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Abstract 

Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learn-
ing model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove 
redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, 
and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random for-
est (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns 
and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses 
advanced operators to extract temporal features and remove irrelevant features, it can improve the performance 
of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation 
algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper intro-
duces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops 
a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. 
GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced 
the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–
9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important 
input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced 
the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, 
respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction.
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Introduction
Food production and crop growth depend on rainfall 
[30]. Excessive rainfall can lead to floods, landslides, 
and other natural disasters. Accurate rainfall prediction 
is essential for monitoring water resource sources [12, 
34]. Urban planners use rainfall predictions to design 
drainage systems [14, 15]. Rainfall predictions can be 
used to study the effects of climate change on different 
regions of the world [10, 44]. Predicting and mitigating 
floods requires timely and accurate rainfall predictions. 
We need accurate rainfall predictions to fully under-
stand climate patterns [41]. To assess the impact of 
changing weather patterns on ecosystems and commu-
nities, scientists use rainfall prediction data.

Rainfall prediction is complex because numerous fac-
tors influence rainfall patterns [5, 6, 8]. Local factors 
such as urbanization and land use changes can influ-
ence microclimates and rainfall patterns [1]. In order 
to accurately predict rainfall, these factors must be 
considered.

Machine learning (ML) model is a valuable tool for 
predicting rainfall. Machine learning models can update 
their predictions as new data becomes available [1, 16] 
Machine learning models can process large and diverse 
data sets, including historical weather data, radar data, 
and various atmospheric parameters [3, 24]. A random 
forest (RF) model is a simple and accurate machine learn-
ing model [2, 28]. The RF has a simple structure and high 
accuracy. Scholars have used the RAF model to classify 
and predict data.

Yu et  al. [39] developed the support vector machine 
(SVM) and RF models to predict rainfall. The accuracy of 
the RF model decreased as the time horizon increased. 
Ali et  al. [2] combined complete ensemble empirical 
mode decomposition (CEEMD) with the RF model to 
predict monthly rainfall. Time series data were decom-
posed into intrinsic mode functions (IMFs). The study 
results indicated that the CEEMD–RF successfully pre-
dicted rainfall values. Shijun et al. [33] compared the RF 
and the support vector machine model (SVM) for pre-
dicting rainfall. The study concluded that the RF model 
was more accurate than the SVM model. Singh et al. [32] 
developed the RAF and SVM model to predict runoff. 
They reported that the RF was successful in predicting 
runoff. Qiao et  al. [29] coupled the RF model with the 
temporal convolutional network (TCN) to identify the 
most important predictors for rainfall prediction. The 
study results indicated that the RAF–TCN provided high 
accuracy for rainfall predictions. Vergni and Todisco [35] 
developed the RF model to predict soil loss. They used 
the runoff coefficient and the period of occurrence to 
predict soil loss. The study results showed that the RF 
model could successfully estimate soil loss.

Although the RAF model successfully predicts rain-
fall time series, it has some limitations. The RAF model 
lacks advanced operators to capture temporal dependen-
cies [44]. Time series data may have irregular intervals or 
missing values, but the RF model may not process them. 
This paper addresses the shortcomings of the RF and pre-
dicts monthly rainfall data. The main innovations of the 
study are the development of a new model for spatial and 
temporal rainfall predictions and the creation of a new 
hybrid optimization algorithm for choosing inputs. The 
new optimization algorithm can reduce the complexity of 
the feature selection process because it selects the most 
important features.

Recent studies have indicated that deep learning mod-
els are reliable tools for extracting important information 
from data and improving the performance of classical 
machine learning models such as random forest models 
and regression models [1, 18]. Temporal convolutional 
network (TCN) is a deep learning model that processes 
sequential data. TCNs use convolutional layers to extract 
features from sequential data [18, 19]. These convo-
lutional layers can capture local patterns from input 
sequences [37, 38]. A dilated convolution can capture 
long-term dependencies.

As deep learning models use advanced operators and 
different computational layers for processing data, they 
can enhance the performance of classical machine learn-
ing models [1, 37, 38]. A TCN model includes multi-
ple layers that extract features from data and process 
a large number of data. These features make TCN ideal 
for coupling with classical machine learning models and 
improving their performance. Our study uses the capa-
bilities of the TCN model to enhance the performance 
of the RF model. The TCN–RF model predicts data and 
extracts features. The TCN model can be used as a fea-
ture extractor to improve the performance of the RAF 
model for predicting time series. The TCN model utilizes 
one-dimensional convolutional layers to process sequen-
tial data [43]. Rainfall patterns often exhibit non-linear 
dependencies over time. Linear models may not be able 
to capture these complex relationships. The TCN model 
can effectively capture the temporal dependencies of the 
rainfall time series. TCN can act as a feature extractor. It 
can automatically learn relevant features from the rainfall 
time-series data.

In this study, we develop and introduce a novel TCN 
model that is combined with the RF model and predicts 
rainfall data. The original TCN model may not be able to 
identify and remove unnecessary or redundant features 
from time-series data. The irrelevant and redundant fea-
tures can influence the accuracy of the TCN model. Irrel-
evant features may contain misleading information. If the 
TCN model uses unnecessary and redundant features, it 
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may learn incorrect patterns. Our study addresses this 
drawback of the TCN model.

Our study introduces a novel technique called a deep 
residual shrinkage network (DRSN) to address the limi-
tations of the TCN model. The DRSN model is inserted 
into the residual connections of the TCN model. Since 
the DRSN model removes redundant and irrelevant 
features, it enhances the quality of the extracted fea-
tures [11]. The DRSN uses a soft thresholding operator 
to remove irrelevant features. [4]. The TCN model can 
improve its prediction accuracy as it focuses on the key 
features and reduces irrelevant features. The soft thresh-
olding operator deletes features whose absolute values   
are below the threshold T and shrinks features whose 
absolute values are above the threshold T. Since select-
ing input features and predicting rainfall and non-linear 
patterns is complex and difficult, we need advanced tools 
to accurately predict rainfall patterns. This article intro-
duces an effective mechanism for removing irrelevant 
data and improving the performance of machine learning 
models. The DRSN was introduced to address this issue. 
Also, the hybrid TCN–RF model can capture spatiotem-
poral patterns and make accurate rainfall predictions. 
Thees a new robust optimizer for feature selection and 
reduce the complexity of the problem.

The current paper contains the following innovations:

• The paper introduces the TCN–RF model to enhance 
the efficiency of the RF model for monthly rainfall 
prediction. The TCN extracts features and sends 
them to the RF model for rainfall prediction. No 
study has developed the TCN–RF model to predict 
rainfall data.

• Our study develops the TCN model for identifying 
important features. A DRSN–TCN–RF (DTR) pre-
dicts rainfall data and removes redundant and irrele-
vant features. The DRSN–TCN is a novel deep learn-
ing model for processing data.

• The choice of input selection plays a key role in rain-
fall prediction. Binary optimizers are robust tools for 
choosing inputs. Moreover, we need a robust opti-
mizer to set the model parameters. Scholars have 
developed different optimizers to solve optimization 
problems in recent years. Jiang et al. [13] introduced 
a novel optimization algorithm named the orca pre-
dation algorithm (OPA) to solve complex problems. 
It was inspired by the hunting behavior of orcas. 
Compared to other algorithms, the OPA produced 
better results. The OPA may get stuck in local optima 
when an optimization problem involves a large num-
ber of decision variables and constraints. Our study 
develops the OPA to address this issue. Jiang et  al. 
[13] introduced the continuous version of the OPA to 

solve complex problems. Since we need binary ver-
sions of optimization algorithms for feature selection, 
we convert the continuous version of the OPA into 
a binary version of the OPA. The process of feature 
selection involves binary decision variables. We use 
a new binary algorithm to identify the best input sce-
narios.

Details of the models are presented in the following 
section. In addition, the fourth and fifth sections will dis-
cuss the results. Finally, the sixth section concludes and 
presents suggestions for the next paper.

Materials and methods
Random forest model
A random forest model consists of several decision trees. 
The prediction process begins with collecting input and 
output data [22]. The dataset is cleaned to handle miss-
ing values, outliers, and inconsistencies [20]. Multiple 
decision trees are trained on different subsets of the 
training data. Decision trees are created recursively. The 
algorithm selects the best features and divides the nodes 
of each decision tree based on a criterion such as Gini 
impurity (for classification) or mean squared error (for 
prediction) [42]. The root node of a decision tree is the 
first node. The root node is split into child nodes based 
on particular features and splitting criteria [42]. The 
model divides nodes until a stopping criterion is met. The 
stop creation can be determined by a maximum depth, 
a minimum number of samples, or other factors. After 
we create all the individual decision trees, we have an 
ensemble structure. The ensemble structure combines 
individual predictions to make a final prediction for each 
data point.

TCN model
TCNs can capture both short- and long-term dependen-
cies. TCNs use residual connections to propagate gradi-
ents and improve model convergence. The TCN model 
consists of convolutional layers [43]. The convolutional 
layer processes sequential data. Each convolutional layer 
has a set of filters that slide (convolve) over the input 
sequence to extract local patterns and features [37, 38]. 
Causal convolution is the next component of TCNs that 
capture temporal dependencies of sequential data [18, 
19]. Causal convolutions prevent information leakage 
from future time steps. Causal convolutions use dilated 
convolutions to capture temporal dependencies and effi-
ciently cover distant parts of input sequences. A convo-
lutional filter can capture both short-term and long-term 
dependencies when the dilation rate is higher than 1. The 
receptive field of a convolutional filter refers to the region 
of the input sequence that affects the output of that 
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particular filter. A residual connection is the next compo-
nent of the TCN model.

Residual or skip connections are commonly employed 
to tackle the vanishing gradient problem and train deep 
TCN architectures [18, 19]. The TCN models can use 
max-pooling or average-pooling layers to down sam-
ple the outputs. The pooling layer can reduce the spatial 
dimensionality of feature maps [17]. TCNs typically have 
an output layer that produces predictions after the input 
sequence is processed by convolutional layers.

Hybrid DRSN–TCN model
The DRSN–TCN (DRT) is a deep learning model 
designed for predicting time-series data. DRSN inserts 
a soft thresholding mechanism into the residual connec-
tions of the traditional TCN model. A soft thresholding 
technique reduces irrelevant information. This method 
eliminates or shrinks redundant features. We drop fea-
tures whose absolute values are below a threshold and 
shrink features whose absolute values are above the 
threshold. DRSN uses subnetworks for threshold esti-
mation. These subnetworks receive the absolute value 
of each element of the output matrix and apply global 
average pooling to obtain mean values for each channel. 
Based on a sigmoid activation function, threshold values 
are scaled between 0 and 1. The hybrid model consists 
of multiple components. An inflated causal convolution 
layer is the first component of the hybrid model. Causal 
convolutions ensure that outputs depend only on past 
and present inputs. Dilated convolutions increase the 
receptive field gradually. At the next level, a threshold 
estimation building unit is employed to estimate thresh-
olds for feature shrinkage. Feature shrinkage reduces the 
dimension of the feature space and preserves relevant 
information. The threshold estimation building unit com-
putes the absolute value of each element of the output 
matrix of the causal convolution layer [11]. The DTR uses 
this strategy to ensure that each threshold is positive [4]. 
Once we get the absolute values, we apply one-dimen-
sional global average pooling to the output matrix. Global 
average pooling computes the mean value of the features 
to downsize the feature map. The one-dimensional vector 
of the mean values of each feature map is used as input 
for later thresholding. Each feature map will be shrunk 
using these thresholds. We set feature values below the 
threshold to zero to reduce redundant features. Soft 
thresholding is computed as follows:

(1)z =



x − ϕ ← x > ϕ

0 ← −ϕ ≤ x ≤ ϕ

x + ϕ ← x < −ϕ


,

where x is the input feature, z is the output, and ϕ is the 
threshold value.

Optimization algorithms for feature selection
Orca optimization algorithm (OPA)
Orcas are intelligent and social mammals. They are the 
largest members of the dolphin family [13]. Typically, an 
orca group consists of three members: calves (20%), adult 
males (20%), and females (60%). A male may leave a social 
group if it becomes too large. Orcas emit sounds such as 
clicks, whistles, and pulsed calls, into the water to precisely 
determine the location and distance of potential prey [13]. 
To locate prey and communicate with each other, orcas use 
sonar. Orcas confine their prey to the surface of the water. 
Orcas employ a variety of tactics to stun or incapacitate 
fish. They hit the fish with their powerful tails. First, we ini-
tialize a group of orcas as follows:

where OR : a group of orcas, or1 : The location of the first 
orca, orN : The location of the Nth orca. Orcas use echolo-
cation to locate their prey and communicate with group 
members. They emit different types of vocalizations, 
including clicks, whistles, and pulsed calls, to transfer 
information to each other [13]. Orcas use vocalizations to 
coordinate their actions during hunting and to maintain 
social bonds. The orcas employ a variety of strategies, 
including echolocation (sonar), coordinated swimming, 
and communication, to drive the school of fish to the sur-
face of the water. Once the school of fish approaches the 
surface, the orcas create a controlled enclosure around 
the fish [13]. A group of orcas surrounds the fish. Orcas 
employ strategies such as driving and encircling prey to 
catch their prey.

Driving of prey The small groups of orcas locate and hunt 
the school of fish efficiently (First scenario). Large groups 
of orcas may reach the desired position (Second scenario). 
When the orca group is large, the spatial dimension of 
swimming is high. Orcas change their location based on the 
size of their population [13]

(2)OR = (or1, .., orN ),

(3)
VEchase,1,i = µ×

(
β × ORt

best − F ×
(
ϕ × J t + b× ORt

i
))
,

(4)VEchase,2,i = e × ORt
best − ORt

i ,

(5)
J =

N∑
i=1

ORt
i

N
,

(6)b = 1− β ,
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where ORchase,1,i is the location of orca based on the first 
scenario, ORchase,1,i is the location of orca based on the 
second scenario, u is the random number, N is the num-
ber of orcas, VEchase,1,i is the velocity of orca based on the 
first scenario, β is the random number, VEchase,2,i is the 
velocity of orca based on the second scenario, F  is the 
controller parameter (F = 2), µ is the random parameter, e 
is the random number, ORt

best is the location of best orca, 
and J is the average location of one group.

Encircling of  prey Fish schools cannot move in dif-
ferent directions because orcas surround them. Orcas 
often use vocalizations to coordinate their movements 
and determine their next position. They change their 
location based on the locations of three randomly 
selected orcas [13].

where ROt
chase,3,i,k is the new location of orcas, ROt

j1,k , 
ROt

j2,k , and ROt
j3,k is the random location of orcas,, rand 

is the random number, max (it) is the maximum number 
of iterations, and t is the iteration number. The orcas will 
update their location if they achieve a better objective 
function value at a new location.

where f
(
ORt

chase,i

)
 is the objective function of the new 

location of the orca, f
(
ORt

i

)
 is the objective function 

value of the current location of the orca.

Attacking preys A group of orcas forms an enclosure or 
barrier to capture prey. After the orca enters the enclosure 
to attack prey, it whips or stuns the fish with its tail. The 
OPA hypothesizes that four orcas have the best locations 
in the enclosure [13]. The other orcas update their direc-
tion based on the locations of the four orcas that enter 
the enclosure. After eating their prey, orcas return to their 
original position and replace another orca [13]. At this 
level, orcas adjust their direction of movement based on 
the positions of nearby orcas, which are randomly placed 
in the search area. The final location and speed of the 
orcas are determined using the following equations:

(7)

[
ORchase,1,i = ORt

I + VEt
chase,1,i ← if (rand) > u

ORchase,1,i = ORt
I + VEt

chase,1,i ← if (rand) ≤ u

]
,

(8)ROt
chase,3,i,k = ROt

j1,k + χ ×
(
ROt

j2,k − ROt
j3,k

)
,

(9)χ = 2×
(
rand −

1

2

)
×

max (it)− t

max (it)
,

(10)

[
ORt

chase,i = ORt
chase,i, if → f

(
ORt

chase,i

)
< f

(
ORt

i

)

ORt
chase,t = ORt

i , if → f
(
ORt

chase,i

)
≥ f

(
ORt

i

)
]
,

where VEattack ,1,i is the speed of the ith orca; VEattack ,2,i is 
the speed of the ith orca at the enclosure; ORt

first , 
ORt

sec ond , ORt
third , ORt

fourth are the location of the first, 
second, third, fourth orca; ORt

chase,j1 , OR
t
chase,j2 , and 

ORt
chase,j3 are the random locations of orcas; ORt

attack ,i is 
the final location of orca; α and α2 are the random num-
bers. The optimization process begins with creating an 
initial population of orcas. Then, we use Eqs.  3–10 to 
update the position and speed of orcas. Finally, we update 
the location of the orcas based on the attacking prey.

Improved OPA
Our study introduces a novel technique to tackle the prob-
lem of premature convergence and local optima of OPA. 
A feature selection problem may contain a large number 
of decision variables, so the OPA may get stuck in local 
optima. Premature convergence is also another disad-
vantage of the OPA. A novel approach is used to address 
the shortcomings of the OPA. To increase the diversity of 
solutions and avoid local optima, we used the Gaussian 
mutation method. The Gaussian mutation (GM) produces 
new solutions that follow the characteristics of the normal 
distribution [40]. The proposed solutions are placed near 
the original solutions [40]. Thus, the Gaussian mutation 
improves the exploitation ability of the OPA. As the Gauss-
ian mutation produces new solutions, it can improve the 
ability of the OPA to avoid trapping in local optima. The 
GM also helps the OPA identify promising regions.

where G
(
ORµ,ORσ 2

)
 is a random number, ORµ is the 

mean of the Gaussian mutation, ORσ 2 is the variance of 
the Gaussian mutation, x is the random variable, σ is the 

(11)
VEattack ,1,i =

(
ORt

first + ORt
sec ond + ORt

third + ORt
fourth

)
,

(12)
VEattack ,2,i =

(
ORt

chase,j1 + ORt
chase,j2 + ORt

chase,j3

)
,

(13)
ORtattack ,i = ORchase,i + α1 × VEattack ,1,i + α2 × VEattack ,2,i ,

(14)fG =
1

√
2πσ

epx

(
−
(z − µ)2

2σ 2

)
,

(15)ORG(t + 1) = G
(
ORµ,ORσ 2

)
,

(16)ORµ =
ORbest(t)+ OR(t)

2
,

(17)ORσ 2 = |ORbest − ORt |,
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variance of random variable, µ is the mean of random 
variable, ORbest(t) is the best position of orca, and OR(t) 
is the current location of orca. The new algorithm is 
named GM–OPA. Our study compares new optimization 
algorithms with multiple optimization algorithms.

Particle swarm optimization algorithm (PSO).
PSO is one of the practical optimization algorithms for 
solving complex problems. The best particle guides the 
swarm particle toward the best location [26]. Particles are 
characterized by their velocity and position [27]. The par-
ticles change their components as follows:

where vei(t + 1) is the ith velocity at iteration (t + 1), si(t) 
is the ith solution, r1 and r2 are the random numbers, pi is 
the local best solution, and pg is the global best solution, 
si(t) is the ith solution, and si(t + 1) is the new solution, 
τ1 and τ2are the learning factors, and  r1 and  r2 are the ran-
dom numbers, and ε is the weight coefficient.

Crow optimization algorithm (COA)
The COA was inspired by the life of crows [31]. Crows 
hide their food in a safe place. Each crow may pursue 
other crows to steal their food. First, we initialize the 
location of the crows as follows: [21]:

where CRit
j  is the ith location of crow in the jth dimen-

sion and d is the number of dimensions. The COA uses a 
memory to save the best solutions:

where Mi
j is the ith memory in the jth dimension. The 

crow search algorithm (COA) uses two scenarios to find 
optimal solutions. The first scenario assumes that the first 
crow knows that the second crow is following it. The first 
crow deceives the second crow. The first crow updates its 
location based on the following equation.

where Xt+1
j  is the jth location at t + 1 iteration, Mt

i  is the 
ith memory at iteration t, APt

j  is the awareness probabil-
ity of the crow j, ri is the random number, Y t

j  is the cur-
rent location of crow. The second scenario assumes that 

(18)
vei(t + 1) = εvei(t)+ τ1r1[pi − si]+ τ2r2

[
pg − si

]
,

(19)si(t + 1) = si(t)+ vei(t + 1),

(20)CRit
j =

[
CRi

1,CR
i
2, ..,CR

i
d

]
,

(21)Mi
j =

[
mi

1,m
i
2, ..,m

i
d

]
,

(22)

Xt+1
j =

[
Xt
j + ri × fltj ×

(
Mt

i − Xt
j

)
← rj ≥ APt

j

Select(a)(random)(location)

]
,

the first crow does not know that the second crow is fol-
lowing it. The second crow update its locations based on 
the following equation [9]:

where Xt+1
j  is the new location of the jth crow. The COA 

updates the memory using Eq. 24:

The first step is to define the initial positions of the 
crows. The objective function value is used to deter-
mine the best crow. Then, we use one of the scenarios to 
update the crow location. The memory is updated at each 
level. The process continues until the convergence crite-
ria are met.

Sine cosine optimization algorithm (SCOA)
SCA uses cosine and sine functions to search for opti-
mal solutions. First, we define the initial solutions for the 
optimization process [25]. At the next level, the objective 
function value is calculated to evaluate the quality of the 
solutions. Equations 25 and 26 are used to update the val-
ues of solutions [7].

where SOt+1
i  is the new solution, υ1 , υ2 , υ3 , and ν4 are the 

random values, and SOt
ig is the best solution. The υ1 is 

computed using the following equation:

where κ = 2, t is the iteration number, and T is the maxi-
mum number of iterations.

Binary optimization algorithms
We use a binary optimization algorithm for feature selec-
tion. To convert continuous versions of OPA, SCOA, PSO 
and COA into binary versions, the transfer functions are 
used. Our research uses an S-shaped transfer function 
to convert a continuous version into a binary version. It 
was reported that the S-shaped transfer function had the 
highest accuracy for solving complex problems.

(23)Xt+1
j = Xt

j + rj × fltj ×
(
Mt

i − Xt
j

)
,

(24)Mt+1 =


Xt+1

i ← fitness
�
Xt+1
i

�
> Xt

i

Mt
i


.

(25)

SOt+1
i =



SOt

i + υ1 × sin (υ2)×
∣∣∣υ3SOt

ig − SOt
i

∣∣∣, ν4 ≤ 0.50

SOt
i + υ1 × cos (υ2)×

∣∣∣υ3SOt
ig − SOt

i

∣∣∣, ν4 > 0.50


,

(26)ν1 = κ −
t

T
κ ,

(27)S
(
SOt

m,j

)
=

1

1+ e
−xtm,j

,
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where SOt
m,j is the jth solution and S

(
SOt

m,j

)
 is the trans-

fer function.

Hybrid GE–POA DTR model
Our study uses the GE–POA–DTR to monthly rainfall. 
One of the main advantages of the new model is that it 
can capture spatiotemporal patterns. The new model 
can be used in different climates. The classical machine 
learning models are sensitive to irrelevant features. These 
features may reduce the accuracy of machine learning 
models. The DRSN–TCN–RF (DTR) model is a robust 
model for handling complex data sets as it discards irrel-
evant data. We follow the following levels to create the 
new model:

• Determining the data size is essential for running 
models at the training and testing levels. The K-fold 
cross-validation method (KSV) is a suitable tool for 
classifying data into training and testing data. Data 
points are divided into distinct groups using K folds 
[36]. Then, predictive models are executed k times. 
The error function values are calculated for each run 
[23]. To evaluate the performance of models in pre-
dicting output, the average error function value is 
computed. K-fold cross-validation is a valuable tech-
nique for preventing overfitting. As the KSV uses dif-
ferent subsets of data to train and test models, it can 
reduce the risk of overfitting.

• The decision variables are defined. The input names 
and model parameters are decision variables. The ini-
tial algorithm population consists of these decision 
variables.

• The DRSN–TCN model is executed and an error 
function is calculated to evaluate its performance. 
Based on threshold values, the DRSN model deter-
mines important features. The TCN then uses the 
key features to predict rainfall patterns.

• If the stop criterion is met, the model will enter the 
testing level; otherwise, we link the DRSN–TCN 
model with the optimizers. Operators of optimizers 
are used to update the input combination and model 
parameters. The process continues until the conver-
gence criterion is achieved.

• The testing data are used to run the DRSN–TCN 
model.

• The outputs of the DRSN–TCN are used as inputs 
to the RF model. The RF model is used to predict 
monthly rainfall data at training and testing levels.

(28)SOt
m,j =



1 ← rand < S

�
SOt

m,j

�

0 ← rand ≥ S
�
SOt

m,j

�


,

Appendix A: Table 3 shows list of variables.

Case study
The Kashan Plain is a plain in central Iran. The Kashan 
Plain is characterized by a dry climate and desert and 
semi-desert landscapes. The summers are hot and 
dry, while the winters are cool. Traditional techniques 
such as qanats (underground water channels) are used 
to meet water needs. In the Kashan plain, irrigation 
and crop production depend on rainfall. Rainfall is an 
important source of water in the Kashan Plain. The 
data were collected from 1992 to 2015. April, May, and 
June are the wettest months, while July, August, and 
September are the driest months. Kashan Plain experi-
ences high temperatures during summer. The average 
daily temperature ranges from 30 to 40 degrees Celsius. 
Monthly rainfall varies from 0 to 134 mm. Figure  1a 
shows the plain location. Figure 1b displays the location 
of the stations. Figure 1c displays time-series data. We 
used lagged rainfall data to predict one-month ahead 
rainfall. The lag times of (t-1) to (t-12) were used to pre-
dict outputs. Rainfall often exhibits temporal patterns 
and dependencies. Lagged rainfall data capture these 
temporal relationships. Historical data sets are required 
for training predictive models. Machine learning mod-
els require past data to learn the underlying patterns 
and relationships. A predictive model can gain a bet-
ter understanding of historical patterns by considering 
lagged rainfall data. Seven stations were used because 
the new model could achieve the lowest values of the 
error function. The Thiessen polygon method was used 
to determine the average monthly rainfall values for 
the entire catchment area. The basin was divided into 
several polygons. Weight coefficients were assigned 
to the polygons to obtain average precipitation values 
(Table 1).

We collect monthly rainfall data from monitoring sta-
tions. We identify the basin boundary, which is used for 
creating Thiessen polygons. A Thiessen Polygon (Voro-
noi Polygon) is created around each monitoring station. 
We calculate the area of each Thiessen polygon. The 
area of each polygon represents the influence zone of 
the corresponding monitoring station. The weight of 
each polygon is calculated by estimating its area. These 
weights are multiplied by observed rainfall values at 
monitoring stations. To estimate monthly rainfall for 
the entire basin area, we sum the weighted rainfall val-
ues of all monitoring stations for each month. To assess 
the efficiency of models, the following error functions 
are used:
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Willmott index

Root mean square error (RMSE)

Mean absolute error (MAE)

Percent bias (PBIAS)

U95

where RIob is the observed rainfall, RIes is the estimated 
rainfall, SD is the standard deviation, RI is the average 
observed rainfall. Our study also uses Eq. 34 to evaluate 
the ability of optimization algorithms in choosing inputs:

where M is the number of runs, NU is the number of 
total inputs, and size

(
soi

)
 is the size of chosen inputs at 

each run. The best algorithm has the lowest value of aver-
age selection size (ASS).

Results
Determination of number of K
Calculating K is necessary for the modeling process and 
splitting the data into training and testing data points. 

(29)WI = 1−

n∑
j=1

(RIiob − RIies)
2

n∑
i=1

(∣∣RIiob − RI
∣∣+ ∣∣RIies − RI

∣∣)2
.

(30)RMSE =

√√√√1

n

n∑
i=1

(RIob − RIes)
2.

(31)MAE =
1

n

n∑
i=1

|OCes − OCob|.

(32)PBIAS =

N∑
i=1

(RIob − RIes)

N∑
i=1

RIob

.

(33)U95 = 1.96

(
SD2 + RMSE

) 1
2
,

(34)Average(selection(size)) =
1

M

M∑
i=1

size
(
soi

)

NU
,

Figure 2 shows the RMSE values for different K numbers. 
The DTB model was used based on different sizes of K. 
K = 10, K = 5, and K = 2 provided RMSE values of 0.187–
0.235, 0.187–0.270, and 0.189–0.276, respectively. Thus, 
we chose K = 10 to run models.

Computation of the values of random parameters
Adjusting the random parameters is necessary to achieve 
the highest accuracy of optimizers. Optimal parameter 
values minimize the RMSE of optimizers. The maximum 
number of iterations (MNI) is one of the most important 
random parameters. Population size (PS) also changes 
the accuracy of optimizers. The GM–OPA and OPA had 
the best performance (lowest RMSE) based on PS = 120 
and MNI = 300. PS = 180 and MNI = 300 provided the 
highest precision for the SCOA (Fig. 3).

Choice of the best optimizers and input scenarios
Figure 4 shows accuracy optimizers for choosing inputs. 
The RMSE of the GM–OPA varied from 0.180 to 0.200 
mm. The GM–OPA reduced the RMSE values of OPA 
and PSO by 1.4%–3.4% and 6.14–9.54%, respectively. 
Thus, GM–OPA improved the performance of the ROA.

Figure  5 shows the percentage of features selected. 
Also, this figure shows ASS values of different algorithms. 
The GM–OPA, OPA, SCOA, COA, and PSO chose 33%, 
41%, 41%, 50%, and 50% of the total number of inputs. 
The ASS of the GM–ROA was lower than that of other 
algorithms. Thus, the GM–ROA achieved the high-
est accuracy with fewer input variables. The GM–OPA 
selected rainfall (t-1), rainfall (t-2), and rainfall (t-3) as 
predictors for rainfall prediction. Table 2 shows the opti-
mal values of hybrid model parameters. The optimization 
algorithm systematically searches the problem space to 
find the optimal values of the model parameters. First, 
we initialize the initial values of the model parameters. 
The GM–OPA then updates the values of the parameters 
at each iteration. When the GM–OPA converges to the 
lowest value of the objective function value, the process 
is completed. The optimal values of model parameters 
are reported and used to train and test models. Although 
there are  212–1 input scenarios, our model chose the 
optimal input scenario with three input variables. Thus, 
the optimizers played a key role in reducing the compu-
tational cost of the modeling process.

Evaluation of the performance of models
Figure  6 displays the error function values of different 
models. The DTR reduced the testing MAE values of the 
TCN–RF, DRSN–TCN, TCN, and RF models by 5.3%, 
21%, 40%, and 46%, respectively. The RF provided the 
highest MAE values. The testing MAE of the RF was 46%, 
41%, 32%, and 6.4% was higher than that of the TCN–RF, 

Table 1 The details of data points

Level Maximum Minimum Average

Train 134 0 45.67

Test 128 0 48.89
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DTR–TCN, and TCN models. The DRSN model improve 
the accuracy of the TCN model. The testing MAE of the 
DRSN–TCN was 28% lower than that of the TCN model. 
The training NSE of the DTR, TCN–RF, DRSN–TCN, 
TCN, and RF models was 0.98, 0.95, 0.92, 0.89, and 0.87, 
respectively. The testing NSE of the DTR and TCN–RF 
was 0.96 and 0.94. Thus, the DTR and TCN–RF outper-
formed the other models. The TCN model outperformed 
the RF model as it used advanced layers and operators for 
analyzing data. The testing NSE of the TCN model was 
3.5% higher than that of the RF model. The DTR model 
had the best performance as it used the DRSN mecha-
nism to remove irrelevant data.

The DTR reduced the testing WI values of the TCN–
RF, DRSN–TCN, TCN, and RF models by 4.16%, 7.29%, 

14%, and 16%, respectively. The training PBIAS of the 
DTR, TCN–RF, DRSN–TCN, TCN, and RF models was 
3, 7, 11, 14, and 18, respectively. The testing U95 of the 
DTR, TCN–RAF, DRSN–TCN, TCN, and RAF models 
was 8, 12, 16, 18, and 22, respectively. U95 is an index 
that can evaluate the accuracy of models based on RMSE 
and standard devalues. The U95 of the RF model was 
higher than that of the other models as irrelevant models 
influence the reliability of the RF model. The DTR model 
outperformed all models because it leveraged the capa-
bilities of three models. The DRSN component of the 
DRSN–TCN model employs soft thresholding to identify 
and eliminate irrelevant features of the rainfall data. The 
model can control the impact of less relevant features by 
dynamically setting thresholds. The DRSN–TCN uses 
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soft thresholding to reduce the influence of irrelevant 
features of a dataset. By effectively reducing irrelevant 
features, the DRSN–TCN model can improve the gener-
alization ability of the model.

Figure 7 displays heat scatterplots of models. The  R2 value 
of the DTR, TCN–RF, DRSN–TCN, TCN, and RAF models 
was 0.9916, 0.9848, 0.9791, 0.9691, and 0.9400, respectively. 
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Fig. 5 The Percentage of feature selected numbers

Table 2 Optimal values of TCN parameters

Parameter Value

Learning rate 0.001

dropout 0.05

Number of filters 3

Batch size (BS) BS  (4, 20)
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Fig. 6 Error function values of different models
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The study results indicated that DTR and TCN–RF per-
formed better than the other models. The DRSN mecha-
nism could improve the performance of the TCN model. 
The  R2 value of the DRSN–TCN model was 1.02% higher 
than that of the TCN model. However, the irrelevant fea-
tures reduce the accuracy of the RF model. The RF model 
had the lowest  R2 values among other models.

Figure  8 displays boxplots of different models. The 
median of the observed data, DTR, TCN–RF, DRSN–
TCN, TCN, and RF models was 55 mm, 59 mm, 61 mm, 
63 mm, 64 mm, and 65 mm, respectively. The maximum 
value of the observed data, DTR, TCN–RF, DRSN–TCN, 
TCN, and RF model was 134 mm, 134 mm, 134 mm, 134 
mm, 135 mm, and 136 mm, respectively.

The study results revealed that the DTR had the best 
performance among the other models. The DRSN was 
introduced to address the limitations of the TCN model 
and improve the quality of the extracted features. The 
DRSN ensures that the hybrid model concentrates on 
the most relevant information, which results in more 
accurate predictions. In summary, the DRSN–TCN–ran-
dom forest model outperforms the TCN and RAF mod-
els because it enhances the quality of extracted features, 
focuses on relevant information, and enhances efficiency. 
The TCN model captures non-linear relationships.

Our study developed the GM–OPA to set parameter 
values and select the best input scenario. As the GM 
improved the ability of the POA to locally and globally 
search the problem space, it outperformed other opti-
mizers. The GM–OPA chose the best input scenario 
based on the fewest number of input variables.

Taylor diagram is a graphical tool for evaluating the 
performance of the models. At the center of the diagram, 

a point is represented as the reference dataset. The radial 
axis represents the standard deviation. The tangential 
axis represents the correlation coefficient. Contour lines 
represent centralized root mean square (CRMSE) values. 
Figure  9 shows a Taylor diagram to compare models at 
the testing level. The CRMSE of DTR, TCN–RF, DRSN–
TCN, TCN, and RF was 0.15, 0.19, 0.26, 0.39, and 0.56, 
respectively. The correlation coefficients of DTR, TCN–
RF, DRSN–TCN, TCN, and RF were 0.99, 0.98, 0.97, 0.92, 
and 0.84, respectively. The CRMSE and correlation values 
indicated that the DRSN mechanism improved the per-
formance of the TCN model. The DRSN–TCN improved 
the CRMSE and correlation values of the TCN model 
by 19% and 5%, respectively. The RF model provided the 
highest CRMSE model. The DTR model improved the 
CMRSE of the RF model by 73%.

Discussion
While we use predictive models to predict one-month 
ahead rainfall, it is required to examine their accuracy 
for predicting other time horizons. We use the DTR as 
the best model to predict one-, three-, five-, and seven-
month ahead rainfall. Figure  10 shows the spatial accu-
racy of the DTR model for multi-step-ahead rainfall 
prediction. The DTR model provided NSE values of 
0.87–0.99, 0.82–0.97, 0.79–0.94, and 0.70–0.94 for 1, 3, 5, 
and 7 months ahead. As the time horizon increases, the 
efficiency of models decreases. Climate phenomena such 
as large climate indices can impact long-term patterns. 
Predicting these large-scale patterns can be difficult and 
complex. Human activities such as deforestation, urbani-
zation and greenhouse gas emissions can change rainfall 
patterns over long periods. These factors may increase 
the uncertainty of long-term rainfall predictions and 
affect the accuracy of models.
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The DTR model is a useful model as we can use its 
outputs for water resource management planning and 
other hydrological simulations. To demonstrate the prac-
tical applications of the DT model, we use it to forecast 
monthly rainfall values for the period 2023–2024. Fig-
ure  11 shows the monthly rainfall values for the period 
2023–2024. The month of January had the highest rain-
fall values. In January 2023, 8–40 mm of rainfall fell. 
The lowest rainfall values were observed in the summer 
months. In the autumn and winter months, the average 
rainfall was 21.12 and 18.78 mm, respectively.

Our models also can be used to predict rainfall at dif-
ferent time scales. We use DTR, TCN–RF, DRSN–TCN, 
TCN, and RF models to predict daily data. Figure 12 dis-
plays the absolute relative error (ABR) of daily predic-
tions of different models. The DTR model gave an ABR 
of 1–5% for 4% of the data points. The RF model gave the 
highest values of ABR. The MLR model provided an ABR 
of 19–23% for 10% of the data points. The training NSE 

of the DTR, TCN–RF, DRSN–TCN, TCN, and RF models 
was 0.98, 0.95, 0.92, 0.89, and 0.87, respectively.

The DTR model effectively removes irrelevant data 
and extracts temporal features from rainfall data. The 
DTR model is required for improving prediction accu-
racy and assessing climate change impact. Our study 
creates a superior rainfall prediction model, devel-
ops innovative optimization techniques, and dem-
onstrates the superior performance of the proposed 
model. The study findings have practical implications 
for climate research, water resource management, and 
disaster preparedness. The new model can be used for 
understanding water availability, managing reservoirs, 
and planning for potential floods or droughts. Water 
resource managers can use the new model to plan for 
regional variations of rainfall. The model contributes to 
climate resilience planning as it provides insights into 
future rainfall trends.
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Fig. 10 NSE values of different models for predicting different horizon times
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Fig. 11 Monthly rainfall values for the period 2023–2024
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Based on the analysis of the results, the following 
points should be considered:

• The GM–OPA can intelligently select a subset of fea-
tures from the original input space. The algorithm 
can dynamically adjust the complexity of the model 

based on the evolving characteristics of the data. The 
GM–OP can identify and retain only the most rel-
evant features for the target variable. The new algo-
rithm can reduce the dimensionality of the input 
space as it chooses the most important inputs.
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Fig. 12 The ABR of different models for predicting daily data
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• Irrelevant features increase the complexity of the 
model without providing meaningful information. 
When irrelevant features are removed, the model 
becomes simpler and focuses on the important fea-
tures of the data. The DRSN method can reduce the 
risk of overfitting as it can remove irrelevant features.

• The DTR–TCN–RF model is a robust model for 
spatiotemporal predictions. As the TCN model 
uses convolutional layers and dilated convolutions, 
it can capture spatiotemporal patterns.

• The GM–OPA had two main advantages. The algo-
rithm achieved the highest accuracy. Also, the new 
algorithm chose fewer inputs for predicting rainfall.

• The study results showed that the RF model could 
not achieve high accuracy because it could not ana-
lyze non-linear patterns.

Conclusion
Accurate rainfall predictions are required for water 
resources management, including reservoirs, dams, 
and groundwater recharge. Our study introduced a new 
model named the DTR to predict 1 month ahead. The 
DTR consisted of three models. The DRSN was used to 
remove redundant data. The RAF model received tempo-
ral features from the TCN model. Finally, The RF model 
made rainfall predictions. We developed a novel opti-
mizer called GM–ROA to select inputs. Lagged rainfall 
values were applied to predict outputs. The study results 
indicated that GM–ROA improved the ability of the ROA 
for feature selection. The RMSE of the GM–ROA varied 
from 0.180 to 200 mm. The GM–ROA reduced the RMSE 
values of ROA and PSO by 1.4%–3.4% and 6.14–9.54%, 
respectively. The study results revealed that the DTR 
outperformed the other models. The DRSN is specifi-
cally designed to enhance the quality of the extracted fea-
tures. The DTR model also could predict daily data with 
high accuracy. The new model also accurately predicted 
monthly data for the period 2023–2024. Our study uses 
the TCN model which processes information in one 
direction. The execution of these models may have limi-
tations. To run these models. we need advanced com-
puter systems. Data collection may be another limitation 
of the study. The next studies can develop the TCN model 
to process information in two directions. In addition, we 
can use different methods such as the analysis of variance 
method (ANOVA) to decompose uncertainty values into 
parameter and input uncertainties.

Appendix A
See Table 3.

Table 3 List of variables

Variables Definition

APtj The awareness probability of the crow

CRitj The ith location of crow in the jth dimension

e random number

F The controller parameter

f
(
ORtchase,i

)
The objective function of the new location of the orca

f
(
ORti

)
The objective function value of the current location 
of the orca

J The average location of one group

Mi
j

The ith memory in the jth dimension

max (it) maximum number of iterations

NU number of total inputs

orN The location of the Nth orca

or1 The location of the first orca

OR A group of orcas

ORchase,1,i The location of orca based on the first scenario

ORchase,1,i The location of orca based on the second scenario

ORtbest The location of best orca

pi The local best solution

pg The global best solution

r1 Random numbers,

RIob Observed rainfall

RIes Estimated rainfall

si(t) The ith solution

SOt+1
i

The new solution

SOt
m,j The jth- solution

t iteration number

T maximum number of iterations

u Random number

vei(t + 1) The ith velocity at iteration (t + 1)

VEchase,1,i The velocity of orca based on the first scenario

VEchase,2,i The velocity of orca based on the second scenario

x Input feature

Xt+1
j

The jth location at t + 1 iteration

Ytj The current location of crow

z Output

µ random parameter

β Random number

ϕ Threshold value

α Random number
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