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Abstract 

Plants are crucial because they give us food and oxygen. With the idea of living on other planets and taking long 
trips in space, we need to understand and explore the way how plants can survive in these strange places. However, 
while the gravity response on earth’s surface has been extensively studied in plants, in space, where the gravity is very 
weak, things get confusing. One of the intriguing and essential subjects for space life is understanding how plants 
can sustain themselves in microgravity conditions. To investigate this, various clinostat devices and the CRISPR/
Cas9 technique are crucial tools for exploring the functioning of PIN‑formed protein and related signal transduction 
pathways. In this review, we aim to provide researchers with a brief overview of the mechanisms of CRISPR/Cas9, 
which can be immensely helpful when using this method alongside clinostat machines. Our primary goal in this 
review is to address the missing gaps in existing literatures, focusing on how plants perceive gravity and experimental 
approaches applicable for studying their responses to microgravity, both on earth and in space.
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Introduction
Gravity plays a vital role in plant growth and morpho-
genesis [1]. For a plant to carry out a variety of physi-
ological and biochemical processes effectively, it must 
be of the appropriate size and shape. As a result, plant 
life is primarily reliant on the control of growth for size 
and morphogenesis for form. Specific genetic modules 
have a significant role in regulating development and 

morphogenesis in both animals and plants. However, 
the environment around plants also provides cues that 
affect growth and development, including light, tempera-
ture, water [2], and gravity [3]. Gravity is regarded as a 
unique environmental signal because it is always pre-
sent on Earth in the same direction and magnitude [4]. 
Gravity has been widely considered as one of the most 
reliable and constant signals for plant development and 
continued existence [5]. However, since micrograv-
ity is a fundamental aspect of orbital flight in space, we 
believe that plant development and morphogenesis will 
be significantly affected in space [6]. Recent study sug-
gests that the gravity level on Mars is strong enough to 
stimulate the flow of auxin, which is not in case of Moon 
where gravity is weaker and produces greater changes [7]. 
Plant cultivation in space, also known as “space farming” 
is crucial for the development of long-term human space 
travels. Plants play a pivotal role in bioregenerative life-
support systems (BLSS) by providing essential factors 
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and nutrients, including oxygen and valuable vitamins. 
They can also help to regulate atmospheric humidity 
and recycle carbon dioxide, which can upset the balance 
in space environments [8, 9]. The presence of gravity is 
essential for plant growth and development, as it is one 
of the key environmental factors that influence them. 
Microgravity has been studied in many different living 
organisms, including mammals and bacteria. It is gen-
erally considered a stressor for these organisms, but the 
effects can vary in the species. The null or altered grav-
ity have two effects on organisms, one direct and another 
is indirect, the direct effect is referred to changes in the 
physiological process within organisms, e.g., the altera-
tion in the mechanisms of biological reactions such 
as the way cell produce energy or the way protein fold, 
the indirect effect is the physical changes to the envi-
ronment surrounding the organisms that may impact 
its physiological processes such as the liquid or gasses 
behave in the microgravity [10]. The indirect effect can 
be mitigated with proper ventilation and adequate water 
treatment systems, as recently done in Veggie and APH 
facilities on the ISS [11–13]. The impact of micrograv-
ity on plants has been a subject of great interest to sci-
entists. Particularly in the context of space research, a 
major concern is the potential side effects of microgravity 
on plant growth and development, including alterations 
in soil water diffusion that affect hydration and disrup-
tions in gas exchange vital for plant survival. Analyzing 
experimental results in microgravity is challenging due 
to the difficulty in distinguishing between these effects. 
Nevertheless, efforts have been made to replicate micro-
gravity conditions on earth to gain better understanding 
of their potential impact on plant growth. When plants 
are exposed to microgravity, such as in space, they can 
undergo changes in their growth patterns, cell structures, 
and overall weight distribution. In microgravity, plants 
may experience bending stresses and specific mechani-
cal stimuli that are not random. These forces can impact 
their growth and development, shaping their physical 
structure, and how they interact with their surround-
ing [14, 15]. Consequently, more research is needed to 
identify various molecular and technical approaches to 
accomplish the role of gravity on both the earth’s surface 
and in orbit, which are good for plant survival in earthly 
and extra-terrestrial life. Based on this study, we sug-
gested to researchers from around the world to use the 
CRISPR/Cas9 genome-editing technique to overcome 
the effects of gravity and microgravity in plants. We also 
work in this area of research separately and aim to con-
tribute good research for the scientific community in the 
near future. In our previous work, we investigated the 
impact of both artificial and normal gravity on rice plants 
and identified the differential expression in the OsPIN 

genes [16]. However, the present review investigates the 
significance of normal gravity and microgravity effects 
on plants on Earth and during space travel, exploring the 
use of CRISPR/Cas9 technique in application far beyond 
cultivation. To achieve this, it is essential to identify the 
optimal genomic targets within the plants that can with-
stand harsh conditions such as extreme drought, salinity, 
heat, microgravity, and space.

Effects of gravity on plants
For a plant to develop its root system in the direction of 
gravity, anchor itself in the ground, and grow upwards 
toward the sun, it requires the stimulus of gravity act-
ing as a guiding force. Understanding “up” and “down” 
is essential for plant existence on earth [17]. In addition, 
it is necessary for photosynthesis, which produces food 
and oxygen, and therefore for all life on Earth. Studying 
the effect of gravity on orientation and growth in plants 
is facilitated by the ability to cultivate them. Through this 
method, significant advancements have been achieved 
in comprehending how plants sense gravity and respond 
through gravitropism [18]. The alter gravity condition 
disrupts the meristematic competence in cells located 
within the root apical meristem [19, 20]. Gravity has been 
a constant force shaping the evolution of plants, conse-
quently impacting all aspects of their growth, develop-
ment, and morphology. Furthermore, gravity plays a 
fundamental role in various physical phenomena, includ-
ing buoyancy, convection, and sedimentation. The pro-
cess of sedimentation of amyloplasts under gravity and 
microgravity condition is described in Fig.  1C. These 
phenomena, in turn, indirectly govern crucial aspects of 
plant growth, such as gas exchange, cellular respiration, 
and photosynthesis, which can be influenced by alter-
nations in buoyancy. According to data from numerous 
studies, the phytohormone, auxin, has been identified 
as the factor that initiates a cascade of functional events 
leading to the alteration of meristematic cell proliferation, 
growth, and subsequent disruption of meristematic com-
petence [21]. This hormone serves as a primary regulator 
of the delicate balance between cell proliferation and cell 
differentiation within meristems, forming the founda-
tion for the significant role of meristematic tissue in plant 
development [22]. In addition, auxin exerts influence 
over various aspects of plant and development, encom-
passing the regulation of cell cycle progression as well as 
the coordination between cell growth and cell division 
[23]. Taking a broader perspective, auxin plays a critical 
role in regulating the link between stimuli detected by 
the plant and the subsequent cellular responses to these 
stimuli [24]. The molecular aspects of auxin and the 
genes associated with auxin efflux and influx facilitation 
under gravity conditions are described in “"Molecular, 
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cellular, and physiological aspects of plants under gravity 
conditions” section.

Gravity, microgravity, and hypergravity
Gravity is a natural fact, in which material objects attract 
each other with a force of inversely proportionate to the 
square of the distance between them and proportional 
to the masses of each object. Every planetary body has 
a gravitational field surrounding it that attracts all other 
things toward it. At the earth surface, the magnitude of 
the gravitational field is described as an acceleration of 
9.81 m per second (m/s2) and commonly termed as “1 g”. 
In comparison to gravity on Earth”s surface, microgravity 
is relatively small. It is defined as one millionth of gravi-
tational force on earth’s surface and is symbolized as “µg” 
(where the Greek mark “µ” represents one millionth). 
In mathematics, g equals 10 6 g; however, microgravity 
describes the acceleration of less than 1 g. Hypergravity is 
defined as an acceleration force that exceeds the gravita-
tional pull at the earth’s surface, that is greater than 1 g. It 
can be simulated in a laboratory using a centrifuge, which 
is capable of replicating the acceleration and decelera-
tion forces experienced by spacecraft during takeoff and 
landing [26]. In addition, hypergravity experiments sup-
port microgravity research by assisting in the discovery 
and comprehension of gravity-related phenomena [27, 
28]. Plants exhibit a consistent response to gravity known 
as gravitropism. However, gravity remains relatively 

constant throughout much of the earth, with only a neg-
ligible variation. For instance, Mount Everest, the high-
est point on earth, has a slightly lower acceleration due to 
gravity compared to sea level, with just a 0.3% difference. 
In contrast, microgravity in space is considered the most 
significant abiotic stress for plant [29]. Zero gravity refers 
to the absence of gravity, which is significantly different 
from the gravitational conditions experienced on earth, 
particularly in space [30].

Microgravity‑generated conditions
Real microgravity conditions
Short-term gravity can be generated in balloons (30–60 
s), drop towers or drop shafts (2–10 s), parabolic flights 
of aircraft (20–25 s), or sounding rockets up to 15 min) 
(Fig.  2). Gravity is reduced by approximately 16.5% 
(16.20  m/s2) on the Moon and 38.0% (3.721  m/s2) on 
Mars compared to Earth [31]. These approaches are 
suited for systems that must respond quickly. To inves-
tigate the long-term effects of microgravity, satellite or 
human-tended space labs must be used. The creation of 
space stations realized the ideal of humans spending an 
extended period in space. The Russian MIR space sta-
tion, which hosted over 100 astronauts and cosmonauts, 
orbited the Earth at an altitude of 300–400 km. Since 
1998, the International Space Station (ISS) has been con-
tinuously orbiting the Earth, offering accommodation for 

Fig. 1 Schematic representation of advanced plant structures. Graviperception takes place in specialized gravity‑sensing cells (statocytes) 
in the root cap. These statocyte cells are most probably present in the endodermal region of the plant cells, where starch granule amyloplast 
sedimentation occurs under stimulated gravity conditions. A The PIN‑formed protein also contributes to the facilitation of auxin efflux and influx 
under stimulated gravity conditions, and B shows that different parts of the plants perceive gravistimulation, adopted from Kolesnikov et al [25]. 
whereas C shows the amyloplast position in the roots and shoot part of the plant. It also describes the amyloplast sedimentation in normal gravity, 
microgravity, and simulated microgravity conditions
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up to six astronauts and serving as laboratory for con-
ducting systematic microgravity research [32].

Simulated microgravity environments
Multiple ground-based facilities and equipment have 
been developed by scientists to achieve the condition 
weightlessness. In a pool, bouncy offsets gravity, produc-
ing a simulated microgravity environment that makes 
it ideal for astronauts to receive underwater training 
(Fig.  2). On earth, scientists can generate microgravity 
using specialized device like a random position machine 
or clinostat. These machines move along specific trajec-
tories, often random, to counteract the effects of gravity 
[34]. Magnetic forces have also been found to serve as 
a valuable substitute for microgravity in ground-based 
experiments [35]. They can cause levitation of cellu-
lar organelles, including statoliths in roots, hypocotyls, 
rhizoids, and bacteria [36–38]. Although, these plat-
forms do not eliminate gravity itself but continually alter 
its direction [15]. In zero gravity, the absence of convec-
tion becomes problematic as it hinders the movement 
of gasses around tissues, which can affect gas exchange. 
An example of the influence of gravity can be seen in 
amyloplasts, where stored food (starch) is involved in 

gravity perception. However, long space missions pre-
sent challenges for seed performance, nutritional con-
tent, and plant flavor due to hostile space conditions. 
Simulating gravity, such as through rotational artificial 
gravity using centrifugal force, can help mitigate gravi-
tational stress. The Stanford torus systems, rotating at 1 
rpm with a diameter of 1.8 km and a mass of round 10 
million tons, is an example of such an approach [39]. 
Moreover, a clinostat is an investigational device that can 
balance the gravity direction nearby single or dual turn-
ing axes. However, studies carried out in environments 
that mimic microgravity must be supported by research 
done in actual microgravity [32]. Drop towers offer short 
but high-quality microgravity exposure (up to 5–10 s) at 
a relatively low cost (around 6,000–10,000€ per drop) and 
boast a quick turnaround time (2–3 drops per day). How-
ever, their drawbacks include the limited duration and 
potential for up to 50 g of landing acceleration, rendering 
them unsuitable for all experiments, Nevertheless, they 
are increasingly popular for biological research, particu-
larly for repaid molecular assessments like phosphopro-
teomics and the study of secondary messenger signaling 
during the initial stages of microgravity response [40]. A 
recent study suggests that reduced gravity and the lack of 

Fig. 2 The evaluation of gravity conditions for the earth or orbit. The stimulated gravity conditions for both long and short term while using 
different platforms. Source: [27, 33]
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convective forces have been shown to facilitate the for-
mation of protein crystals more efficiently. This improved 
crystallization process significantly contributes to our 
ability to more readily determine the intricate structures 
of proteins, thereby accelerating progress in drug devel-
opment [41]. It has been reported that the micrograv-
ity simulator rotating-wall vessel (RWV) is capable of 
achieving high-density, 3D cell cultures, exemplified by 
the growth of BHK-21 cells to 1.1 × 107 cells/ml. It pro-
vides a low-shear, well-oxygenated culture environment, 
making it suitable for various cell types, including normal 
and neoplastic cells [42]. A recent study reported find-
ings regarding the effects of microgravity simulator ran-
dom positioning machine (RPM) on Fusarium, including 
increased growth, spore production, and germina-
tion, while biofilm production was reduced under RPM 
exposure [43]. Previous study reported that the water 
immersion method is used in medical science to simu-
late microgravity. Contrary to most land plants, rice is 
exceptional because its coleoptiles grow faster underwa-
ter than in the air [44]. The enhanced growth is a result 
of increased cell elongation in the submerged environ-
ment despite limited oxygen availability [45]. It has been 
reported that the rice coleoptiles (Oryza sativa L. cv. 
Sasanishiki) reached a maximum length of 81.2 mm on 
day 5 when grown underwater, whereas in the air, they 
reached only 12.4 mm, this difference could be possibly 
attributed to the buoyancy effect [46]. A recent study 
shows that the alter gravity enhances the amino acids 
profile, but this effect can be reversed after 11 days of 
microgravity. These changes suggest a protein degrada-
tion process and the conversion of specific amino acids 
into glucose and ketoleucine, particularly in micrograv-
ity [47]. However, studies still not yet fully understand 
how organisms detected gravity and initiate subsequent 
response. Cellular mechanisms operate at various levels, 
including transcriptomic, proteins, metabolisms, and 
ions. Metabolomics, a relatively new field, is highly sensi-
tive and can produce strong effects in response to minor 
cues, often much more significant than what is observed 
in genomics or proteomics. For instance, disease-related 
metabolic markers can change by 100 to 10,000 times, 
while protein markers typically only changed by 1 to 10 
times in response to stimuli [48–50].

Clinostats
In the late 1800s, Sir Thomas Knight, Sachs, and Ciesiel-
ski believed that gravity was the most important factor to 
plant growth and development [51]. Consequently, many 
types of clinostats were developed over time to study and 
identify the effects of gravity on organisms [10, 52–54]. 
A clinostat is a machine that aids in the rotation of speci-
mens around one or more axes, resulting in differential 

rotational speed and direction [55]. Various kinds of 
clinostat have been working to investigate the growth 
and development of plants to address fundamental prob-
lems in the field of gravitational biology. The machine 
clinostats are classified into various varieties based on 
their rotational speed and direction: clinostats with two 
or three axes of rotation, as well as clinostats with a sin-
gle axis that rotates slowly (1–4 rpm) or quickly (50–120 
rpm). The system is referred to as a random positioning 
machine when the rate of rotation for the axes fluctuates. 
Furthermore, magnetic levitation has been employed for 
these instruments to balance gravity [56].

Role of the rotating clinostat in growth 
and morphogenesis
Microgravity can be created through free fall or parabolic 
flight for a relatively short period of time, which is usually 
insufficient to cause noticeable changes in plant develop-
ment and morphogenesis [57]. The microgravity effect 
was produced using a device that has a horizontal axis, 
which compensates for the unilateral impact of gravity. A 
horizontal clinostat is commonly thought to be conveni-
ent; however, it has some limitations, such as steady air-
flow or solution flow and the fixed trigger of the lateral 
sides of the materials [27, 33]. A three-dimensional (3D) 
clinostat has two rotating axes at right angles to avoid 
these risks [57]. In most plant materials, three-dimen-
sional clinostats with randomly rotating motors have lit-
tle effect on growth-regulating factors over a short period 
of time [33, 57]. In addition, long-term rotation created a 
cellular structure that may result in excessive growth [27, 
53, 58]. These data could be attributed to the clinostats 
incapacity to eliminate the static component of gravis-
timulation, as the device solely enables dynamic gravis-
timulation in a clockwise direction [53, 58] (Fig. 3).

Alternately, the clinostat rotation significantly altered 
plant development. Various plant materials have been 
observed to undergo automorphogenesis on clinostats, 
according to earlier research by Sachs and Pfeffer [33, 
57, 59]. Automorphogenesis involves alterations in the 
growth orientation or unconfined curvature of organs 
[53, 57]. Previously, it was discovered that clinostat rota-
tion at 12 rpm changed the direction of root and shoot 
growth, with shoots growing downward toward the 
earth’s surface and roots growing upward toward the 
direction of light. This improved the amino acid profile of 
rice seedlings compared to the control [16]. On a 3D clin-
ostat, plant roots exhibit an initial growth pattern toward 
the tips of root primordia, after which they diverge 
toward irregular direction [57]. In addition, the growth 
pattern of several species, including pea, maize, rice, and 
garden cress, occurs at random during the early and late 
growth phases. Contrarily, plant roots that have grown in 
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the clinostat exhibit automorphic curvature. This auto-
morphic curvature has no dorsiventrality, and it occurs in 
an erratic direction [60].

Gravity perception models
Various theories have been proposed to explain how 
higher plants perceive gravity. According to [61] in 
plants, there are two major hypothesis related to gravi-
perception are the protoplast-pressure model and starch 
statoliths that are describe here. Both the ideas about 
protoplast and statoliths have their own importance 
and evidence [62, 63]. The protoplast pressure idea sug-
gests a few things (1) in many unicellular organisms 
that respond to gravity, such as Euglena, and in certain 
cells of the alga Chara, sedimenting particles that typi-
cally settle in response to gravity are notably absent. (2) 
The density of the surrounding fluids affects the way 
cytoplasmic streaming responds to gravity in the inter-
nodal cells of the Chara. (3) Based on inhibitor studies, 
there is a potential that molecules similar to integrin’s 
can detect variation in protoplast pressure. (4) The den-
sity of the external medium also seems to influence how 
gravitropism functions in the roots of Oryza sativa. (5) 
Starch-deficient Arabidopsis mutants demonstrate the 
ability to perceive gravity. The contemporary support 
for the protoplast pressure hypothesis is rooted in the 
research conducted by [64], which investigated gravit-
ropism in wheat coleoptiles, as well as the study by [65], 
which explored cytoplasmic streaming in intermodal 
cells of Chara. Interestingly, during the late nineteenth 
century when gravitropism was first studied, several Ger-
man botanists also put forward a protoplast model for 

gravity perception, as discussed in a review by [66]. The 
key point made by proponents of the protoplast pressure 
hypothesis is that research findings from gravitropism 
studies involving starch-deficient mutants (e.g., stud-
ies conducted by [67–69]) align with the statolith theory 
but fail to definitively distinguish between the gravita-
tional pressure and statoliths theories of gravity sensing 
as suggested by [70]. However, it is important to note that 
most of the evidence supporting the protoplast model 
comes from studies of cytoplasmic streaming in special-
ized giant internodal cells of characean algae as described 
by [65, 66]. This evidence may not fully represent the 
more widespread gravitropism observed in various plant 
groups. There is, however, one study on gravitropism in 
rice roots that lends support to the protoplast model as 
documented by [70] There are still arguments in support 
of Nemec and Haberlandt’s concept, which predictably 
combines statoliths with gravity perception [71]. This 
hypothesis explains how gravity simulates the special-
ized cells called statocytes in axial plants. Amyloplasts, 
which have a diameter of 1.5 to 3 µm and serve as the 
source of stimulation, move too rapidly toward the distal 
end of the cell to effectively interact with specific cellu-
lar components. As a result, the amyloplasts are known 
as “statoliths” and their purpose is to act as sensors of 
the gravitational pull. The starch statolith model [72–74] 
is the most widely accepted hypothesis and is supported 
by numerous facts. Previous studies have demonstrated 
a close relationship between the location of statoliths 
and the location of gravity sensing. During gravistimula-
tion, amyloplasts in statocytes redistribute or sediment 
as opposed to other cell organelles. In addition, plant 
components such as roots, shoots, pulvini, and gyno-
phores exhibit a reduced ability to react to gravitational 
stimuli when amyloplast lack starch as depicted in Fig. 1. 
This is evidenced by weak gravitropic response observed 
in the starch less mutants of various plant species such 
as Arabidopsis thaliana (e.g., pgm1), rice (Oryza sativa), 
and Nicotiana tabacum [68, 75–84]. It was previously 
reported that small prokaryotic organism such as bac-
teria may not be able to respond to gravity due to the 
Brownian motion [85–87]. However, recent studies have 
observed changes in membrane fluidity in response to 
gravity, shedding new light on this consideration and 
potentially change the previous view [88]. Various slime 
molds, fungi, and fern structures exhibit distinct gravit-
ropic responses, including gravitaxis, gravitropism, and 
negative gravitropism [89]. It has been reported that 
plants use gravity to grow up and down using pathways 
involving PIN proteins and calcium, they help plants 
to grow better in space and tackled food challenges on 
earth [90]. Polar auxin transport after plant reorientation 
results in asymmetric distribution, leading to differential 

Fig. 3 The 3D clinostat device showing the outer supporting frame 
(left) is long 1.40 m. Illumination apparatus (IA), inner frame (IF), motor 
with an encoder (M), outer frame (OF), slip ring (SR), and sample stage 
(SS). Source: [53]



Page 7 of 14Farooq et al. Environmental Sciences Europe           (2024) 36:28  

growth and bending. PIN1 and PIN7 exhibit distinct 
polarizations in pro-embryos and adult plants based on 
cell type and developmental stage, influencing direct 
auxin flow [91] (Fig. 4).

Lipid signaling
Phosphoinositide‑specific phospholipase C
The phosphoinositide-specific phospholipase C (PI-PLC) 
hydrolyzes phosphatidylinositol-4,5-5biphosphate (PI4,5-
P2) to generate inositol-1,4,5-triphosphate (IP3) and dia-
cylglycerol [92]. The involvement of IP3 in the release of 
calcium from intracellular reserves is unique and specific 
to cellular functions [93]. Several studies support the 
idea that PI-PLC and its by-product IP3 play a key role in 
gravity signaling. Molas and his colleague have observed 
that the level of biphasic IP3 exhibit two distinct phases 
of fluctuation in response to gravity. During the initial 10 
to 15 s of gravity rotation, there is a significant increase 
in IP3 levels observed in the lower section of maize (Zea 
mays) and both upper and lower sections of oat (Avena 
sativa) pulvini, constituting the primary phase.

Following 30 min of gravistimulation, the second phase 
of dynamics was noted, characterized by a notable surge 
in IP3 levels in the elongating lower portion of pulvini, 
leading to a high level of IP3 [94, 95]. The entire Arabi-
dopsis inflorescence stem responded to short-term grav-
ity by increasing IP3 levels in two phases. The occurrence 
of the second IP3 peak in the underside of the pulvini 
signifies a consistent role of IP3 generation in the trans-
mission of gravitational signals [96]. Contrastingly, the 
beginning of their twisting reaction coincides in timing 
with the duration of the second IP3 phase in plants [94, 
96]. The sustained elevation of IP3 through a prolong 
duration that depends on PLC activity may cause meta-
bolic asymmetries that result in the proliferation of each 
pulvinus half cells differently [97]. The exact mechanism 
by which gravity activates the PI-PLC is unknown. The 
increase in IP3 levels in response to gravitational stimuli 
is independent of auxin transport [95, 97]. The inhibi-
tion of calcium channels by lanthanum ions and protein 
phosphatases 1 (PP1) and 2A (PP2A) by okadiac acid 
results in the hindrance of IP3 accumulation and the 

Fig. 4 Schematic representation of a phylogenetic tree of genes involved in gravitropism in various taxonomical groups shows the subcellular 
localization of PIN transporter
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corresponding gravistimulatory response [95]. A delay in 
the increase of IP3 levels occurs when the starch levels 
are lowered in the lower half of the shoot pulvinus sta-
toliths. In addition, certain internode tissues divide of 
amyloplasts displayed no alterations in IP3 levels upon 
exposure to gravitational stimuli [94, 97].

This suggests that PI-PLC activation during gravity 
signaling may be impacted by amyloplast sedimentation, 
calcium, and protein dephosphorylation (Fig.  5). While 
long-term changes in IP3 levels were impacted, short-
term variation remained unaffected by the Pi-PLC inhibi-
tor, suggesting that different pools of PI-4, 5-P2, and 
related Pi-PLC contribute to different phases of IP3 pro-
duction, with varying degrees of sensitivity to the inhibi-
tor [97]. These findings might imply that various PI-PLC 
regulatory mechanisms and potentially multiple PI-PLC 
isoforms are implicated in gravity signaling.

Role of calcium in signal transduction
Calcium ion serves as a vital second messenger in sev-
eral signal transduction pathways, and the utilization of 
a calcium-sensitive luminous indicator called aequorin 
revealed a biphasic alteration in cytosolic calcium levels 
in A. thaliana upon exposure to gravitational stimuli. 
Moreover, petioles and hypocotyls showed this impact, 
while cotyledons did not. Studies have shown that the 
initial calcium peak remains unaffected by the plants ori-
entation relative to the gravitational field. In contrast, the 
second peak is more intense and lasts for a longer dura-
tion (20–35 s), and is reliant on the seedlings’ positional 
changes concerning the gravitational vector [98–100].

The modest level of fluorescence seen with aequorin 
suggests that the calcium variations in calcium levels may 
be restricted to specific cellular compartments or may be 
the result of a small group of cells that respond to gravity. 
Researchers discovered that in the single-celled spores of 
Ceratodon and Ceratopteris richardii, there was a trans-
fer of calcium across cells, moving from the outside envi-
ronment to the lower portion of the cells and from the 
upper region to the extracellular medium. This transfer 
of calcium reversed its direction after 25 s of exposure 
to gravitational stimulation [101]. After subjecting the 
creeping Chrysanthemum morifolium to 5 min of gravis-
timulation, it was found that there was an increase in cal-
cium accumulation in the cytoplasm of stem endodermis 
cells. In addition, the cell walls of the repositioned cells 
had a higher concentration of calcium on their lower side 
as compared to their upper side [102].

Despite ongoing research, the precise mechanisms 
responsible for regulating calcium transport during 
gravity signaling remain unclear. However, studies have 
shown that the sensitivity of roots and hypocotyls to 
gravity can be enhanced by introducing external calcium. 

Conversely, inhibiting calcium-dependent ATPase, cal-
cium channels, or mechanosensitive ion channels has 
demonstrated to impede gravitropism [101, 103–107]. 
Research into the mechanism linking variations in 
calcium to auxin transport mechanisms is still ongo-
ing [102]. The transient fluctuation in ions can be con-
verted through various mechanisms such as calmodulin, 
calcium-dependent protein kinases and phosphatases, 
phospholipases, or gene expression of calcium-sensitive 
proteins. Among the ways in which calcium influences 
gravitropism is by modifying the transport of PIN1. 
Moreover, experiments with transgenic plants that simul-
taneously overexpressed synthetic microRNAs targeting 
gene encoding Ca [2]+-ATPases exhibited higher levels 
of cytosolic calcium. These plants displayed abnormali-
ties in the basal localization of PIN1 in the root tip epi-
dermal cells, which interfered with the proper growth of 
gravitropic roots [102] (Fig. 5). The protein kinase, PID, 
is a vital modulator of auxin transportation and its activ-
ity is negatively controlled by calcium. In root region, 
ARG1 and ARL2 proteins function within a pathway dis-
tinct from amyloplast sedimentation [108, 109]. It might 
be possible that these proteins regulate vesicle transport, 
potentially including PIN3-containing vesicles through 
the interaction with actin cytoskeleton. Proteins ARG1 
and ARL2 directly interact with HSP70, potentially serv-
ing as molecular adapters that regulate folding, arrang-
ing, and assembly of components involved in gravity 
signaling pathways [110].

Molecular, cellular, and physiological aspects 
of plants under gravity conditions
Several transporters responsible for auxin influx and 
efflux, including AUX1/LAX (AUXIN-RESTANT 
MUTATION 1/LIKE AUX1) proteins, ATP BINDING 
CASSETTE B/MULTIDRUG-RESISTANCE/P-GLY-
COPROTEINS (ABCB/MDR/PGP), and PIN-FORMED 
(PIN) PROTEINS, are involved in generating and main-
taining the gravity-induced asymmetrical distribution of 
auxin [111, 112]. The polarized distribution of auxin pri-
marily results from the activity of PIN auxin efflux trans-
porters, which are localized in a polar manner within the 
cell membrane and transport auxin solely in one direc-
tion [113]. The PID gene family, comprising PID, PID2, 
WAG1, and WAG2, is pivotal in plant development and 
auxin signaling [114]. PID mutants exhibit phenotypic 
similarities to PIN mutants, suggesting a functional link 
[115]. Initially it was identified as a negative regulator of 
auxin signaling, PID later emerged as a positive regulator 
of auxin efflux carriers. Overexpression of PID alters PIN 
protein localization, and a model by [116] and colleagues 
suggests that PIN proteins may initially lack polarization, 
and becoming polarized upon phosphorylation by PID. 
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WAG1 and WAG2 are functionally redundant with PID, 
implying similar roles in plant development and auxin 
signaling, altogether emphasizing the complexity of gene 
interactions in these processes [117, 118]. These three 

kinases contribute to similar functions in root develop-
ment, particularly in processes such as apical hook open-
ing and photoresponse [118–120].

Fig. 5 Schematic representation of known gravity signaling pathways in plant cells. Each cell organelle of plant cells is gravity sensitive which 
develops very complex signaling pathways described here: DAG diacylglycerol, IP3 triphosphate, IP6 inositol hexakisphosphate, L ligand, 
ECM extracellular matrix, PA‑phosphatidic acid, PA-PLA1 phosphatic acid‑specific phospholipase  A1, PIP2 phosphatidylinositol bisphosphate, 
PIPK phosphatidylinositol phosphate kinase, PK protein kinase, PLC phospholipase C, PLD phospholipase D, PP protein phosphatase, PDK1 
phosphoinositide‑dependent protein kinase, PID serine/threonine‑protein kinase PINOID, R receptor, TOC translocon of the outer envelope 
of plastids, and ARP actin‑regulatory proteins. Source: Kolesnikov et al. [25]
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Notably, all three kinases exhibit BFA-insensitive local-
ization and play a role in phosphorylating PIN proteins, 
thereby affecting their subcellular distribution through 
processes that are insensitive to BFA [118]. However, 
PID2 has not been extensively studied. Evolutionary 
reconstruction and the observation that photoreactions 
are significantly more impaired in pid pid2 wag1 wag2, 
quadruple mutants compared to pid wag1 wag2 triple 
mutants suggest that PID2 may perform similar func-
tions with the other three kinases [121]. It is worth not-
ing that despite the changes in PIN protein distributions 
caused by PID-related phosphorylation, this modification 
can actually enhance the transport activity of PINs [122]. 
In the context of gravitropism, calcium ions play a cru-
cial role as a prominent second messenger [105]. Another 
significant component involved in this process is the 
calcium-responsive kinases (CRKs), which are sensitive 
to calcium signals; CRK5, member of this kinase family 
exhibits localization to the plasma membrane (PM) and 
is responsible for phosphorylating PINs, thereby exerting 
control over various aspects plant development [123].In 
the root transition region of crk5-1 mutant plants, there 
is a distinct reduction in the presence of PIN2 within the 
upper plasma membrane (PM) of epidermal cells, while 
conversely, an increase in PIN2 abundance is observed 
in the apical PM of cortical cells. Interestingly, this phe-
nomenon closely resembles the response seen in wild-
type plants when subjected to a low concentration of 
BFA (Brefeldin A0). It is important to note that this shift 
in PIN2 localization does not coincide with any changes 
in the distribution patterns of PIN1, PIN3, PIN4, or 
PIN7 [123]. Furthermore, CRK5 is implicated in various 
PIN phosphorylation mechanisms, exerting its influence 
beyond a singular pathway. This kinase plays pivotal role 
in the regulation of hypocotyl hook development, poten-
tially by modulating the phosphorylation state of PIN3. 
In addition, CRK5 exerts control over embryo develop-
ment through its involvement in the phosphorylation of 
PIN1, PIN4, and PIN7. These diverse functions highlight 
the multifaceted impact of CRK5 on plant growth and 
development [124, 125]. Another way CRK5 is known 
to target specific phosphorylation sites, such as S252 or 
S253 of PIN1, S271 of PIN4, and S431 as well as S277/
S278 of PIN7, it is noteworthy that there is currently 
no definitive in vivo or in vitro evidence to substantiate 
these specific phosphorylation events [125].

Together with CRK5, another principal contributor in 
the phosphorylation of most plasma membrane (PM)-
localized PINs is CPK29, a protein kinase. Their col-
laborative action serves to control the polarity of PIN 
proteins, primarily by orchestrating BFA-insensitive 
recycling mechanisms [126]. The PIN1-4 and -7 pro-
teins work together to regulate auxin distribution in 

the primary root [127]. These proteins are located in 
separatebut overlapping regions at the root tip [128]. 
The PIN1 helps the root meristem accumulate auxin 
from the shoot and is predominantly found in the lower 
membrane of vascular parenchyma cells. Furthermore, 
the gravitropic reaction was stopped by a mutant form 
of heat shock protein (hsp90) with abnormal PIN1 root 
expression or localization [129]. The PIN2 found in the 
upper region of root cap cells, moves auxin toward the 
root tip. However, in the root epidermal cells, PIN2 
directs auxin toward the shoot. This asymmetric distri-
bution of auxin mediated by PIN2 is necessary for the 
appropriate response to gravity in the root system [128]. 
The expression of both PIN3 and PIN7 is induced in the 
lateral root cap (LRC) columella cells of roots, which 
are present in the meristem area. In A. thaliana, FOUR 
LIPS (FLP) controls the transcription of PIN3 and PIN7 
[130]. Moreover, the OsPIN3, OsPIN4, and OsPIN7 genes 
appear to be involved in tropism, root meristem patter-
ing, and the establishment of embryonic polarity [131].

The gravitropism phenomenon, which occasionally 
captures the interest of numerous researchers, depends 
on the plant cytoskeleton [132]. According to the tenseg-
rity (“tension and integrity”) hypothesis, the cytoskeleton 
of a plant can work as a receptor and propagator of the 
gravitropic stimulus [132]. The cytoskeleton system is 
made up of microtubules, filamentous actin, and vari-
ous regulatory proteins. Furthermore, the use of inhibi-
tors that prevent the formation of microtubule or actin 
in plants emphasizes the importance of the cytoskeleton 
in gravitropism. The role of actin network disruption 
did not always correspond to an agravitropic phenotype, 
raising questions about whether or not it might encour-
age statolith sedimentation and the gravitropic response 
[133–135]. Therefore, it is thought that the actin cytoskel-
eton is more crucial than gravity sensing for regulating 
the resting and sedimentation of statoliths [132]. A con-
temporary study revealed that during root gravitropism 
in A thaliana, AtCRK5 plays an important role in the sta-
bilizing of reactive oxygen species (ROS) and nitric oxide 
(NO) [136]. During the gravitropic response of roots, 
the flow of auxin triggers an uneven distribution of both 
ROS and NO [137, 138], which affects PIN2 turnover and 
eventually causes auxin transport [133, 139]. Based on 
these findings, the hypothesis is that the auxin, ROS, and 
NO play a role in the fundamental response loop of the 
roots gravitropic response [136].

Conclusion and opportunities for future research
On the earth’s surface, plant growth and development 
rely on the vital stimulus of gravity. The prevailing theo-
ries purpose that gravitropism in plants resolves around 
the initial impact of gravity on statocyst sedimentation, 
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subsequently monitored by auxin redistribution, lead-
ing to differential cell growth responses. However, our 
understanding of how plants adapt to the challenges 
posed by microgravity conditions in space remains 
limited. In addition, the impact of this environment 
on the molecular mechanisms governing plant growth 
and development in response to gravity remains mostly 
unexplored. In recent years, the field has observed the 
emergence of various experimental techniques and 
technological platforms designed to unravel how plants 
adapt to microgravity. The utilization of these plat-
forms has shed light on several longstanding mysteries. 
In this context, we highlight specific molecular signal-
ing pathways that hold the promise of elucidating the 
mechanisms underlying plant responses to micrograv-
ity, and employing structural aspects of gravity signal-
ing both on earth and in space. Among these pathways, 
unraveling the significance of kinase-dependent and 
-independent mechanisms that modulate the polarity 
of PIN proteins under space conditions is particularly 
intriguing. Furthermore, a comprehensive approach 
involves subjecting plants to various stress conditions, 
such as drought, salinity, temperature fluctuations, dif-
ferent gravitational forces including microgravity and 
hypergravity, using multidimensional clinostat devices. 
This approach allows for deeper understanding of the 
complexities of signal transduction pathways. Moreo-
ver, we believe that using CRISPR/Cas9 genome-edit-
ing technique along with clinostat devices, which hold 
potential applications for both terrestrial and extra-ter-
restrial life, will enable us to explore the effects of grav-
ity, microgravity, and the facilitation of auxin efflux and 
influx on plants.
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