n = 13) 
were conducted in Asia [27, 31, 32, 41, 42, 53, 66, 69–72, 
78, 79], with two studies taking place in the USA [54, 77], 
and just one study conducted in Europe [62].

The PTEs exposure was assessed through the sample of 
maternal blood (n = 10) [41, 42, 53, 62, 66, 70, 71, 77–79], 
maternal urine (n = 4) [31, 32, 54, 69], and maternal hair 
(n = 2) [27, 72].

In terms of GDM diagnosis, 10 studies (62.5%) uti-
lized 75-g OGTT based on the International Asso-
ciation of Diabetes and Pregnancy Study Group criteria 
(IADPSG) [27, 31, 32, 53, 69, 71, 72, 77–79], two studies 
(12.5%) used 75-g OGTT based on the American Col-
lege of Obstetricians and Gynecologists criteria (ACOG) 
[54, 70], two studies (12.5%) used 75-g OGTT based on 
the Japan Society of Obstetrics and Gynecology (JSOG) 
and Japan Association of Obstetricians (JAOG) criteria 
[41, 66], and two studies (14%), diagnosed using 100-g 
OGTT based on Carpenter and Coustan criteria [42, 
62]. In all studies, GDM was assessed in 24–28  weeks 
of pregnancy. IADPSG diagnostic criteria for GDM 
include fasting glucose ≥ 5.1  mmol/L (92  mg/dl), a 1-h 
result of ≥ 10.0  mmol/L (180  mg/dl), or a 2-h result 
of ≥ 8.5 mmol/L (153 mg/dl) [34]. Based on ACOG, GDM 
is considered when one fasting blood glucose is more 
than 5.1  mmol/L, or 1-h blood glucose > 10.0  mmol/L, 
or 2-h blood glucose > 8.5  mmol/L [70]. According to 
the JSOG and JAOG criteria, GDM is diagnosed when: 
fasting ≥ 92  mg/ dL (5.1  mmol/L); 1  h ≥ 180  mg/dL 
(10.0 mmol/L); and 2 h ≥ 153 mg/dL (8.5 mmol/L) [35].

Assessment of the Studies’ Quality
Evaluating the quality of individual studies resulted 
in total scores ranging from 6 (54.5%) to 9 (81.8%) (see 
Additional file 1: Table S3). Five studies (31%) placed in 
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the excellent grope [32, 42, 71, 77, 78], nine studies (56%) 
ranked in the good grope [31, 41, 53, 54, 62, 66, 69, 72, 
79], and two ones (13%) ranked in the fair group [27, 70]. 
All studies received the maximum score in items “Statis-
tics”, “Multiplicity”, “Effect size’, and “Confounding fac-
tors” (apart from one study). Nevertheless, since no study 
performed repeated measurements of exposure, they did 
not gain any score in this item. Concerning item “Study 
design”, the minimum score of zero and the maximum 
score of two were obtained by six studies, because of hav-
ing cross-sectional design [41, 53, 54, 62, 66, 70] and five 
studies due to having cohort design [31, 32, 69, 77, 78], 
respectively.

Association with cadmium
The relationship between Cd exposure during pregnancy 
and the risk of GDM was examined in 13 studies, with 
four of them involving the collection of maternal urinary 
samples for Cd analysis [31, 32, 54, 69], seven articles 
used maternal serum samples [41, 42, 53, 62, 66, 70, 77], 
and two studies collected maternal hair samples [27, 72]. 

The maternal levels of Cd were measured in the second 
trimester of pregnancy by eight studies [27, 41, 42, 53, 54, 
62, 66, 70] and at the first trimester by the rest five ones 
[31, 32, 69, 72, 77]. Five studies documented a statistically 
significant association between Cd exposure and an ele-
vated risk of GDM [31, 42, 53, 66, 77], while the rest did 
not discover any notable correlation [27, 32, 41, 54, 62, 
69, 70, 72].

Of the 12 reviewed studies that investigated the rela-
tionship between the maternal levels of Cd and GDM 
risk, 10 studies entered into the meta-analysis [27, 31, 
32, 41, 54, 62, 66, 69, 70, 72]. The results did not present 
a statistically significant association between maternal 
exposure to Cd and increased risk of GDM (for each one-
quartile increase in Cd: 1.00, 95% CI 0.83, 1.17). Overall, 
high heterogeneity was observed between these studies 
(Cochran’s Q test p value = 0.00 and I2 of 69.90%) (Fig. 2).

Moreover, we performed two sensitive meta-analyses 
first based on the type of collected biological sample 
(serum vs. urine) and second based on the trimester of 
pregnancy (first vs. the second trimester) when the Cd 

Fig. 1 Flow diagram of the screening process and selecting the papers
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was measured. As such, a meta-analysis was performed 
on three studies that assessed urinary Cd levels dur-
ing the first trimester [31, 32, 69] and revealed no sig-
nificant association between elevated Cd levels and an 
increased risk of GDM (for each one-quartile increase in 
Cd: 1.68, 95% CI 0.65, 2.70). There was high indication of 
heterogeneity between these studies (Cochran’s Q test p 
value = 0.00 and I2 of 91.55%) (Additional file 1: Fig. S1). 
When we combined those studies that assessed the uri-
nary levels of Cd in the first trimester with those in the 
second trimester [54], similarly, we did not find a signifi-
cant relationship (for each one-quartile increase: 1.44, 
95% CI 0.67, 2.22) with a high heterogeneity between 
studies (Cochran’s Q test p value = 0.00 and I2 of 90.09%) 
(Fig. 2, part 1).

The meta-analysis of four studies that measured serum 
levels of Cd in the second trimester [41, 62, 66, 70] 
showed a significant association between elevated Cd 

and a lower risk of GDM (for each one-quartile increase 
in Cd: 0.76, 95% CI 0.65, 0.87) with no indication of 
heterogeneity between the studies (Cochran’s Q test p 
value = 0.34 and I2 of 0.00%) (Fig. 2, part 2).

Moreover, we performed a subgroup analysis based on 
study design (i.e., cohort, cross-sectional and case–con-
trol). The results were the same as the main analysis in 
terms of direction and significance (Additional file  1: 
Fig. S2). The combined results of cross-sectional stud-
ies showed that exposure to Cd was associated with 
decreased risk of GDM. However, the combined results 
of studies with cohort and case–control designs did not 
show a significant association.

Association with lead
Among 16 reviewed studies, nine papers assessed the 
relationship of maternal levels of Pb with the risk of 
GDM except for two studies (maternal hair) [27, 72], 

Fig. 2 Results of a meta-analysis of exposure to Cd and odds ratio of GDM (part 1: exposure assessment based on urine samples; part 2: exposure 
assessment based on blood samples; part 3: exposure assessment based on hair samples)
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the others measured serum levels of Pb [41, 42, 62, 66, 
70, 77, 78]. Furthermore, only three articles assessed the 
levels of maternal exposure to Pb in the first trimester of 
pregnancy [72, 77, 78] and the rest of the studies evalu-
ated that in the second trimester [27, 41, 42, 62, 66, 70]. 
One case–control study showed a significant difference 
between the mean maternal levels of Pb between GDM 
and healthy pregnant mothers [42] In contrast, some 
studies did not observe a statistically significant relation-
ship between Pb exposure and the risk of GDM [27, 41, 
62, 66, 70, 72, 77, 78].

We included seven studies [27, 41, 62, 66, 70, 72, 78] 
in the meta-analysis of the association between maternal 
levels of Pb and the risk of GDM indicated that the asso-
ciation between exposure to Pb and risk of GDM was not 
statistically significant (for each one-quartile increase in 
Pb: 0.95, 95% CI 0.88, 1.03) with no indication of hetero-
geneity between the studies (Cochran’s Q test p value of 
0.49 and I2 of 0.00%) (Fig. 3).

The sensitivity analysis was performed on five articles 
that measured the levels of Pb only using serum samples 
[41, 62, 66, 70, 78] and four studies that only assessed the 
serum levels of Pb in the second trimester [41, 62, 66, 70]. 
The results of the first (for each one-quartile increase in 
pb: 0.93, 95% CI 0.84, 1.03) (Fig.  3, part 1) and second 

sensitivity analysis (for each one-quartile increase in Pb: 
0.98, 95% CI 0.84, 1.12) (Fig. S3 of Supplemental Mate-
rials) indicated a nonsignificant association between the 
serum levels of Pb and increased risk of GDM with no 
indication of heterogeneity (Cochran’s Q test p value of 
0.5 and  I2 of 0.00%) and (Cochran’s Q test p value of 0.47 
and I2 of 0.00%), respectively.

Moreover, the subgroup meta-analysis of exposure to 
Pb and odds ratio of GDM based on study design showed 
the same results as the main analysis (Additional file  1: 
Fig. S4). There was no significant relationship between 
exposure to Pb and risk of GDM in both cross-sectional 
and case–control studies.

Association with Mercury
Seven studies examined the relationship between mater-
nal Hg levels and GDM risk, five of them analyzing Hg 
levels in maternal serum samples [42, 53, 66, 70, 72, 77], 
except two that collected maternal hair samples [27, 72]. 
Moreover, two studies assessed the levels of Hg in the 
first trimester [72, 77], while the others measured Hg in 
the second trimester [27, 42, 53, 66, 70].

Among the seven reviewed papers, the meta-analysis 
was performed on four studies [27, 66, 70] that evidenced 
a significant relationship between the maternal levels of 

Fig. 3 Results of a meta-analysis of exposure to Pb and odds ratio of GDM (part 1: exposure assessment based on blood samples; part 2: exposure 
assessment based on hair samples)
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Hg and the increased risk of GDM (for each one-quar-
tile increase in Hg: 1.20, 95% CI 1.08, 1.31). No signifi-
cant heterogeneity was observed among these studies, 
as indicated by a Cochran’s Q test p value of 0.44 and an 
I2 value of 0.00% (Fig.  4). When we performed the sen-
sitivity analysis on two articles that measured levels of 
Hg in serum samples [66, 70], the result was not changed 
in terms of significance (for each one-quartile increase 
in Hg: 1.25, 95% CI 1.07, 1.43) and there was no hetero-
geneity observed among the studies, as evidenced by a 
Cochran’s Q test p value of 0.42 and an I2 value of 0.00% 
(Additional file 1: Fig. S5).

The results of the subgroup analysis based on the 
study design showed the same results as the main anal-
ysis (Additional file  1: Fig. S6). The combined result of 
exposure to Hg in cross-sectional studies was signifi-
cantly associated with higher risk of GDM. However, for 
case–control studies, this relationship was marginally 
significant.

Publication bias
We independently assessed publication bias for each of 
the three meta-analyses, which investigated the associa-
tion between maternal levels of Cd, Pb, and Hg with the 
risk of GDM. Our analysis did not reveal any publication 
bias in the studies that explored the association between 
Hg and Pb exposures and the risk of GDM, with p val-
ues of 0.14 and 0.67, respectively. However, the studies 

on the association of Cd exposure and risk of GDM indi-
cated a publication bias between investigated studies (p 
value < 0.01). The results of publication bias for Hg, Pb 
and Cd have been depicted in Additional file 1: Figs. S4, 
S5, and S6, respectively.

Studies not included in meta-analyses
We excluded five studies from the meta-analysis for spe-
cific reasons. Two studies had a different scope of meas-
ured metals exposure (e.g., Se, Zn, Cu) than the others 
[71, 79]. While in other studies HMs were measured in 
blood or urine samples. In addition, three studies did 
not present the same measure of association with other 
studies (e.g., mean difference) [42, 53, 77]. Therefore, 
it was not possible to combine the results of this study 
with other studies. In a nested case–control study con-
ducted in Wuhan, China, Zhu et  al. [79] examined the 
association between serum levels of Mg, Zn, Ca, Fe, 
Cu, Se, and Cr and the risk of GDM [79]. This study 
involved 305 GDM cases and 305 non-GDM moth-
ers, with blood samples collected in the first trimester. 
GDM diagnosis was based on a 75-g OGTT between 
24 and 28  weeks, using IADPSG criteria. Their analy-
sis revealed a significant positive association between 
plasma Fe levels (adjusted OR = 2.04; 95% CI 1.62, 2.57) 
and Cu levels (adjusted OR = 1.52; 95% CI 1.25, 1.82) with 
elevated GDM risk. Conversely, elevated plasma Zn lev-
els (adjusted OR = 0.55; 95% CI 0.43, 0.71) and Ca levels 

Fig. 4 Results of a meta-analysis of exposure to Hg and odds ratio of GDM (part 1: exposure assessment based on blood samples; part 2: exposure 
assessment based on hair samples)
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(adjusted OR = 0.72; 95% CI 0.56, 0.92) were linked to a 
decreased GDM risk. Onat et al. [42] conducted a case–
control study in Yozgat, Turkey, comparing heavy metals 
(Cd, Pb, antimony, Hg, and As) and trace elements (chro-
mium-III, chromium-VI, Zn, Cu, and Se) levels between 
60 GDM and 52 non-GDM pregnant women [42]. GDM 
was diagnosed using a 100-g OGTT following Carpen-
ter and Coustan criteria [11]. The GDM group exhibited 
higher levels of Cd, Pb, Sb, and Hg than the non-GDM 
group, with the differences being statistically significant 
for Cd, Pb, and Sb (p < 0.05). Concerning trace elements, 
while Cu levels were higher among the GDM group, they 
had significantly lower Cr-III, Zn, and Se levels (p < 0.05) 
compared to the control group. Rezaei et  al. [53] con-
ducted a cross-sectional study in Birjand, Iran, investigat-
ing the relationship between As, Cd, Cu, Hg, Mn, Ni, V, 
Zn levels, and GDM risk among 60 GDM and 42 healthy 
pregnant women [53]. Second-trimester serum levels of 
trace elements were measured, and GDM was diagnosed 
using a 75-g OGTT between 24 and 28  weeks based 
on IADPSG criteria. GDM women had significantly 
higher mean levels of As, Cd, and Hg than non-GDM 
women. After adjusting for confounders, the regression 
model demonstrated a significant positive association 
between As (adjusted RD = 0.516; 95% CI 0.355, 0.677), 
Cd (adjusted RD = 0.719; 95% CI 0.534, 0.904), and Hg 
(adjusted RD = 0.505; 95% CI 0.276, 0.735) with height-
ened GDM risk, while V (adjusted RD =  − 0.139; 95% 
CI, − 0.237, − 0.042) significantly reduced GDM risk. 
Zheng et  al. [77] performed a cohort study in Boston, 
USA, examining the relationship between erythrocyte 
levels of essential (Cu, Mg, Mn, Se, Zn) and non-essential 
(As, Ba, Cd, Cs, Pb, Hg) metals and GDM among 1311 
pregnant women [77]. Erythrocyte metal levels were 
measured in the first trimester, and GDM diagnosis was 
based on a 100-g OGTT in the late second trimester (26–
28 weeks), according to Carpenter and Coustan criteria. 
Their findings showed an inverse U-shaped nonlinear 
association between erythrocyte Ba levels and GDM risk, 
along with an inverse association for erythrocyte Hg.

Within a nested case–control study conducted by Zhu 
et al. in 2021, the correlation between serum levels of Mg, 
Zn, Ca, Fe, Cu, Se, and Cr with GDM risk was investi-
gated. The study involved a cohort of 305 GDM cases 
and 305 non-GDM mothers. Diagnosis of GDM was 
made through a 75-g OGTT conducted between the 24th 
and 28th weeks of pregnancy, using IADPSG criteria as 
a basis. Zhu and colleagues observed that an interquar-
tile range (IQR) increase in plasma Fe levels was linked 
with a significantly heightened GDM risk (OR = 2.04; 
95% CI 1.62, 2.57), as was an IQR increment in plasma 
Cu levels (OR = 1.52; 95% CI 1.25, 1.82). Conversely, an 
IQR increase in plasma Zn levels was associated with 

a significantly reduced GDM risk (OR = 0.55; 95% CI 
0.43, 0.71), as was an IQR increment in plasma Ca levels 
(OR = 0.72; 95% CI 0.56, 0.92).

Discussion
To our current understanding, this study stands as the 
initial systematic review and meta-analysis delving into 
the relationship between potential toxic element (PTE) 
exposure during pregnancy and susceptibility to GDM. 
In total, 16 articles encompassing a collective 116,728 
participants and published up until November 2023 were 
ultimately included in the comprehensive review. The 
meta-analysis specifically involved 11 of the examined 
articles. Our meta-analytical findings underscore that 
exposure to mercury (Hg) is linked with an increased 
GDM risk. Furthermore, elevated blood levels of cad-
mium (Cd) during the second trimester of pregnancy 
correlate with a reduced risk of GDM among pregnant 
women. However, blood levels of lead (Pb) throughout 
pregnancy did not exhibit a significant association with 
GDM risk. The evaluation of our meta-analytical associa-
tions through funnel plots revealed no evidence of publi-
cation bias.

Assessment of exposure
In our review, four studies examined PTEs using urine 
samples [31, 32, 54, 69], ten studies based on blood con-
centration of PTEs [41, 42, 53, 62, 66, 70, 77–79] and 
two studies used maternal hair samples [27] to assess 
the association of exposure to PTEs and GMD. Exposure 
assessment based on urine samples has some advantages 
compared to blood samples. Urine sampling is a noninva-
sive method and therefore it is mostly welcomed by the 
participants compared blood sampling method. Moreo-
ver, extraction and analysis of PTEs in urine samples are 
easier compared to blood samples. However, it should 
be noted that urine levels of PTEs indicated a last 24  h 
exposure to these pollutants, while blood samples show 
long-term exposure to PTEs [9, 36, 58]. The advantages 
of exposure assessment based on hair samples include 
easier sampling even compared to urine samples, its non-
invasiveness and indicating long-term exposure [15, 23]. 
However, detecting the PTEs needs higher amounts of 
the hair sample and previous evidence showed that there 
is a weak association between external exposure to PTEs 
and hair levels of PTEs compared to urine and blood 
PTEs levels [44, 47].

Outcome assessment
Regarding GDM diagnosis, near to 60% of studies imple-
mented 75-g OGTT based on the IADPSG. Consensus 
on using the IADPSG criteria for diagnosing GDM was 
made in 2010 [34] and it is well known to be associated 
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with more diagnosed GDM cases. The most recent sys-
tematic review and meta-analysis study (2021) on 136 
705 women (31 studies) evidenced that implementing 
IADPSG criteria linked to 0.75% increase in the number 
of cases with GDM [55].

Potential mechanisms
The underlying mechanisms that link potential toxic ele-
ment (PTE) exposure to gestational diabetes mellitus 
(GDM) remain unclarified. However, emerging evidence 
suggests that GDM could potentially share pathways with 
type 2 diabetes mellitus [5, 49]. GDM is recognized as 
a multifaceted metabolic disorder influenced by a com-
bination of environmental, lifestyle, and behavioural 
factors. Among the plausible hypotheses, one pertains 
to endocrine hormone disruption [65]. PTE exposure 
could potentially contribute to the dysfunction of beta 
cells by diminishing the viability of pancreatic islet beta 
cells, ultimately leading to impaired insulin secretion and 
insulin resistance, which are crucial components in the 
development of GDM [7, 56]. This theory is supported 
by research findings that suggest PTEs could impact the 
survival and function of islet beta cells. This impact may 
occur through various mechanisms, including elevated 
levels of inflammatory markers, such as tumour necrosis 
factor-alpha and interleukin 6, oxidative stress, and the 
inhibition of peroxisome proliferator-activated receptor 
gamma (PPAR-γ). These mechanisms have been dem-
onstrated in both laboratory experiments (in vitro and 
in vivo) and human studies [10, 22, 67]. Insights from ani-
mal model studies reveal that even low doses of mercury 
(Hg) could activate phosphatidylinositol 3-kinase (PI3K), 
thereby impacting Akt signalling and triggering dysfunc-
tion in pancreatic beta cells. This could potentially lead 
to impaired maternal beta cells, ultimately resulting in 
diminished insulin levels and insulin resistance during 
early pregnancy, contributing to the onset of GDM [18, 
28, 57]. Concerning the effects of Cd on GDM, Barregard, 
et  al. [3] did not find a significant relation between lev-
els of blood and urinary Cd concentrations and impaired 
glucose tolerance, type 2 diabetes, and impaired pan-
creatic beta-cell function in women [3]. In line with our 
results, research conducted on cell cultures has revealed 
that exposure to moderate levels of cadmium can imitate 
the effects of insulin. This is evidenced by an increase in 
glucose uptake in adipocytes and fibroblasts, as well as an 
acceleration in the release of insulin from pancreatic tis-
sue when stimulated by glucose [24].

The potential synergistic effects of exposure to vari-
ous potentially toxic elements (PTEs), such as cadmium 
(Cd), mercury (Hg), and lead (Pb), on gestational diabetes 
during pregnancy could be attributed to their collective 
impact on endocrine and metabolic pathways. Studies 

suggest that simultaneous exposure to multiple PTEs 
may disrupt insulin signalling, induce oxidative stress, 
and trigger inflammatory responses, collectively contrib-
uting to the development of gestational diabetes mellitus 
(GDM) [26, 61]. The intricate interplay between these 
elements might amplify their individual adverse effects, 
leading to a heightened risk of GDM. Furthermore, PTEs 
may act synergistically to impair pancreatic beta-cell 
function and insulin sensitivity, crucial factors in glu-
cose homeostasis during pregnancy. Understanding the 
potential mechanisms of synergistic action among differ-
ent PTEs is pivotal for unravelling the complex aetiology 
of gestational diabetes and devising effective preventive 
strategies [6, 51, 61].

An alternative mechanism potentially linking PTE 
exposure to GDM lies in the alteration of methylation 
patterns in genes associated with diabetes [30]. The 
emergence of GDM during pregnancy as a result of PTE 
exposure could be attributed to one or a combination of 
the aforementioned mechanisms.

Limitations
While our evaluation of study quality revealed four stud-
ies with an excellent rating and eight with good quality, 
it’s important to acknowledge that certain limitations 
were acknowledged within these studies, underscoring 
the need for consideration in future research endeavors. 
First, the reviewed studies had an observational design 
therefore a possible causal relationship between PTEs 
exposures and GDM cannot be established. Second, 
some studies used urine samples to assess exposure to 
PTEs during pregnancy which is not a good indicator of 
long-term exposure to these pollutants. Moreover, the 
exposure pathways and the sources of PTEs were not 
assessed in the most of previous studies that are critical 
for the toxicity of different metals. Furthermore, a limited 
number of PTEs were assessed in the most of reviewed 
studies and the synergistic effect of exposure to a mixture 
of PTEs on GDM has not assessed yet.

Regarding limitations in our review, it should be consid-
ered that the distribution of studies was limited to Asia, 
the USA, and only one study in Europe and we did not 
observe any study from Africa, South America, and Aus-
tralia. Moreover, our meta-analysis for some PTEs was 
only based on a limited number of studies which could 
lead to higher potential bias in the results. In acknowledg-
ing the limitations of our meta-analysis, it is essential to 
highlight that the majority of studies included were con-
ducted in China, potentially introducing biases and lim-
iting the generalizability of our findings to a more global 
context. Addressing the observed differences in exposure 
concentrations among various regions is crucial, as these 
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variations are influenced by environmental, socio-eco-
nomic, and industrial factors that contribute to disparities 
in outcomes. This regional heterogeneity should be thor-
oughly discussed to provide a nuanced understanding of 
the exposure–outcome relationship. Despite the limited 
number of studies included, our findings shed light on 
the need for future research to adopt a more expansive 
approach, encompassing diverse geographical locations.

Conclusion and future recommendation
We found that exposure to Hg during pregnancy was 
associated with higher risk of GDM. Moreover, higher 
serum level of Cd was associated with lower risk of GDM. 
However, the association of exposure to Pb and GDM was 
not statistically significant based on overall meta-analysis 
and sensitivity analysis for studies based on only serum 
samples and only second-trimester samples. Moreover, 
we observed a publication bias for studies on Cd expo-
sures, but studies on Hg and Pb had no publication bias. 
Although the results of this study had some limitations, 
it could shed light on exposure to PTEs and pregnancy 
complications and help policy and decision-makers in 
reducing these adverse health effects, especially during 
pregnancy. We recommended assessing the exposure to 
PTEs based on internal and external measurements from 
different sources (e.g., measuring PTEs in water, foods, 
air and soil samples), and assessing all exposure pathways 
including ingestion, dermal and inhalation pathways. 
Moreover, using advanced PTEs analytical techniques 
with lower detection limits such as inductively coupled 
plasma mass spectrometry (ICP-MS) can help to assess a 
wide range of PTEs in future studies. Assessing based on 
different biological samples at the same time (i.e., blood, 
urine, nails, and hair) is recommended for future studies 
due to providing higher precision and accuracy in inter-
nal exposure assessment. Moreover, using advanced sta-
tistical analyses on mixture exposure to PTEs and health 
outcomes can cover the potential synergistic effects of 
PTEs and get more reliable results.
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