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Abstract 

Background Long-term biomonitoring of macroinvertebrates is a popular and valuable approach for assessing 
the status of freshwater ecosystems, identifying the impact of stressors, and evaluating ecosystem health. Although 
macroinvertebrate-based biomonitoring can be effective in detecting changes in distribution patterns and commu-
nity trends over time, crayfish often remain undetected or unreported by biomonitoring efforts despite their impor-
tance in maintaining the functioning of aquatic ecosystems.

Results By analyzing a comprehensive database of long-term macroinvertebrate time series, we found that most 
sampling methods and assessment schemes can detect both native and non-native crayfish in running waters if sites 
are continuously sampled. However, native crayfish were detected to a lesser extent and by fewer methods. Kick-
net sampling and assessment techniques prevailed as the most efficient methods for capturing crayfish. However, 
the substantial number of time series lacking crayfish data calls into question whether these methods are sufficiently 
comprehensive to encapsulate crayfish populations accurately. The use of other targeted methods such as baited 
traps or hand catching may provide a more reliable estimate of their presence.

Conclusions Given the detrimental impacts of non-native crayfish and the decline in native crayfish populations, 
we strongly recommend that stakeholders and managers incorporate a combination of these approaches into their 
monitoring efforts. The use of different taxonomic levels (family vs. genus vs. species level) in estimating biological 
indices and biomonitoring tools can cause delays in identifying new non-native specie’s occurrences, hindering effec-
tive water quality assessment and ecosystem management by governments and stakeholders. Therefore, whenever 
possible, we call for standardized taxonomic levels for biomonitoring studies and management strategies to accu-
rately address these issues and make recommendations going forward.

Keywords Detection bias, Long-term data, Monitoring, Non-native species, Sampling, Water framework directive

Introduction
Despite covering less than 1% of Earth’s surface, freshwa-
ter ecosystems host remarkable biodiversity [96]. Human 
settlements have historically thrived near freshwater eco-
systems due to the supply of fresh drinking water, crop 
irrigation, and various profitable economic activities as 
well as a source of food through fishing [16, 63, 103]. The 
multiple water uses interrelated with human activities 
have altered the structure and functioning of freshwater 
systems, involving losses in the availability, quality, and 
health of aquatic ecosystems [96]. Understanding, miti-
gating, and reverting these impacts requires a continu-
ous monitoring of running waters and other freshwater 
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systems that systematically assess the state of river eco-
systems [89]. The introduction of non-native species has 
been recognized as one of the main drivers of biodiver-
sity decline and species extinctions [5, 85]. Yet, aquatic 
invasions often proceed unnoticed, facilitating unhinged 
secondary spread [65] as well as multifaceted impacts on 
biodiversity [36, 40].

Crayfish are large and highly mobile freshwater crus-
taceans that play a vital role in freshwater systems [86]. 
They contribute to nutrient cycling via their omnivo-
rous diet [6, 75] and serve as a food source for various 
predators [24], while contributing to the ecological bal-
ance of freshwater ecosystems [87]. Humans have had a 
long-lasting and intense relationship with crayfish, which 
often became important food items [81, 97]. People’s 
interests in crayfish, as well as crayfish ability to be eas-
ily transported alive and establish self-sustaining popu-
lations have favored crayfish introductions since ancient 
times (e.g., [19]). The human-mediated spread of non-
native crayfish has played an important role in their 
range expansion [36, 37, 76], with most water bodies in 
continental Europe having been invaded by non-native 
crayfish species [59, 106]. Meanwhile, the eradication 
of non-native crayfish is usually impossible [66, 94] and 
measures preventing their introduction and eliminating 
upstream spread are the main methods for their effec-
tive management [62, 68]. Today, non-native crayfish are 
known as a particularly pervasive and costly group of 
aquatic invaders [58, 69]. They are also considered among 
the most successful invaders globally, having led to the 
large-scale decline of biodiversity due to competition, 
predation, and habitat alteration, among others [36, 99, 
105]. Monitoring crayfish populations, particularly non-
native species, is therefore crucial, necessitating vigilant 
observation and management strategies to mitigate their 
significant detrimental effects on European freshwater 
ecosystems.

In this context, the European Union’s Water Frame-
work Directive [22] leveraged and expanded pre-
existing national biomonitoring programs, enhancing 
Europe’s approach to freshwater biodiversity conserva-
tion. Indeed, the WFD becomes crucial as a profound 
and fundamental basis for biodiversity assessments and 
subsequent conservation efforts. This network, which 
also includes the monitoring of phytoplankton, macro-
phytes and phytobenthos, and fish, was not specifically 
designed for studying non-native species or biodiver-
sity in general, raising concerns whether biomonitoring 
under the umbrella of the WFD or prior biomonitor-
ing efforts could effectively be utilized to monitor the 
distribution, abundance, and trends of crayfish species 
across European freshwater ecosystems [74]. Indeed, 
whereas local assessments of crayfish populations are 

commonly achieved with extensive one-time trapping 
efforts (of a varied array, either baited or not) [64], con-
tinuous long-term efforts are required to gather suffi-
ciently long biodiversity monitoring data when aiming 
to tackle the challenges presented by demising native 
and spreading non-native crayfish [7, 38, 93]. Moreover, 
long-term biomonitoring data have recently proven use-
ful to investigate the responses of community metrics to 
anthropogenic impacts across broad spatial scales [92], 
to detect novel non-native species introductions [71], 
and for investigating the temporal dynamics of long-term 
trends of non-native crayfish [93], simultaneously signal-
ing the urgent need for applied management [9, 72]. Yet, 
despite the availability of a recently collated European 
long-term database [43], the adequacy of using long-term 
biomonitoring data for detecting native and non-native 
crayfish has not been tested and may not be without 
potential caveats, as widely applied approaches (i.e., kick 
net sampling) used to obtain macroinvertebrate long-
term biomonitoring data may be inadequate.

The protocols used to collect data on aquatic diversity 
and monitor the ecological health of water ecosystems, 
as mandated by the Water Framework Directive, might 
offer unexplored opportunities for evaluating crayfish 
status. However, these methods may currently underes-
timate or overlook both native and non-native crayfish 
populations in biodiversity calculations. This could lead 
to overly optimistic assessments of ecological health and 
fail to attribute certain impacts on biodiversity correctly, 
especially those influenced by the varying abundance of 
non-native crayfish. Although we hypothesize that (i) the 
sampling approaches and protocols used for aquatic mac-
roinvertebrates can detect both native and non-native 
crayfish, we anticipate that (ii) the efficacy of these pro-
tocols will vary, potentially leading to significant implica-
tions for the assessment of aquatic biodiversity. To this 
end, we used a recently collated database of macroinver-
tebrate time series, which were obtained using different 
sampling protocols, to investigate the presence of cray-
fish and their adequacy to monitor non-native crayfish.

Methods
We investigated the adequacy of long-term biomonitor-
ing approaches for detecting native and non-native cray-
fish species in Europe (Additional file  1:Table  S1) using 
the recently collated and to date most comprehensive 
European long-term database by Haase et  al. [43]. This 
database contains 1816 macroinvertebrate community 
time series from 22 European countries. The data was 
collected for purposes such as research projects or regu-
latory biomonitoring that meet the following criteria: (i) 
each time series contained the abundance of macroin-
vertebrate taxa, (ii) sampled in a minimum of eight (not 
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necessarily consecutive) years over a period of minimum 
15 years and (iii) had consistent sampling effort per site 
(see Haase et al. 2024 for further details). Although mac-
roinvertebrate community sampling protocols varied 
between time series, they were kept consistent over time 
within each time series (Additional file 1: Table S2). The 
nativeness of species in Haase et al. [43] was assessed at 
the country level by consulting three sources: the Global 
Alien Species First Record Database [90] and the Invasive 
Species Compendium (CABI, www. cabi. org). In case of 
a mismatch in the species’ non-nativeness among coun-
tries assessment, we followed the Global Alien Species 
First Record Database [90] classification as the most reli-
able and updated database to date. For a comprehensive 
explanation of the data used, see Haase et al. [43].

The data collection methods employed to collect the 
time series constituting this database were diverse and 
lacked detailed information, hindering complex statisti-
cal analyses. Some methods were described as ’kick net 
sampling’, ’hand netting’, ’subsampling’, or ’Ekman grabs’, 
and were explicitly defined but lacked detailed clarity 
on the application (duration, area sampled, etc.). Oth-
ers were vague and less specified, such as ’Multi Habitat 
Sampling’ (MHS) in Germany, or they solely described 
the assessment schemes used to evaluate ecological 
health and water quality of rivers and streams via benthic 
macroinvertebrate community analysis. The more clearly 
defined information reported in [43] include national 
standard methods such as AFNOR XP T90-333 (for 
France [1]) or DIN 38410 (for Germany) [109], but also 
assessment methodologies or bioassessment tools, such 
as RIVPACS (River Invertebrate Prediction and Classi-
fication System) [108], IBGN (Indice Biologique Global 
Normalisé) [2], PERLA, AQEM (Aquatic Quality Evalu-
ation in Mediterranean Rivers) [51], and ’STAR ICMi’ 
(Standardisation of River Classifications) [12]. Less clear 
information included, among other ’artificial substrates’, 
’SUBS’, or ’Multi-Habitat’ (see Additional file 1: Table S2). 
Information provided by Haase et  al. [43] did, however, 
not provide specific details.

To investigate detections of native and non-native cray-
fish in long-term biomonitoring over space and time 
and  to infer the adequacy of long-term biomonitoring 
approaches for native and non-native crayfish detection, 
we first (1) identified time series containing native and 
non-native crayfish (considering European native and 
non-native species) [59], (2) investigated the continuity of 
native and non-native crayfish occurrences, i.e., if annual 
records were continuous over multiple years or isolated, 
and (3) compared the detections for both native and 
non-native crayfish across different sampling protocols. 
We compared differences in the occurrences of native 
and non-native species within long-term data across 

two levels. At the first level, we conducted a detailed 
spatial and temporal analysis at the species level by visu-
ally depicting occurrences of both native and non-native 
crayfish species in the database. We further inspected the 
occurrences of crayfish temporally across countries by 
identifying the records of crayfish split into native and 
non-native each time series identified at the species level. 
Subsequently, we computed several key metrics for each 
species, including the average duration of time series 
(in years), average number of samplings per time series, 
average number of records per time series, average abun-
dance per occurrence, average period of records, and lag 
time between the first year of the time series and the first 
record of crayfish. At the second level, we compared the 
relative reporting rates of different methods and assess-
ments that either reported occurrences of native or non-
native crayfish, vs. those time series that did not report 
any crayfish occurrences at all. All analyses were per-
formed in R version 4.3.1 (R core Team, 2023).

Results
From the 1816 macroinvertebrate community time 
series collected between 1968 and 2020, 1425 time series 
reported no crayfish. However, 391 time series reported 
one or multiple crayfish, of these, belonging to the fami-
lies Astacidae (n = 210 time series; n = 634 annual occur-
rences) and Cambaridae (n = 237 time series; n = 641 
occurrences) (Fig. 1).

From these, only 191 time series (10.5%) with a total of 
542 crayfish occurrences were identified at the species 
level, including four native and three non-native species 
(Figs. 2, 3). Of them, 46 (2.5%) time series reported native 
crayfish. These were the native crayfish species Astacus 
astacus (n = 15 time series; n = 18 occurrences), Pon-
tastacus (formerly Astacus) leptodactylus (n = 17 time 
series; n = 31 occurrences), Austropotamobius pallipes 
(n = 15 time series; n = 42 occurrences), and Austropota-
mobius torrentium (n = 2 time series; n = 2 occurrences). 
In contrast, we found 160 time series (8.8%) containing 
a total of 449 occurrences of non-native crayfish spe-
cies. These were the Pacifastacus leniusculus (n = 85 time 
series; n = 252 occurrences), Procambarus clarkii (n = 18 
time series; n = 56 occurrences), and Faxonius (formerly 
Orconectes) limosus (n = 66 time series; n = 141 occur-
rences). The remaining crayfish reports within these 
time series (n = 209) were not reported at the species 
level (Cambaridae, n = 153 time series; 444 occurrences; 
Astacidae, n = 93 time series, 289 occurrences). Note that 
different families and species can be reported within the 
same time series.

Identified time series that reported crayfish at the spe-
cies level spanned on average 19.93 ± 8.21 (mean ± SD) 
years and contained 15.61 ± 6.39 sampling years, yet they 

http://www.cabi.org
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only recorded on average 3.88 ± 6.25 crayfish occurrences 
between 1980 and 2019. Time series also differed in dura-
tion and sampling frequency, with the average record of 
non-native crayfish per time series varying considerably 
(Table 1).

The first occurrence of a native crayfish (A. astacus) 
was detected in the 1980s in Bulgaria and the last occur-
rence of a native crayfish (P. leptodactylus) was in 2017 
in Hungary. According to Haase et al., [43], the earliest 
records of non-native crayfish (F. limosus) were in 1983 
from Germany. English, French, Portuguese, Spanish, 
and Swedish time series reported the first records of 
non-native crayfish in the early- to mid-1990s. Hungar-
ian time series were the last to report non-native cray-
fish in the mid-2000s, whereas no records of non-native 
crayfish were available from Germany and Spain after 
the early 2000s (Fig.  2). Furthermore, we found that 
16 (88.9%) observations of A. astacus, 20 (64.5%) of P. 

leptodactylus, 19 (45.2%) of A. pallipes, and 2 (100%) 
of A. torrentium were single occurrences. In the case 
of non-native crayfish, 226 (50.3%) observations were 
single occurrences, whereas 223 (49.67%) belonged to 
repetitive observations over multiple years (Fig. 4), with 
on average 2.28 (± 1.72 SD) years without having again 
identified a non-native crayfish.

A considerable share of time series (n = 209) con-
tained species reported at a higher taxonomic level 
than the species level. These included members of 
the Cambaridae family (classified as Cambaridae 
spp.; n = 153 time series; 414 occurrences) that were 
reported in a time series listing various sampling and 
assessment schemes or tools (including AFNOR, IGBN, 
handnet, artificial substrate, standard invertebrate net). 
Crayfish belonging to the Astacidae family that were 
not reported at the species level (n = 96 time series, 289 

Fig. 1 Distribution of time series from Haase et al. [43] containing records of freshwater crayfish (red) vs. those reporting no crayfish (black). See 
Additional file 1: Fig. S1 for a more focused display on sites in the Rhine River
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occurrences) were caught with methods described as 
AFNOR, IGBN, AQEM, kick net, and RIVPACS.

The 46 time series that contained native crayfish 
identified at the species level were all reported follow-
ing predominantly AQEM and RIVPACS, followed by 
unspecific kick net sampling, Multi-habitat sampling, 
and Artificial substrate sampling (Fig. 5a). The 160 time 
series that identified non-native crayfish at the species 
level were mostly unspecific kick net sampling and RIV-
PACS, followed by AQEM, PERLA, Surber, and AFNOR 
XP (Fig.  5b). Time series that identified neither native 
nor non-native crayfish (n = 1620) were mostly collected 

following kick net sampling and RIVPACS, followed by 
IBGN and other assessment schemes, albeit to a lesser 
degree (Fig. 5c).

Discussion
Biodiversity monitoring in aquatic environments often 
serves the purpose of assessing the ecosystem’s health 
and ecological condition. It achieves this by identifying 
various influential stressors, which in turn enables the 
evaluation of ecosystem health and functionality [35]. 
Although Target 5 (now Target 12) of the EU Biodiver-
sity Strategy proclaims that native biodiversity needs to 

(a) (b)

(c) (d)

Fig. 2 Distribution of time series containing records of native crayfish a Astacus astacus, b Pontastacus leptodactylus, c Austropotamobius 
torrentium, and d Austropotamobius pallipes indicating the year the respective species was first recorded. Data were obtained from Haase et al. [43]. 
For the distribution of the different crayfish species please see Kouba et al. [59]. Crayfish drawings are the possession of the FFPW USB and drawn 
by the MgA. Radka Bošková
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be protected by counteracting non-native species (Euro-
pean [27] and the updated EU Biodiversity Strategy 2030 
[55] proclaims a “50% reduction in the number of Red 
List species threatened by invasive alien species”, current 
monitoring practices (e.g., kick netting) relied on by the 
WFD may not be the most adequate way to monitor and 
differentiate between native and non-native species and 
thus, may undermine conservation efforts [11, 36].

Utilizing the most comprehensive European long-
term data set that consisted of ~ 1.800 freshwater mac-
roinvertebrate time series [43], we found numerous 
recent records of non-native crayfish and evidence of an 
increasing trend in the prevalence of non-native cray-
fish populations within long-term data. However, the 
overall reporting of crayfish in the studied long-term 
data set may not accurately reflect true distributions or 
abundances (see [93]). This is because the methodolo-
gies underlying these series varied significantly, includ-
ing a mixture of national standards and frameworks, as 
well as ambiguous information about the used sampling 
approaches underlying the presented community data. 
This is a major shortcoming undermining the robustness 
of the collated data by Haase et  al. [43], which should 
adhere to and clearly be identifiable by a European stand-
ard [56]. Moreover, varying taxonomic levels add another 
level of complexity. For instance, seven time series 
reported Decapoda, which could also include shrimps 
or crabs. We also found that the majority of time series 
reported species at the family level, which would indi-
cate in the case of Cambaridae spp. a non-native species 
(e.g., Procambarus clarkii) as all members of this family 
are inherently non-native to Europe [20, 57]. In the case 
of an ambiguous entry Astacidae spp. could reflect both 
a native species belonging to the on the European con-
tinent native genus Astacus spp. (e.g., Astacus astacus), 
Pontastacus spp., or Austropotamobius spp. or the non-
native species Pacifastacus leniusculus.

The ambiguous identification hinders precise ecologi-
cal assessments and highlights the need for more species-
specific reporting in biomonitoring studies. Interestingly, 
non-native species were first detected in the 1980s albeit 
some time series reaching back to as early as 1968. 
Reasons may include, among others possible explana-
tions, that sites were either not invaded, or populations 

(a)

(b)

(c)

Fig. 3 Distribution of time series containing records of non-native 
crayfish a Procambarus clarkii, b Faxonius limosus, and c Pacifastacus 
leniusculus, indicating the year the respective species was recorded. 
Data were obtained from Haase et al. [43]. For the distribution 
of the different crayfish species please see Kouba et al. [59]. Crayfish 
drawings are the possession of the FFPW USB and drawn by the MgA. 
Radka Bošková

◂
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remained at low densities. Moreover, our time series 
revealed that after 2000, reports of non-native crayfish in 
Spain and Germany ceased, coinciding with the imple-
mentation of the Water Framework Directive [52]. This 
likely reflects a reporting issue rather than an actual dis-
appearance, as non-native crayfish were not typically 
included in biomonitoring protocols. Despite this, the 
time series data continued to be collected, and evidence 
from other studies suggests that non-native crayfish 
populations remain highly abundant, particularly in the 
Basque Country of northern Spain [78, 93]. Furthermore, 
we found that the abundances of reported non-native 
crayfish were always low (mean ± SD, 4 ± 6.5 compared 
to numbers reported from the invaded range (see, e.g., 
Harper et al. [45]). Albeit being present in the respective 
regions (see, e.g., [50, 59, 77]), low crayfish abundances 
could be explained by crayfish being generally scarcer in 
deeper zones of larger rivers such as the Rhine or Rhône 
River or that the sampled sites were simply not occupied 
by native or invaded by non-native crayfish.

Comparability issues and sampling method biases 
in crayfish sampling methods
Although the majority of time series (78.58%) did not 
report any crayfish, most of the biomonitoring and 
assessment approaches used to collect long-term data 
reported the presence and status (i.e., native vs. non-
native) of crayfish irrespective of the sampling proto-
cols used, a point of contention previously raised by 
Gallagher et al. [31]. We, however, noted a considerable 
overlap in methods and assessment schemes for identify-
ing both native and non-native crayfish and the relative 
proportion of crayfish detected varied, suggesting that 

unspecified kick net sampling was generally more effec-
tive at identifying non-native species. This conclusion 
is potentially misleading, considering that the Aquatic 
Quality Evaluation in Macroinvertebrates also employs 
kick net sampling [51], while River InVertebrate Predic-
tion And Classification System and Indice Biologique 
Global Normalisé focus on macroinvertebrate data analy-
sis and interpretation collected through various methods, 
including kick net or Surber sampling, D-frame nets, or 
hand picking [2, 18, 30]. Similarly, Multi Habitat Sam-
pling incorporates techniques from both Aquatic Qual-
ity Evaluation in Macroinvertebrates and methodologies 
in the Standardized Procedure for the Assessment of River 
Quality [15], while techniques listed as Ekman grabs, 
handnets, or Surber samplers are tools that are reported 
in Haase et  al. [43] without specific protocol details. 
Since Multi Habitat Sampling and Ekman grabs were 
used fewer than five times in the database, it remains 
challenging to determine if these techniques are adequate 
for sampling crayfish. Nevertheless, this heterogeneity in 
the database, underscored by the nested application of 
various sampling methods such as Ekman grabs within 
different assessment schemes, introduces a significant 
challenge in deriving conclusive insights. The complex-
ity of these intertwined methodologies in such large data 
sets not only affects the comparability of data but also 
raises questions about the consistency and reliability of 
the findings, especially when applied to diverse ecological 
studies or species monitoring efforts.

There are several factors that might influence the prob-
ability of assessment schemes to detect crayfish [47]. 
These are, with the exception of site-specific hydromor-
phological conditions [102] or the flexibility in protocols 

Table 1 Averaged characteristics of time series and status (native vs. non-native to the European continent) of reported crayfish 
species occurrences (counts) and the lag time in reporting (i.e., the average years between the onset of time series and the first native 
or non-native crayfish being recorded)

Species Status Avg. time series 
duration (in 
years)

Avg. samplings 
per time series (in 
years)

Avg. number of 
records per time 
series

Avg. 
abundance per 
occurrence

Avg. period of 
records

Lag time

Overall 20.1 ± 8.4 15.5 ± 6.35 2.63 3.64 1980–2019 2.75

Astacus astacus Native 10.4 ± 0.5 10 ± 0 0.46 8.80 1980–2015 8.60

Astropotamobius 
torrentium

Native 21.4 ± 9.9 11.5 ± 0.7 1 1.70 2008–2011 17.50

Astropotamobius 
pallipes

Native 21.4 ± 2.4 15.3 ± 3.90 2.8 1.78 1994–2019 3.8

Pontastacus lepto-
dactylus

Native 11.2 ± 1.2 10.3 ± 1.2 0.88 2.80 2005–2017 5.70

Faxonius limosus Non-native 24.2 ± 9.4 16.2 ± 7 2.13 2.79 1983–2019 0.63

Pacifastacus lenius-
culus

Non-native 25.1 ± 1.9 24.2 ± 5.4 3.00 7.14 1995–2011 8.62

Procambarus clarkii Non-native 25 ± 1.8 24.4 ± 4.2 3.73 10.23 1994–2018 12.40



Page 8 of 14Haubrock et al. Environmental Sciences Europe           (2024) 36:70 

to sample rare habitats that might be occupied by cray-
fish [26], also the time the sampling was conducted. This 
is, because trapping (which was not underlying data 
reported by Haase et al.  [43] should be conducted over-
lapping with crayfish activity patterns (i.e., between dask 

and dawn; [21] and information on different effectivities 
of kick net sampling between night and dark not being 
assessed. Moreover, the surface sampled by the respec-
tive method being small and thus inadequate to sample 
crayfish when occurring in lower densities, or if a method 
has more frequently been used in areas with remnant 
populations of native species. Indeed, while the scarce 
appearance of native crayfish species such as A. astacus 
likely relates to decade long decline in populations [70], 
two of the native species—Austropotamobius pallipes 
and Austropotamobius torrentium—have also declined 
substantially, being now listed in Annex II of the Euro-
pean Habitats Directive, meaning that EU Member States 
are required to designate Special Areas of Conservation 
for their protection [17]. The strikingly low number of 
these species’ occurrences (0.82% and 0.10%) and simul-
taneously the low number of invaded time series (8.76% 
of species-level observations are considered, 17.46% if all 
crayfish records are considered) and generally low abun-
dances raise concerns about the adequacy of the applied 
sampling methods (predominantly kick net sampling) 
in catching crayfish, and, respectively, the assessment 
scheme considering the presence of non-native crayfish.

Moreover, long-term biomonitoring efforts identified 
crayfish in every country that reported data in Haase 
et  al., [43] except for Austria, Belgium, Cyprus, Czech 
Republic, Finland, Ireland, Italy, Latvia, Norway, Switzer-
land. The key issue, however, centers on the inconsistent 
and sporadic reporting of (especially non-native) cray-
fish populations over time. Given that efforts to manage 
non-native crayfish populations are often unsuccess-
ful [37], the occurrence of crayfish sightings in isolated 
years—interspersed with periods where they are not 
observed—raises questions about the effectiveness of 
sampling methods in accurately capturing a representa-
tive sample of the benthic macroinvertebrate community, 
particularly for large-bodied crustaceans such as crayfish. 
It is conceivable that crayfish populations were present at 
low densities, resulting in their sporadic detection being 
merely coincidental. However, it is well-documented that 
non-native crayfish typically achieve high population 
densities [36], which underscores the necessity for more 
thorough research and investigation.

Limitations impact assessment outcomes
It is arguably true that all sampling methods for the WFD 
have certain weaknesses (see, e.g., [8]). In our case, how-
ever, an obvious weakness is the general lack of focus 
on crayfish, which is in part due to, e.g., kick netting-
based biomonitoring protocols not taking into account 
the evading nature and burrowing ability of crayfish 
[95], their habitat use (i.e., sheltering under rocks, logs, 
and other debris  [26], or the lack of a wider application 

Native crayfish

Non-native crayfish

2005-2019

2012-2019

1992-2018
1979-2011

2004-2019

1997-2019
1993-2019

1985-2019

1995-2018

2006-2017

1996-2019

1983-2012

2011-2016

2001-2019

1994-2011

2000-2018

Fig. 4 Distribution of the occurrences of crayfish identified 
at the species level in each time series. The colors represent 
the geographic origin of each time series. Data were obtained 
from Haase et al., [43]. Dots represent annual occurrences 
while bars represent years without the detection of crayfish 
between occurrences
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of baited traps or hand capturing [41] as these are not 
used in any long-term sampling protocols considered 
in this work. Furthermore, methods such as the IBGN 
(which utilizes a specific type of multi-habitat sampling) 
are seemingly biased against catching crayfish as elec-
trofishing—another common way of capturing crayfish 
[33]—at the same site has previously resulted in more 
crayfish species and individuals being caught (pers. 
comm. Anthony Maire). However, compared to the on 
average 4 ± 6.5 non-native crayfish individuals and the 
observed maximum of 78 individuals recorded within 
one sample collected with kick net sampling in Spain in 
1998 (although these might be early juveniles still asso-
ciated with their mother) underlines that long-term 
biomonitoring is able to detect non-native crayfish [39]. 
Additional efforts should nevertheless assess the abili-
ties of kick-netting to pragmatically and accurately assess 
crayfish abundances, as we were unable to identify the 
reasons why 23 samples between native and 152 samples 
between non-native occurrences recorded single cray-
fish occurrences. This is, as about half of the non-native 
crayfish observations were non-continuous occurrences 
(50.33%), whereas 83.20% of the data gaps were due to 

non-reporting or non-detections, and only 16.80% due 
to non-continuous sampling, ultimately suggesting that 
identified gaps most likely present false negatives.

Biomonitoring schemes may consequently underesti-
mate non-native crayfish presences and shifts over time 
[93] due to the Water Framework Directive’s focus on the 
ecological state rather than biodiversity (mirrored by the 
lack of [non-native] crustaceans in the methods used for 
assessing the ecological status in rivers based on inver-
tebrates; [104]. Indeed, because non-native species are 
also often associated with water bodies of a lower eco-
logical status and impacted biodiversity, non-native spe-
cies were recognized as a Water Framework Directive 
pressure in 2002, but few Member States have explicitly 
included them in their assessments [104]. This is a signifi-
cant shortcoming, as current Water Framework Directive 
assessments inadequately address the impacts of non-
native crayfish on biological quality elements (BQEs). 
Arguments, however, exist for and against explicitly 
incorporating non-native species into the Water Frame-
work Directive, with recommendations for their inclu-
sion [10, 13, 28, 29, 100, 101]. Recent findings for instance 
demonstrated that non-native macroinvertebrates, such 

Fig. 5 Relative proportion of sampling methods and assessment schemes listed for time series collated by Haase et al. [43], reporting native (left), 
non-native (middle), or no crayfish species (right). See Additional file 1: Table S1 for the country of origin and sampling methods for each time series 
reporting crayfish and Additional file 1: Table S2 for details on acronyms. Note that some assessment schemes are ultimately based on methods 
that are also displayed
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as Dikerogammarus villosus, have the potential to dis-
tort the assessment of degradation in the Water Frame-
work Directive [3, 32]. They can influence the evaluation 
of zonation types and result in inaccurate assessments 
of the "general degradation" module or the degree of 
organic pollution, as they impact the estimated values of 
the German saprobic index based on the Aquatic Qual-
ity Evaluation in Macroinvertebrates taxa reference list 
[51]. Such a distortion can occur when non-native crus-
tacean species dominate invaded ecosystems by attaining 
high local densities [3], developing the potential to cause 
the decline of native species and alter community com-
positions of both flora and fauna [23, 73]. Recent obser-
vations also indicate that fish invasions can influence the 
results of quality assessments by affecting the scoring 
system. Non-native fish, classified as ’intolerant,’ often 
receive positive scores, suggesting a "good" ecological sta-
tus [54]. While it may not be the case that benthic inver-
tebrate protocols give non-native crayfish positive scores, 
misidentifications may have distorting outcomes.

The absence of crayfish in 75.6% of all time series (con-
sidering also entries at the genus and family level) and 
only 10.5% reporting crayfish at the species level raise the 
question if the sampling protocols consider non-native 
crayfish in the evaluation of samples and if specimens 
were simply avoided or willingly excluded—possibly 
being considered irrelevant for the respective estimation 
of the Water Framework Directive-compliant quality met-
rics evaluating the ecological status by local stakehold-
ers. Indeed, the most frequently employed indices, such 
as the Biological Monitoring Working Party or its asso-
ciated Average Score Per Taxon, assign scores to various 
taxa, including Astacidae, and consider them as indicator 
taxa or pressure. However, they do not consider species 
belonging to the genera Procambarus or Faxonius. This 
suggests the need to integrate non-native species into 
Water Framework Directive assessments more effectively, 
as their presence can significantly alter aquatic ecosys-
tems. Furthermore, specific research groups seem to 
make decisions regarding the inclusion of Astacidae cray-
fish, which might be related to their native or endangered 
status or how frequently they are caught. This raises con-
cerns that some non-native crayfish may be overlooked 
or willingly ignored when conducting community-based 
biomonitoring or that remaining populations are often 
of lower population density, protected, and subsequently 
kept secret [98, 107].

Recommendations
Long-term biomonitoring data present opportunities for 
studying native and non-native crayfish trends. The dif-
ferent sampling methods, sampling protocols, and Water 
Framework Directive compliant assessment systems 

used across European Union member states affect the 
detection of crayfish species, particularly when species 
are misidentified as seen by Krieg and Zenker [61]. The 
low detection rates of native crayfish further suggest the 
need for additional research into factors such as habitat 
changes, competition with non-native species, or the 
development of more effective, targeted sampling meth-
ods in standard biomonitoring protocols. Although kick 
net sampling has a large Catch Per Unit Effort and high 
detection probability [88], it is biased towards capturing 
smaller individuals of crayfish. These, however, consti-
tute a significant share of crayfish populations [4], sug-
gesting that kick net sampling should be an appropriate 
method for noticing the presence of crayfish. Trapping 
is also a relatively time-intensive approach that has pro-
duced limited large-scale and long-term information on 
non-native crayfish populations [25, 67, 80] and tend to 
overlook smaller individuals [14, 34, 64]. Factors such as 
weather conditions may also affect the effectiveness of 
baited traps [64, 82], resulting in non-native crayfish not 
being detected. Crayfish, however, inhabit areas that are 
not always effectively sampled using kick net sampling 
[31, 39, 79], such as under stones, logs, or in burrows and 
in greater depths (Larson and Olden, 2006 [60], or may 
evade capture through escape reactions [84]. The inabil-
ity to accurately identify species (e.g., juvenile noble vs. 
signal crayfish), raises additional concerns that detected 
non-native crayfish species could falsely indicate good 
ecological quality in assessments (and vice versa), despite 
their significant negative impact on the invaded ecosys-
tem. Considering that non-native crayfish pose a sig-
nificant threat to native biodiversity, including native 
crayfish species which are of utmost relevance and con-
servation value [44, 99], their limited consideration and 
inclusion in long-term biodiversity monitoring through 
focused sampling further raises concerns about the accu-
racy of non-native species impact assessments using 
long-term data, as well as the assessment of stream qual-
ity following the WFD.

Biomonitoring as part of the WFD should also con-
sider the effectiveness in using environmental DNA-
based methods to detect non-native species [42, 53, 
83] and continue to collate available information and 
make them openly accessible. This is of integral impor-
tance, because updateable biomonitoring data com-
piled in large data sets such as Haase et  al. [43] can 
provide novel insights [48, 92, 93]. Moreover, a central-
ized European database could circumvent issues arising 
from questionable information on sampling procedures 
underlying community data. Despite these challenges, 
biomonitoring efforts remain crucial, particularly in 
evaluating non-native species and their impacts, as 
these are often abundance mediated [46]. Future efforts 
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should be made to (a) unify how the WFD considers 
non-native species and (b) specifically target the cap-
ture of high-impact non-native species such as crayfish 
that may not be adequately sampled by existing pro-
tocols and methods (such as manual search assisted 
with a hand-held net at places of possible occurrences 
or baited traps at hardly accessible deep places). In the 
case of non-native crayfish, the establishment of such 
a ‘best-practice’ should be explored by future efforts to 
identify the most suitable (i.e., widely applicable and 
standardizable) approach. Concomitantly, (b) the time-
scale of non-native crayfish-focused monitoring should 
be assessed, delineating whereas (c) the implementa-
tion of native and non-native crayfish presences into 
schemes assessing the ecological state [104] should be 
explored, as their presence can have practical impli-
cations for management and conservation practices, 
including habitat restorations [91], the conservation of 
native [49], and the management of non-native popula-
tions [71].
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