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Abstract 

For more than one billion people living in coastal regions, coastal aquifers provide a water resource. In coastal regions, 
monitoring water quality is an important issue for policymakers. Many studies mentioned that most of the conven‑
tional models were not accurate for predicting total dissolved solids (TDS) and electrical conductivity (EC) in coastal 
aquifers. Therefore, it is crucial to develop an accurate model for forecasting TDS and EC as two main parameters 
for water quality. Hence, in this study, a new hybrid deep learning model is presented based on Convolutional 
Neural Networks (CNNE), Long Short‑Term Memory Neural Networks (LOST), and Gaussian Process Regression (GPRE) 
models. The objective of this study will contribute to the sustainable development goal (SDG) 6 of the united nation 
program which aims to guarantee universal access to clean water and proper sanitation. The new model can obtain 
point and interval predictions simultaneously. Additionally, features of data points can be extracted automatically. In 
the first step, the CNNE model automatically extracted features. Afterward, the outputs of CNNE were flattened. The 
LOST used flattened arrays for the point prediction. Finally, the outputs of the GPRE model receives the outputs 
of the LOST model to obtain the interval prediction. The model parameters were adjusted using the rat swarm opti‑
mization algorithm (ROSA). This study used PH, Ca +  + , Mg2 + , Na + , K + ,  HCO3, SO4, and  Cl− to predict EC and TDS 
in a coastal aquifer. For predicting EC, the CNNE‑LOST‑GPRE, LOST‑GPRE, CNNE‑GPRE, CNNE‑LOST, LOST, and CNNE 
models achieved NSE values of 0.96, 0.95, 0.92, 0.91, 0.90, and 0.87, respectively. Sodium adsorption ratio, EC, mag‑
nesium hazard ratio, sodium percentage, and total hardness indices were used to evaluate the quality of GWL. These 
indices indicated poor groundwater quality in the aquifer. This study shows that the CNNE‑LOST‑GPRE is a reliable 
model for predicting complex phenomena. Therefore, the current developed hybrid model could be used by private 
and public water sectors for predicting TDS and EC for enhancing water quality in coastal aquifers.
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Introduction
Coastal freshwater aquifers offer water for a variety of 
vital uses, including municipal and domestic water sup-
plies, crop and pasture irrigation, and industrial activi-
ties. The coastal aquifer (CA) is an important natural 
resource for socioeconomic development [15]. The 
water quality of coastal aquifers depends on several fac-
tors, including climate change, population growth, geo-
logical formations, and recharge rates. The water quality 
directly affects public health and the environment [3]. 
Monitoring and evaluating the water quality of coastal 
aquifers is essential because they are used for irrigation 
and drinking [35]. Predicting the water quality of coastal 
aquifers helps decision-makers to reduce pollution. Con-
ventional methods of assessing water quality are usually 
expensive and time-consuming for decision-makers, 
especially in developing countries [10]. Water quality 
can be predicted and managed using various physical or 
mathematical models. However, these models are com-
plex, time-consuming, and data-intensive [29]. It is dif-
ficult to use these models in developing countries due 
to the insufficiency of data or a scarcity of background 
information.

Various soft computing models have been used to pre-
dict water quality over the past few years [28, 22, 21, 43]. 
In order to predict water quality parameters, machine 
learning models are a better choice than sensors because 
of the following reasons:

1. Accuracy: Machine learning models can provide 
more accurate predictions than sensors [5]. Machine 
learning models can analyze complex data patterns 
and make predictions based on them.

2. Scalability: Machine learning models can be trained 
on large volumes of data, so they can predict water 
quality parameters across different regions and time 
periods. Sensors have a limited range of applications 
and may not be able to collect data from multiple 
locations [8].

3. Flexibility: Machine learning models can adapt to dif-
ferent water quality parameters, making them more 
versatile than sensors designed for particular param-
eters. In other words, machine learning models can 
be customized to meet a variety of needs related to 
water quality monitoring.

4. Cost-effective: Machine learning models are more 
cost-effective than sensors. Sensors are expensive to 
deploy and maintain.

5. Reliability: Machine learning models are more reli-
able than sensors, which may malfunction or be 
affected by environmental factors [5]. When sensors 
fail or are unavailable, machine learning models can 
still provide accurate predictions.

Various research has been conducted to determine 
and forecast groundwater level [26, 27]. For instance, for 
predicting the electrical conductivity (EC) of groundwa-
ter, Khashei-Siuki et  al. [18] used the kriging method, 
artificial neural networks (ANNs), and adaptive neuro-
fuzzy inference systems (ANFISs).  A high correlation 
was found between the  Cl− and EC parameters. ANN 
showed the best accuracy.  Ravansalar and Rajaee [31] 
developed an ANN and wavelet ANN model to predict 
the monthly EC.  Their results indicated that wavelet 
ANN was superior to ANN. Mohammadpour et al. [25] 
used radial basis function neural networks (RBFNNs) 
and support vector machine (SVM) models to predict 
the water quality index.  Based on their study, SVMs 
and RBFNNs could successfully predict water qual-
ity indexes.  Using wavelet-ANFIS and wavelet-ANN, 
Barzegar et  al. [7] predicted electrical conductivity-
based salinity levels.  Ca2+,  Mg2+,  Na+,  SO4 2−, and 
 Cl− were the inputs. Wavelet-ANFIS outperformed 
the Wavelet-ANN model. Salami et  al. [33] used ANN 
models to predict dissolved oxygen (DO) and total dis-
solved solids (TDS). The ANN models were reliable for 
predicting water quality indicators. Amanollahi et al. [2] 
evaluated the ability of remote sensing data to predict 
TDS and PH using. The ANN model and remote sens-
ing data successfully predicted water quality indicators. 
Charulatha et  al. [9] used principal component regres-
sion (PCR)-ANN to estimate nitrite concentration.  For 
predicting nitrite concentrations, the PCR-ANN showed 
high potential. For predicting DO, Zhang et al. [40] used 
an SVM model. The authors proposed a particle swarm 
optimization algorithm (PSOA) for finding SVM param-
eters. They concluded that SVM-PSO was a robust 
tool for short-term prediction. Khadr and Elshemy 
[17] used the ANFIS model to predict total phospho-
rus and nitrogen. ANFIS model required inputs such as 
TDS, EC, and PH. As a predictive tool, they found the 
ANFIS model to be reliable. Ahmed and Shah [1] used 
the ANFIS model to estimate DO.  The ANFIS model 
was reliable for predicting water quality indicators.  For 
EC prediction, Barzegar et  al. [8] used extreme Learn-
ing Machine (ELM) models and wavelet-ELMs. The 
least squares boosting (LSBoost) algorithm was used 
to create an ensemble model based on the outputs of 
ELM and wavelet-ELM models.  The ensemble model 
outperformed the wavelet-ELM and ELM models. Zhu 
and Heddam [42] used ANN and ELM models to pre-
dict DO. Overall, the ELM and ANN models successfully 
predicted DO. For predicting the water quality index, 
Kouadri et  al. [19] suggested ANN, multilinear regres-
sion (MLR), and support vector machines (SVM). These 
models had high abilities for predicting the water qual-
ity index in the study area. Azrour et al. [4] used ANN 
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and multiple regression algorithms to predict the water 
quality index. They stated that the ANN and MLR suc-
cessfully predicted the water quality index. SVM, ELM, 
MLP, RBFNN, and ANFIS have successfully been used 
for predicting water quality. However, these models have 
some shortcomings. These models may miss information 
in the modeling process. These models can not automat-
ically extract the features of input data.

Deep learning (DL) models are widely used to address 
the shortcomings of soft computing models. Deep learn-
ing models can extract deep features from data points. A 
convolutional neural network (CNN) is one of the robust 
deep learning models. CNN has been widely used in 
different fields, such as medical image [34], prediction 
of plant leaf diseases [12], stock trend prediction [11], 
streamflow prediction [14], and weather radar echo pre-
diction [14]. A CNN model can extract data features, but 
it may not be able to learn sequence associations. Due to 
their excellent information memory and sequential mod-
eling capabilities, long short-term memory (LOST) net-
works are used for simulating complex problems [30, 38]. 
Hence, CNNE-LOST models are suggested for extract-
ing complex features and predicting outputs. A CNNE-
LOST combines the advantages of CNNEs and LOSTs. 
For time series data, the LOST has excellent processing 
ability, while the CNNE extracts features of grid data. 
Kumari and Toshniwal [20] used LOST-CNNE models to 
predict global horizontal irradiance. They reported that 
the LOST-CNNE model was a robust tool for short-term 
predictions. Yan et al. [39] used CNNE-LOST models to 
predict air quality. They reported that the LOST-CNEE 
outperformed the LOST and CNN models.

However, CNNE-LOST only provides a single predic-
tion value. During the modeling process, it is essential 
to obtain the interval prediction and uncertainty values. 
Systematic reviews have shown that Gaussian process 
regression (GPRE) is a useful method for interval predic-
tion [36, 37]. GPR is a type of nonlinear Bayesian regres-
sion for quantifying uncertainty.

Using LOST and CNN, features can be extracted from 
the input data. Then, the GPR is used to provide reliable 
interval predictions.  A CNNE-LOST-GPR can predict 
points as well as intervals simultaneously. There are vari-
ous advantages of the current developed hybrid model. 
For instance, the CNNE-LOST-GPR model predicts both 
interval and point predictions simultaneously. Secondly, 
unlike MLP, RBFFN, and SVM models, the CNNE-LOST-
GPR extracts features automatically. Finally, it is possible 
to quantify the uncertainty of the modeling process using 
CNNE-LOST-GPR.

Hence, this study introduces the new hybrid model, 
namely, CNNE-LOST-GPR for predicting TDS and EC 
in a coastal aquifer. EC and TDS are predicted because 

they are the most important water quality indicators. 
Predicting the electrical conductivity of water provides 
valuable information about its purity or contamination. 
The electrical conductivity of water is directly related to 
the dissolved ions or salts in the water. Higher electrical 
conductivity in water indicates more dissolved solids, 
which can negatively impact aquatic life, human health, 
and industrial processes. A lower electrical conductivity 
indicates lower levels of contamination and higher purity 
of water, making it safe for consumption. Therefore, pre-
dicting the electrical conductivity of water is important 
to monitor and regulate water quality and ensure ecosys-
tem health.

Material and method
Structure of convolutional neural network models (CNN)
Because CNNE models share feature parameters and 
reduce dimensionality, they are widely used for predict-
ing outputs [36]. By sharing parameters, CNNE reduces 
the number of parameters and computations. CNNE 
consists of convolutional, pooling, and fully connected 
layers [6]. The convolutional layer consists of many 
convolution kernels. From input matrices, convolution 
kernels generate feature maps. Spatial and temporal 
dependencies are captured using the convolution kernels. 
A pooling layer decreases the spatial dimensions of the 
matrices by down-sampling them. In the pooling layer, 
the number of parameters is reduced while the essential 
characteristics are maintained. Through fully connected 
layers, latent patterns are learned from time series input, 
feature maps, and targets. CNNEs commonly use Recti-
fying Linear Activation Units (ReLUs) as activation func-
tions. In this study, the weight connections of the CNNE 
are updated using a robust optimization algorithm.

Structure of LOST
LOST is a robust method for sequence learning. A LOST 
has a memory cell that can retain information for a long 
period. There are three multiplicative units in each layer: 
input gate, forget gate, and output gate. LOST uses state 
cells. Using the forget gate, it is possible to determine 
what information should be removed or wished for [41].

where ft: the activation values of the forget gate ωf  : the 
weight matrix of the forget gate, βf  : the bias matrix of the 
forget gate, and µ : the activation function. Input gates 
determine what information is added to a cell state. The 
process consists of two levels. The first step is calculating 
candidate values for the cell states [23]. The next step is 
to calculate the activation values of the input gates.

(1)ft = µ
(

ωf .[ht−1, xt ]+ βf
)
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where ωρ and ωi : the weight mercies of cell state and 
input gate, βi and βp : bias matrix, ρ̃t : candidate values for 
the cell states,  xt: input,  ht-1: hidden state, and it : activation 
values of the input gates. Based on the previous levels, new 
cell states are computed.

where ρt : cell state at time t, and ρt−1 : cell state at time 
t-1. Finally, the output gat provides the outputs:

where ot : activation values of the input gates, ωo and βo : 
weight and bias matrices of output gate ht : output.

Structure of Gaussian process regression (GPRE)
GPR is a nonparametric probabilistic model for quantifying 
uncertainty [16]. GPRE is a good choice for approximating 
nonlinear functions. For the noisy data, a regression model 
is considered as follows:

where Z : output, f: basic function in : input, and v : noise. 
Then, the  prior distribution of observed data can be 
computed.

where σ 2
n  : variance,  In: unit matrix, ini: ith input, inj: jth 

input, and K
(

ini, inj
)

 : the N-dimensional covariance 
matrix. The covariance matrix is computed as follows 
[37]:

where σf  and l: hyperparameters. Lastly, the posterior 
distribution of the predicted value is calculated.

(2)ρ̃t = tanh
(

ωρ .[ht−1, xt ]+ βp
)

(3)it = µ(ωi.[ht−1, xt ]+ βi)

(4)ρt = ft ∗ ρt−1 + ρ̃t

(5)ot = µ(ωo.[ht−1, xt ]+ βo)

(6)ht = ot tanh (ρt)

(7)Z = f (in)+ v

(8)Z ∼ N
(

0,K
(

ini, inj
)

+ σ 2
n In

)

(9)

K
(

ini, inj
)

= cov
(

ini, inj
)

= σ 2
f exp

(

−
(

ini − inj
)2

l2

)

(10)z|Z ∼ N
(

z, σ 2
z

)

(11)z = K∗K−1Z

(12)σ 2
z = K∗∗ − K∗K−1KT

∗

where K∗∗ : the self-covariance of test points, K∗ : the n*1 
covariance matrix of test points,z : the point prediction 
results of GPR, and σ 2

z  : variance of the predicted value. 
Since the CNN-LOST model gives the point predictions, 
we only require σ 2

z  to obtain the corresponding interval 
prediction (CIP) ( z−  1.96 σz , z + 1.96 σz ). The following 
equation computes the probability density function of 
the predicted value:

The structure of RSOA
There are many optimization algorithms, but RSOA is a 
simple and robust algorithm for solving complex prob-
lems. Based on the life of rats, Dhiman et al. [13] intro-
duced RSOA. Rats are aggressive animals that can kill 
their enemies through their aggressive behavior. For 
solving complex problems, the RSO mathematically sim-
ulates the chasing and fighting behaviors of rats. Gener-
ally, chasing behavior assumes that the best search agent 
knows the location of prey before beginning its search. 
Based on the location of the best search agent, the other 
rats update their locations. Using the following equation, 
we can simulate chasing behavior [13]

where �Ri(x) : the current location of rats, �Rr(x) : The best 
location of rats, A and C: random parameters, rand: random 
number, IT: number of iterations, ITmax: maximum number 
of iterations, α:constant value, RA: the updated location of 
rats and C: random numbers. At the net level, the following 
equation is used to simulate the fighting behavior of RSOA:

where R�Ai(x + 1) : the new position of the rat.

Structure of hybrid LOST‑RSO, CNNE‑RSO, 
and CNNE‑LOST‑GPRE
Weight and bias are the key parameters of LOST and 
CNNE models. In this study, the RSO was used to adjust 
the LOST and CNNE parameters:

(13)p(zi) =
1√
2π

exp

(

− (Zi − zi)

2σ 2
zi

)

(14)R�A = A.�Ri(x)+ C .
(

�Rr(x)− �Ri(x)
)

(15)A = α − IT

(

α

ITmax

)

(16)C = 2.rand

(17)R�Ai(x + 1) =
∣

∣

∣
R�Ar(x)− R�A

∣

∣

∣
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1) For LOSTEs and CNNEs, weights and biases are ini-
tialized.

2) A CNNE and a LOST are run using training data.
3) Check the stop criterion (CC). Models are run at the 

testing level if CC is met; otherwise, they go to step 4.
4) The LOST and CNNE parameters are regarded as the 

initial population of the algorithms.
5) Each rat’s location represents the weight and bias 

parameter values.
6) The models are run using the initial population of the 

algorithms.
7) The objective function (root mean square error) 

assesses the quality of the solution.
8) Equations 16 and 17 are used to update rat locations 

using the operators of rat algorithms.
9) The models go to step 3 if the convergence criterion 

is met; otherwise, they go to step 6.

CNNE-LOST-GPR is a hybrid model for predicting 
complex phenomena. Each model has a task in the mod-
eling process. Training data are inserted into the CNNE 
model in the first step.  The convolutional layer (COL) 
extracts features using convolution kernels. COLs pro-
vide feature maps. A pooling layer decreases the width 
and length of feature maps. Finally, CNNE provides out-
puts. In the next level, these outputs are flattened. The 
flattened arrays are inserted into the LOST model. Fig-
ure  1 demonstrates the structure of the LOST-CNNE 
model. The LOST model provided point predictions at 
the training and testing levels. Then, the outputs of LOST 
models are inserted into the GPR model for interval pre-
dictions. The GPRE predicts all data points and obtains 
interval predictions. This study compares CNNE-LOST-
GPRE with LOST-CNNE, LOST, CNNE, LOST-GPRE, 
and CNNE-GPRE models. The structure of hybrid mod-
els is explained based on the following levels.

• Hybrid CNN-LOST

CNNE extracts the feature at the training and testing 
levels. The flattened outputs of CNNE are inserted into 
the LOST model for predicting data points.

• Hybrid CNNE-GPRE

The training and test data were inserted into the CNNE 
model at the training and testing levels. The outputs of 
the CNNE model are flattened. The flattened outputs are 
inserted into the GPR model. The GPRE model provides 
interval predictions.

• Hybrid LOST-GPR

The training and testing data were used to run the 
LOST model at the training and testing level. The outputs 
of the LOST model are inserted into the GPRE model for 
interval predictions.

For predicting TDS, the daily inputs were PH,  Ca++, 
 Mg++,  Na+,  K+,  HCO3,  SO4, and  Cl− and for predicting 
EC, the inputs were PH,  Ca++,  Mg++,  Na+,  K+,  HCO3, 
 SO4, and  Cl−.

Case study
This paper studies Ghaemshahr coastal aquifer which is 
located in the north of Iran.  A dense forest surrounds 
the southern region of the basin, while the Caspian 
Sea surrounds the northern part. There are sub-humid 
and humid climates in the region. In the study area, 
85% of groundwater is used for agricultural purposes. 
Additionally, groundwater meets about 75% of drink-
ing water demands. Therefore, the plain plays a key role 
in the water supply. River deposits have formed sev-
eral types of alluvial plains within the study area. The 

Fig. 1 Structure of the LOST‑CNNE model
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shallow unconfined aquifer was formed by a calcare-
ous unit containing sand and gravel. Silty and clayey 
sediments separate the semi-confined aquifer from the 
unconfined aquifer. The percolated rainfall dissolves 
minerals in the recharge zone due to the presence of 
calcareous and dolomite rocks. The data were collated 
from three zones and observed well.

In zone A (the recharge zone near the foothills of the 
alborz mountains), the groundwater table level changes 
from 55 (at sampling point 15) to 94  m (at sampling 
point 2) above the Caspian Sea level. Water well depth 
within zone A ranges from 21 to 187  m below the 
ground surface. In this zone, both the underlying semi-
confined and the top unconfined aquifers are connected 
hydraulically and operate as a unified aquifer system. 
Water table level in zone B (the central zone) composed 
of stratified sediments (the top unconfined aquifer), 
the aquitard layer, the semi-confined aquifer, and the 
marine sediments) range between 6.6 (sampling point 
29) and 61.7 m (sampling point 33) above the Caspian 
Sea level. Zone C is located near the coastline, and the 
water table level ranges from 0.4 (sampling point 53) 
to 12.4 m (sampling point 68) above the mean level of 
the Caspian Sea. Water wells in this zone are at shallow 
depths ranging from 12 to 24 m from the ground level.

The study period is from 2015 to 2021. For predicting 
TDS, the daily inputs were PH,  Ca++,  Mg++,  Na+,  K+, 
 HCO3,  SO4, and  Cl− and for predicting EC, the inputs 
were PH,  Ca++,  Mg++,  Na+,  K+,  HCO3,  SO4, and  Cl−. 
Table  1 shows the statistical details of input and out-
put data. Figure 2 shows the study area on Google Map 
while Fig. 3 shows data points of EC and TDS while.

In some points of Fig.  3, the EC is very high due to 
various factors. For instance, when the temperature 
decreases, the EC will increase due to decreasing elec-
trons scattering. Moreover, type and concentrations of 

ions are also another factor that affects the changes in 
EC.

In this study, point prediction evaluation metrics are 
applied to evaluate the performance of models:

where MAE mean absolute error, RMSE: root mean 
square error, N: number of data, Vi : Observed data,V i : 
average observed data, vi : estimated data, vies : average 
estimated data, PBIAS: Percent bias, and NSE: Nash–
Sutcliffe efficiency. The low values of RMSE, MAE, and 
PBIAS show the best efficiency. The following indices are 
used to evaluate the predicted intervals:

where PICP : Prediction Interval Coverage Probability, 
N: number of data, R: range of data, PINW  : Prediction 
Interval Normalized Average Width, upi : upper values of 
variables, and lowi : lower values of variables, NC : index 
uncertainty. The low and high values of PINAW and 
PICP show more accurate predictions. Table 2a, b show 
the optimal values of model parameters.

Results and discussions
Selection of the size of data
The optimal size of the training and testing sets are 
selected based on the individual models. For instance, for 
the hybrid CNN-LOST model, CNNE extracts the feature 

(18)RMSE =
√

1

N

∑N

i=1
(Vi − vi)

(19)MAE = 1

N

∑N

i=1
|(Vi − vi)|

(20)NSE = 1−
∑N

i=1 (vi − Vi)
2

∑N
i=1

(

Vi − V
)2

(21)PBIAS =
∑N

i=1 (Vi − vi)
∑N

i=1 (Vi)

(22)PICP = 1

N

1
∑

i=1

ρ

(23)ρi =
[

1 ← if (lowi) ≤ vi ≤ (upi)

0, otheerwise

]

(24)PINAW = 1

NR

N
∑

i=1

(upi − lowi)

(25)NC = PINW

PICP

Table 1 The details of input and output data (number of input 
data:391, number of output data:391)

Parameter Maximum Average Minimum

PH 8.4 7.1 6.7

TDS (mg/lit) 2818.2 1354.4 312.0

EC (μS/cm) 4310.0 2200.6 551.00

Mg++ 86.2 22.12 5.1

Ca++ 211.2 112.2 27.2

SO4 437.2 55.23 5.21

HCO3 871.2 404.2 55.12

K+ 5.2 3.32 1.23

Na+ 723.2 131.2 9.4
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at the training and testing levels. The flattened outputs of 
CNNE are inserted into the LOST model for predicting 
data points. Therefore, each model uses different sizes for 
training and testing sets. Based on different data sizes, 
Fig.  4 shows the RMSE values of CNNE-LOST-GPRE. 
For predicting EC, the RMSEs of 50, 55, 60, 65, 70, 75, 
80, and 85% of data were 10.00, 7.0, 2.2, 5.1  mg/lit, 6.0, 
7.0, 8.0, and 8.3 mg/lit. For predicting TC, the RMSEs of 
50, 55, 60%, 65%, 70%, 75%, 80%, and 85% of data were 
9.00 mg/lit, 8.0 mg/lit, 2.5 mg/kit, 5.4 mg/lit, 6.2 mg/lit, 
7.1 mg/lit, 8.0 mg/lit, and 8.7 mg/lit.

Determination of random parameters
The performance of RSOA depended on the values 
of random parameters. Therefore, it is necessary to 

determine the values of random parameters. The maxi-
mum number of iterations (MANU) and population 
size (POPS) are the two most important parameters of 
RSOA. MANU and POPS are calculated using sensitiv-
ity analysis in this study. Minimizing the objective func-
tion is obtained by adjusting parameter values. Therefore, 
the lowest values of random parameters gave the lowest 
values of the objective function. Figure  5 shows a heat 
map for determining parameters. For EC prediction, the 
RMSEs of MANU = 150, MANU = 300, MANU = 450, 
MANU = 600, and MANU = 750 were 9.4 mg/lit, 2.5 mg/
lit, 6.8  mg/lit, 7.9  mg/lit, and 8.3  mg/lit, respectively. 
For TDS prediction, objective function (RMSE) val-
ues of the MANU = 150, MANU = 300, MANU = 450, 
MANU = 600, and MANU = 750 were 9.5 mg/lit, 2.4 mg/

Fig. 2 Study area on Google Map
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lit, 3.2 mg/lit, 4.5 mg/lit, and 5.8 m/lit, respectively. Thus, 
MAENU = 300 provided the lowest value of the objective 
function (OBF). For EC predictions, the objective func-
tion (OBF) values of POPS = 65, POPS = 130, POPS = 195, 
POPS = 260, and PSOP = 325 were 9.2, 2.3, 4.8, 6.8, and 
8.2, respectively. For TDS prediction, the OBF values of 
POPS = 65, POPS = 130, POPS = 195, POPS = 260, and 
PSOP = 325 were 9.3, 2.5, 3.1, 4.7, and 5.9, respectively.

Selected features by the hybrid model
This study uses hybrid GPR-CNN-LOST to identify fea-
tures automatically. The best input combinations are 
shown in Table  3. For predicting TDS, the best input 
combination was HCO3,  Na+,  Ca++, and  Mg++. For Pre-
dicting EC, the best input combination was  Na+,  HCO3, 
 SO4, and  Ca++. However, it is necessary to evaluate the 
performance of hybrid GPRE-CNNE-LOST models 
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when selecting features. Previous research showed the 
effect of  HCO3 on EC [32]. Figure  6 indicates the cor-
relation heat maps between outputs and inputs. It was 
found that  HCO3,  Na+,  Ca++, and  Mg++ had the highest 
correlation with TDS. It was found that  Na+,  HCO3,  SO4, 
and  Ca++ had the highest correlation with EC. Thus, the 
hybrid model correctly chooses the best features. Also, 
LOST, GPRE, CNNE-, LOST-CNNE, LOST-GPRE, and 
CNNE-GPRE used the best input combinations for pre-
dicting TDS and EC.

The correlation heat maps between outputs and inputs 
have been clearly shown in Fig. 6. For instance, the cor-
relation values for pH are 0.3 and 0.59 for input and 
output of TDS respectively. Moreover, the correlation 
values for pH are 0.54 and 0.73 for input and output of 
EC respectively.

Evaluation of the accuracy of models for point predictions
This section evaluates the accuracy of models for predict-
ing points.

• EC
Figure  7 shows values of error indices for EC predic-

tion. At the training level, the MAEs of the CNNE-LOST-
GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, LOST, 

and CNNE model were 1.67, 1.75, 1.9, 2.35, 3.24, and 
4.25  mg/lit, respectively (Fig.  7). The CNN-LOST-GPR 
decreased the MAE of the LOST-GPRE, CNNE-GPRE, 
CNNE-LOST, LOST, and CNNE models by 12, 14, 27, 50, 
and 64%, respectively. The training NSEs of the CNNE-
LOST-GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST, and CNNE models were 0.98, 0.97, 0.94, 0.93, 0.92, 
and 0.89, respectively. The testing NSEs of the CNNE-
LOST-GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST, and CNNE models were 0.96, 0.95, 0.92, 0.91, 0.90, 
and 0.87, respectively. The training PBIASs of the CNNE-
LOST-GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
and CNNE models were 4, 7, 9, 11, 12, and 14, respec-
tively. At the testing level, the PBIASs of the CNNE-
LOST-GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST and CNNE models were 5, 8, 11, 12, 14, and 15, 
respectively. The radar plots of error indices are shown in 
Figs. 6, 7.

• TDS
Figure 8 shows values of error indices for EC prediction. 

The training MAEs of the CNNE-LOST-GPRE, LOST-
GPRE, CNNE-GPRE, CNNE-LOST, LOST, and CNNE 
model were 1.55, 1.73, 1.88, 2.21, 3.29, and 4.22  mg/lit, 
respectively. The CNN-LOST-GPR decreased the testing 

Table 2 Optimal values of model parameters, a: for predicting EC, and b: for predicting TDS

a

Model Type of activation function hyperparameter

LOST Number of hidden layers:8, fixed‑rate learning: 
0.01, size of the batch: 32, and epochs of train‑
ing: 1000

GPRE Kernel function: Gaussian function, σ 2

f
 :2 and l:1

CNNE learning rate:0.01, kernel size:2 and pooling size:1

LOST‑GPRE‑CNNE: LOST (Number of hidden layers:5, fixed‑rate 
learning: 0.01, size of the batch: 32, and epochs 
of training: 1000)
CNN (Learning rate:0.01, kernel size:2, and pool‑
ing size:1)
GPR (kernel function: Gaussian, σ

f
 :2 and l:1

b

Model Parameter values

LOST Number of hidden layers:8, fixed‑rate learning: 
0.01, size of the batch: 32, and epochs of train‑
ing: 2000

GPRE Kernel function: Gaussian function, σ 2

f
 :2 and l:1

CNNE learning rate:0.01, kernel size:2 and pooling size:1

LOST‑GPRE‑CNNE: LOST (Number of hidden layers:8, fixed‑rate 
learning: 0.01, size of the batch: 32, and epochs 
of training: 1000)
CNN (Learning rate:0.01, kernel size:2, and pool‑
ing size:1)
GPR (kernel function: Gaussian, σ

f
 :2 and l:1
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MAEs of the LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST, and CNNE models by 2.1, 12, 24, 48, and 60%, 
respectively. The training NSE values of the CNNE-
LOST-GPRE, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST, and CNNE models were 0.97, 0.95, 0.93, 0.92, 0.90, 
and 0.88, respectively. The testing NSEs of the CNNE-
LOST-GPRE, LOSTE-GPRE, CNNE-GPRE, CNNE-
LOST, LOST, and CNNE models were 0.95, 0.94, 0.91, 
0.90, 0.89, and 0.87, respectively. The training PBIAS val-
ues of the CNNE-LOST-GPRE, LOSTE-GPRE, CNNE-
GPRE, CNNE-LOST, LOST, and CNNE models were 3, 
5, 8, 10, 11, and 12, respectively. The testing PBIASs of 
the CNN-LOST-GPRE, LOST-GPRE, CNNE-GPRE, 

CNNE-LOST, LOST, and CNNE models were 6, 7, 9, 11, 
13, and 14, respectively.

Figure 9 shows the boxplots of models. A boxplot is a 
graph that shows how the 25th percentile, 50th percen-
tile, 75th percentile, minimum, maximum, and outlier 
values of a data set are spread out and compared to one 
another. The boxplots explain the implemented model for 
both TDS and EC.

• TDS
The median values of observed data, for models of 

CNNE-LOST-GPRE, LOST-GPRE, CNNE-GPRE, 
LOST-CNNE, LOST, and CNNE were 1350, 1350, 1350, 
1600, 1650, 1650, and 1750  mg/lit, respectively. The 
maximum values of observed data for CNNE-LOST-
GPRE, LOST-GPRE, CNNE-GPRE, LOST-CNNE, 
LOST, and CNNE models were 2818, 2898, 2898, 2900, 
2923, and 2923  mg/lit. The CNNE-LOST-GPRE and 
LOST indicated the best and worst performance among 
other models.

• EC
The median values of observed data, CNNE-LOST-

GPRE, LOST-GPRE, CNNE-GPRE, LOST-CNNE, 
LOST, and CNNE models were 2000 (μS/cm), 2000 (μS/
cm), 2000 (μS/cm), 2000 (μS/cm), 2200 (μS/cm), 2300 
(μS/cm), and 2400 (μS/cm), respectively. The maxi-
mum values of observed data, CNNE-LOST-GPRE, 
LOST-GPRE, CNNE-GPRE, LOST-CNNE, LOST, and 
CNNE models were 4310 (μS/cm), 4310 (μS/cm), 4510 
(μS/cm), 4545 (μS/cm), 4600 (μS/cm), 4800 (μS/cm), 
and 4900 (μS/cm). The CNNE-LOST-GPRE and LOST 
showed the best and worst performance among other 
models.

Evaluation of the accuracy of models for interval prediction
Figure  10 shows the 95% prediction interval for TDS. 
Prediction interval is the estimation of the interval to 
fall future observations within certain probabilities. In 
regression analysis, prediction interval is commonly 
used. Based on Fig.  10, it can be clearly seen that the 
extreme events cannot be easily estimated. This is due 
to the lack of correlation between the previous and 
next values. The Best performance is achieved when 
all observed data are within bounds. Models with the 
highest PICP values are ideal. The CNNE-LOST-GPRE, 
LOST-GPRE, CNNE-GPRE, and GPRE were used for 
interval prediction.

The CNNE-LOST GPRE provided the best perfor-
mance. The PI values of CNNE-LOST-GPRE, LOST-
GPRE, CNNE-GPRE, GPRE models were 0.95, 0.94, 0.92, 

Fig. 4 The RMSE values for different data sizes
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and 0.91, respectively. Figure 11 shows a 95% prediction 
interval for predicting EC.

The CNNE-LOST-GPRE showed the best performance. 
The PI values of CNNE-LOST-GPRE, LOST-GPRE, 
CNNE-GPRE, GPRE models were 0.97, 0.95, 0.93, and 
0.90, respectively. Table 4 represents the results of PICP, 

Fig. 5 Sensitivity analysis of random parameters of RSOA

Table 3 The best input combinations for predicting TDS and EC

Output parameter The best input combination

TDS HCO3,  Na+,  Ca++, and  Mg++

EC Na+,  HCO3,  SO4, and  Ca++
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PINW, and NC for both TDS and EC 95% prediction 
interval.

Discussion
Evaluation of the accuracy of models
In this study, the CNN-LOST-GPR was used to predict 
EC and TD. The models were useful for interval and 
point predictions. The main differences between the cur-
rent research and other papers were as follows:

1) While previous models, such as MLP, RBFNN, 
ANFIS, and SVM, could predict points, the new 
hybrid model could simultaneously predict points 
and intervals.

2) The previous studies used methods such as gener-
alized likelihood estimation for quantifying uncer-
tainty, while the CNNE-LOST-GPRE automatically 
quantified the uncertainty.

3) The previous models, such as MLP, RBFNN, ANFIS, 
and SVM, needed feature selection methods for 
choosing features, but the new method automatically 
selected the features.

4) These models can predict other variables such as 
rainfall, temperature, groundwater level, and stream-
flow. CNNE models can extract the most important 
features from different time series. Thus, the model-
ers can predict outputs best based on input combina-
tions.

5) Our study helps improve the accuracy of previ-
ous studies. Banadkooki et al. [5] used ANFIS-moth 

flame optimization (MFO), ANFIS, and SVM to pre-
dict TDS. At the testing, the MAE values of ANFIS-
MFO, ANFIS, and SVM were 3.112 mg/lit, 3.186 mg/
lit, and 3.238  mg/lit. The MAE of CNNE-LOST-
GPRE was 1.79  mg/lit. Thus, CNN-LOST-GPR 
outperformed the ANFIS-MFO, ANFIS, and SVM 
models. Mattas et al. [24] used ANN and the multi-
ple linear regression model (MLRM) to predict EC. 
The NSE values of the MLRM and ANN were 0.94 
and 0.93, respectively. The NSE of the CNNE-LOST-
GPRE was 0.98 and 0.96 at the training and testing 
levels. Thus, the CONE-LOST-GPRE outperformed 
the ANN and MLRM model.

The CNN-LOST-GPR is a robust tool for monitoring 
water quality in complex and dynamic systems. However, 
the standalone LOST and CNN were inaccurate in pre-
dicting water quality indicators. Also, the high accuracy 
of CNN-LOST-GPR indicated that the RSOA performed 
well. The CNN-LOST-GPR also can be used for provid-
ing spatial and temporal maps of water quality indicators 
in a large basin.

Evaluation of the hadrochemical and water quality 
characteristics of the aquifer
For irrigation purposes, it is necessary to evaluate the 
hydrochemical quality of groundwater. This section uses 
different indices to assess the water quality character-
istics of the aquifer.  Na+ is one of the most important 

Fig. 6 correlation heat maps
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Fig. 9 Boxplots of models for comparison of the models, (a) TDS, and (b) EC
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CNN-LOST-GPR (PICP:0.95, PINW:0.12, NC:0.13) 

LOST-GPR (PICP:0.94, PINW:0.14, NC:0.15) 
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Fig. 10. 95% confidence interval for predicting TDS
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CNNE-LOST-GPRE (PICP:0.97, PINW:0.10, NC:0.11) 

LOST-GPRE (PICP:0.95, PINW:0.11, NC:0.12) 
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Fig. 11 The 95% prediction interval of TDS predictions
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parameters for evaluating water quality. When sodium 
levels exceed the safe level, water permeability is reduced, 
and crops are damaged.

The classification of water samples is shown in Table 5.

• SRA
Based on SRA, 45, 33, and 22% of the water samples are 

good, doubtful, and unsuitable, respectively. If the SRA of 
water is high, it may cause the dispersion of soil colloids.

• MHR
Too much magnesium inhibits calcium absorption, 

and plant growth is reduced. 78 and 22% of samples are 
suitable and unsuitable based on the MHR parameter. 
Thus, water can adversely affect crop growth.

• EC
Higher EC inhibits nutrient uptake by increasing the 

osmotic pressure of the nutrient solutions.  The health 
and yield of plants may be severely affected by lower 
EC. Based on EC values, 10, 67, and 23% of water sam-
ples are good, doubtful, and unsuitable, respectively.

• Sodium%
Crop yield is reduced when the sodium concentra-

tion exceeds the permissible limit. 50, 20, 10, and 10% 
of water samples were good, permissible, doubtful, and 
unsuitable.

• TH
Based on THE values, 70 and 30% of water samples 

were hard and unsuitable. Thus, THE values indicate the 
low quality of water samples.

Based on the comparison of the utilized and devel-
oped hybrid machine learning models, it shows that 
CNN-LOST-GPR outperformed other proposed models 
(LOST-GPRE, CNNE-GPRE, GPRE) in predicting TDS 
and EC. This study demonstrates that the CNNE-LOST-
GPRE model is a reliable predictor of complex occur-
rences. As a result, the already developed hybrid model 
could be utilized by the private and public water sectors 
to estimate TDS and EC in coastal aquifers in order to 
improve water quality. While population and irrigation 
demand may increase in the future, water quantity and 
quality are poor. Hence, decision-makers must develop 
new policies and strategies for managing the basin’s water 
quality. In most cases, water table levels and subsid-
ence are reduced, and water quality is improved through 
recharge basins. Brackish groundwater desalination is 
another widely used method in different world regions. 
Moreover, based on the PICP of the 95% prediction inter-
val results for TDS, CNN-LOST-GPR outperformed 
LOST-GPR, CNN-GPR, and GPR with PICP of 0.95, 
0.94, 0.91, and 0.91 respectively. Furthermore, based on 
the PICP of the 95% prediction interval results for EC, 
CNNE-LOST-GPRE outperformed LOST-GPRE, CNNE-
GPRE, and GPRE with PICP of 0.97, 0.95, 0.93, and 0.90 
respectively.

There are various advantages of the CNNE-LOST-
GPRE hybrid model. For instance, CNN is able to cap-
ture both short-term and long-term dependency. LOST 
is able to intricate temporal dependency patterns. GPR 
could yield reasonable intervals for projected states, 
which is valuable for estimating uncertainty. Therefore, 
those three algorithms could attain a well performed 
accurate model. Besides, there are some limitations of 
the CNNE-LOST-GPRE hybrid machine learning model. 
For instance, CNN tends to be slow and training the data 
takes a long time. Furthermore, when the training data 
is limited or noisy, LSTM tends to overfit and lose gen-
eralization ability. Finally, GPR assumes a normal dis-
tribution, which is inappropriate for variables with only 
positive values.

Table 4 Summary of PICP, PINW, and NC results of 95% 
prediction interval for TDS and EC

Parameters Models PICP PINW NC

TDS CNN‑LOST‑GPR 0.95 0.12 0.13

LOST‑GPR 0.94 0.14 0.15

CNN‑GPR 0.92 0.17 0.18

GPR 0.91 0.19 0.21

EC CNNE‑LOST‑GPRE 0.97 0.10 0.11

LOST‑GPRE 0.95 0.11 0.12

CNNE‑GPRE 0.93 0.14 0.15

GPRE 0.90 0.15 0.16

Table 5 The classification of water samples

Parameter Excellent Good Doubtful Unsuitable

SRA – 45% 33% 22%

Parameter Excellent Good Doubtful Unsuitable

EC – 10% 67% 23%

Parameter Suitable Unsuitable

MHR 22 78

Parameter Good Permissible Doubtful Unsuitable

Sodium% 50% 20% 10% 10%

Soft Moderate Hard Very hard

TH – – 70 30
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Conclusion
The study proposed a new hybrid model, CNN-LOST-
GPR, to predict EC and TDS in the Qaemshahr costa 
aquifer. The new model predicts points and intervals 
simultaneously. CNN identifies features automatically. 
Using the GPR, intervals can be predicted. PH,  Ca++, 
 Mg++,  Na+,  K+,  HCO3,  SO4, and  Cl− were used to pre-
dict EC and TDS. The RSOA was used for adjusting 
model parameters. The CNNE-LOST-GPRE was supe-
rior to other models. The testing PBIAS of the CNNE-
LOST-GPRE, LOST-GPR, CNNE-GPRE, CNNE-LOST, 
LOST, and CNN models were 6, 7, 9, 11, 13, and 14 
for predicting TDS. The training MAE of the CNN-
LOST-GPR, LOST-GPRE, CNNE-GPRE, CNNE-LOST, 
LOST, and CNNE models were 1.67 mg/lit, 1.75 mg/lit, 
1.9 mg/lit, 2.23 mg/lit, 3.24 mg/lit, and 4.25 mg/lit for 
predicting EC. In the modeling process, CNNE-LOST-
GPRE provided lower uncertainty. Among the other 
models, LOST and CNNE had the lowest performance. 
Based on the results, CNNE-LOST-GPRE is a reliable 
model for extracting features and predicting outputs. 
The models help decision-makers when they encoun-
ter many features. SRA, EC, MHR, sodium percentage, 
and total hardness values indicated poor groundwater 
quality. In future research, CNNE-LOST-GPRE could 
be used to predict other characteristics of water quality. 
In addition, other optimization algorithms can also be 
investigated to improve the accuracy of the proposed 
hybrid model.
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