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Abstract 

Background The large-scale application of pyrethroids and organophosphorus pesticides has great benefits 
for pest control. However, the increase of cancer incidence rate in recent years has also caused public concern 
about the health risks of pesticides. Hence, we utilized data from the National Health and Nutrition Examination 
Survey (NHANES) to assess the association and risk between pesticide exposure and several cancers, along with the 
comprehensive impact of oxidative stress. In this study, six cancers and six common pesticides were included to ana-
lyze their correlation and risk. And the levels of eight oxidative stress marks and two inflammatory markers were used 
for stratified analysis. Multiple logistic regression analysis was applied to estimate the odds ratio and 95% confidence 
intervals. Machine learning prediction models were established to evaluate the importance of different exposure 
factors.

Results According to the data analyzed, each pesticide increased the risk of three to four out of six cancers on aver-
age. Iron, aspartate aminotransferase (AST), and gamma glutamyl transferase levels positively correlated with cancer 
risk in most cases of pesticide exposure. Except for demographic factors, factors such as AST, iron, and 3-phenoxyben-
zoic acid showed high contributions to the random forest model, which was consistent with our expectations. The 
receiver operating characteristic curve showed that the prediction model had sufficient accuracy (74.2%).

Conclusion Our results indicated that specific pesticide exposure increased the risk of cancer, which may be medi-
ated by various oxidative stress mechanisms. Additionally, some biochemical indicators have the potential to be 
screened for cancer prevention.
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Background
Cancer has long been considered a serious health haz-
ard. The accumulation of different gene alterations in 
the cancer genome, a hallmark of all malignancies, is the 
cause, promotion, and development of cancer [1]. Sur-
gery, radiotherapy, chemotherapy, hormone treatment, 
immunotherapy, and targeted therapy are the few avail-
able therapeutic options. However, they are not sufficient 
to address the current problem [2]. Hence, the identifi-
cation of a reliable technique for cancer prevention has 
long been a pressing issue. Comprehending the patho-
genic components of cancer is essential for its successful 
prevention and understanding.

Pesticides are beneficial to public life as they increase 
food production yields and decrease foodborne and vec-
tor infections [3]. Nevertheless, long-term exposure to 
pesticides has certain effects on human health owing to 
the chemical properties of pesticides, such as increas-
ing the risk of cancer [4]. Over 650 of 800 pesticides 
used globally have influence on human endocrine sys-
tem [5]. And most pesticides are sensitive to the human 
endocrine system because of their long half-lives and 
lipophilic characteristics. Therefore, pesticides are also 
considered as endocrine disruptors (EDCs). They are 
volatile organic compounds (VOCs) and semi volatile 
organic compounds (SVOCs) in the gas phase [6–8], and 
also adhere to particulate matter in the solid phase [9]. 
Pesticide-derived EDCs have many exposure pathways, 
including personal lifestyle, agricultural and industrial 
applications, living area, and geographical location. Stud-
ies have shown that EDCs have a significant risk for endo-
crine system related diseases, including hormone related 
cancers [10]. Oxidative stress can be simply defined as 
the imbalance between the production of free radicals 
leading to cellular lipid peroxidation and the body’s anti-
oxidant defense [11]. The toxicity of many exogenous 
drugs is related to the production of free radicals, which 
also relate to the pathophysiology of diseases. Studies on 
human or animals support that pesticide induced oxida-
tive stress is a mechanism of its toxic effects in vivo [12, 
13].

With the increase of the incidence rate of cancer, the 
long-term health hazards caused by environmental pol-
lution were increasingly concerned. Some cohort and 
epidemiological studies have shown that exposure to 
pesticides, particularly organochlorine and organophos-
phorus pesticides, accelerates cancer development [14, 
15]. However, previous research has mostly been limited 
to regions and time. Our study is the first based on the 
National Health and Nutrition Survey (NHANES) and 
uses machine learning methods with nationally repre-
sentative samples to assess the risk of pesticide exposure 
for cancers. And our study provides important evidence 

that pesticide exposure is a risk factor for the develop-
ment of various cancers which may be mediated by oxi-
dative stress.

Methods
Study design
The National Health and Nutrition Examination Survey 
(NHANES) aims to assess the nutritional and physical 
health of Americans. The National Center for Health Sta-
tistics Ethics Review Board approved the NHANES data 
collection and research. Informed consent was provided 
by the participants, and the investigation protocol was 
approved by the National Center for Health Statistics’ 
(NCHS) Ethical Review Committee. The NHANES sur-
vey design, questionnaire, and analytical procedures can 
be viewed in detail on the CDC website.

Study population
We excluded participants younger than 20  years with 
unclear or unknown socioeconomic factors (educa-
tion level, race, family income level, and marital sta-
tus). Patients with incomplete, unknown, or unclear 
cancer, pesticide exposure, or laboratory test data were 
also excluded. The “demographics”, “medical condition”, 
“standard biochemistry profile”, “complete blood count 
with 5-Part differential-whole blood” and “Pyrethroids, 
Herbicides, & OP Metabolites—Urine” questionnaire 
data of the participants were extracted. We used complex 
sample weights to make the estimates applicable to the 
US population.

Definition
We used the answers of MCQ220 (ever told you had can-
cer or malignancy) and MCQ230 (what kind of cancer) 
in the ‘‘medical condition’’ questionnaire as the criteria 
for determining the possibility of having a certain cancer. 
According to the NHANES data, data on 30 types of can-
cer were collected. Seven types of cancers were selected 
(breast, colon, cervical, prostate, melanoma, non-mela-
noma skin cancer, and other types of skin cancer) with a 
disease sample greater than 0.5% of the total sample for 
analysis. The population suffering from a certain type of 
cancer was defined as a "case group", and the population 
not suffering from this type of cancer was defined as a 
"control group”. The demographic characteristics of the 
case and control groups differed significantly.

The standard for judging exposure to pesticides was 
based on the concentration of each compound in the 
subject’s urine, as recorded in the Pyrethroids, Herbi-
cides, & OP Metabolites—Urine questionnaire. If the 
concentration reached or exceeded the detection limit, 
it was considered exposed to pesticides; if it was below 
the detection limit, it was considered not exposed. In 
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this module, the main detectable metabolites of organo-
phosphorus pesticides and chlorpyrifos, 2,4-D (μg/L), 
4-fluoro-3-phenoxybenzoic (μg/L), 3-phenoxybenzoic 
(μg/L), oxypyrimidine (μg/L), paranitrophenol (μg/L), 
and dichlorovnl-dimeth prop carboacid (μg/L), were 
selected as exposure factors.

For markers of oxidative stress, albumin (g/dL), alanine 
aminotransferase (ALT) (U/L), aspartate aminotrans-
ferase (U/L), creatinine (mg/dL), gamma glutamyl trans-
ferase (GGT) (U/L), iron (μmol/L), total bilirubin (mg/
dL), uric acid (mg/dL), and complete blood count with 
5-part differential-whole blood were selected in the 
standard biochemical profile. Lymphocyte number (1000 
cells/μL), segmented neutrophils number (1000 cell/μL) 
in blood were selected as inflammatory markers. All the 
above indicators were adjusted from continuous variables 
into classified variables according to quartiles, and the 
grouping was recorded as Q1, Q2, Q3, or Q4.

The NHANES demographic questionnaire divides 
race/ethnicity into five groups, including non-Hispanic 
blacks, non-Hispanic whites, other Hispanics, Mexican 
Americans, and other races (including multiple races). 
Socioeconomic factors, including marital status, ratio of 
family income to poverty (PIR), and education level, were 
defined. Education level consisted of three categories: 
high school or below, college and college graduates, and 
above. Household income was divided into three levels, 
with 130% and 338% as the boundaries, according to the 
PIR ratio.

In addition, three types of cancer (cervical, breast, and 
prostate) limited by sex were extracted and analysed 
separately.

Covariates
In this study, the selected covariates included age, sex 
(not applicable to prostate, cervical, and breast cancer), 
race, family income, educational level, and marital status. 
For covariates, sex, race, education level, family income, 
education level, and marital status were used as categori-
cal variables, and age was used as a continuous varia-
ble. For more details on pesticide exposure, cancer, and 
covariates, visit http:// www. cdc. gov/ nchs/ nhanes/.

Machine learning and model interpretation
We compared eight machine learning algorithms (includ-
ing Boosting Tree, Decision Tree, Logistic Regression, 
Meridian Lossless Packing (mlp), Naive Bayes, K Nearest 
Neighbor, Random Forest, Radial Basis Function Kernel 
(svm rbf )) based on the area under the curve (AUC) and 
accuracy. The best machine learning model will be used 
to build the final prediction model. To verify the predic-
tion performance, we randomly selected data for model 
training, constructed test and training sets, and used 

five-fold cross-validation to optimize hyperparameters. 
The ROC curve is used to evaluate the prediction effect. 
We repeated 500 iterations with different random seeds 
to evaluate the prediction performance and stability from 
patient segmentation to machine learning model con-
struction. We introduced SHAP values as an unexplained 
method for various black box machine learning models in 
this study. SHAP can simultaneously perform local and 
global interpretability, and has a solid theoretical founda-
tion compared to other methods. All analyses were con-
ducted using R software version 4.2.1 (the R Foundation 
for Statistical Computing, USA). P < 0.05 for both sides 
were considered statistically significant.

Statistical analysis
We conducted statistical analysis of the data using IBM 
SPSS Statistics 24. Table 1 presents descriptive statistical 
information on the traits of individuals with or without 
any type of cancer. Both the chi-square and t-tests were 
used to compare categorical variables. Employing com-
plex sample weights enabled us to address selection, 
oversampling, and unresponsiveness biases while esti-
mating demographic variables and the overall prevalence 
of the cancers. Age, race, education level, marital status, 
and PIR were adjusted to evaluate temporal trends in 
cancer prevalence and pesticide use. Covariates were cor-
rected using a logistic regression model. We estimated 
the odds ratios (OR), along with P-values and 95% con-
fidence intervals (CIs). The outcome was deemed signifi-
cant if the two-tailed P-value was less than 0.05 using R 
languages pROC and random forest tools to assess the 
significance of various exposure factors and precision of 
the prediction models.

Results
Characteristics of study participants and correlation 
analysis
A total of 4310 eligible participants were screened for 
this study (Fig.  1). Each participant comprised approxi-
mately 40,415 individuals. Chi-square analysis was used 
to evaluate the correlation between demographic factors 
as covariates, exposure factors (pesticide exposure), and 
outcome variables (cancer risk). After confirming the 
significance of the demographic factors, we analysed the 
correlation between the exposure factors and outcome 
variables. The results are presented in Tables 1, 2.

It is worth noting that patients with cancer are gener-
ally older than healthy individuals. There were signifi-
cant statistical differences in demographic factors such 
as race, education, marital status, and family income. 
Prostate cancer was more common among Mexican 
Americans (3.5%) and non-Hispanic Whites (13.8%) 
than other cancers. Most patients with skin cancer were 

http://www.cdc.gov/nchs/nhanes/
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non-Hispanic Whites (99.4%). Cervical cancer was more 
common in people of other races (9.5%) than in those of 
the aforementioned ethnic groups.

Compared to other cancers, prostate cancer (78.6%) 
and other types of skin cancer (76.6%) were far more 
common among married or cohabiting individuals, 
whereas cervical cancer (57.2%) was more common 
among single individuals.

According to our data, there was a significant correla-
tion between pesticide exposure and cancer. The results 
showed that the vast majority of patients with cancer had 

a history of exposure to 2,4-D, 3-phenoxybenzoic acid, 
and paranitrophenol, which was particularly significant 
in prostate cancer (91.7% for 2,4-D; 90.5% for 3-phenoxy-
benzoic acid; and 98.6% for paranitrophenol).

In summary, we computed the P-values and examined 
the relationship between demographic factors and can-
cer. According to our findings, there was a strong rela-
tionship among pesticide exposure, demographic factors, 
and cancer (P < 0.001). Covariables, including age, edu-
cation level, family income, and marital status were sig-
nificantly correlated with cancer risk, whereas exposure 

Fig. 1 Flowchart of the screening process for the selection of eligible participants in NHANES 2007–2014

Table 2 Correlation analysis between exposure factors and outcome variables

Figures (for mean age) are expressed as mean, other figures are expressed as percent

2,4-D 4-fluoro-3-
phenoxybenzoic

3-phenoxybenzoic 
acid

Oxypyrimidine Paranitrophenol Dichlorovnl-
dimeth prop 
carboacid

P value

Yes Not Yes Not Yes Not Yes Not Yes Not Yes Not 0.001

Colon cancer 83.9 16.1 14.7 85.3 89.1 10.9 18.4 81.6 86.2 13.8 9.3 90.7

Skin cancer (non-melanoma) 77.4 22.6 11.9 88.1 75.2 24.8 8.5 91.5 90.2 9.8 27.1 72.9

Melanoma 71.5 28.5 10.3 89.7 76.4 23.6 7.7 92.3 89.7 10.3 11.7 88.3

Skin cancer (other types) 76 24 2 98 86.1 13.9 19.8 80.2 95 5 12.7 87.3

Prostate cancer 91.7 2.1 12.1 87.9 90.5 9.5 29.9 70.1 98.6 1.4 10.3 89.7

Breast cancer 61.4 38.6 8.3 91.7 77.1 22.9 25.3 74.7 86.6 13.4 11 89

Cervix cancer 70.6 29.4 18.8 81.2 88.5 11.5 28.1 71.9 93.7 6.3 29.5 70.5
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factors (whether exposed to a certain pesticide) and out-
come variables (whether suffering from a certain cancer) 
showed a significant correlation.

Multivariate logistic regression model for predicting 
cancer risk
A multiple logistic regression model was established to 
assess the effects of pesticide exposure on cancer risk. To 
increase the accuracy of the model, we gradually incor-
porated the impact of covariates into the regression 
model and presented it in the form of two multiple logis-
tic regression models: model 1 without covariate adjust-
ment and model 2 with covariate adjustment (Table  3). 
After controlling for variables, each pesticide increased 
the risk of three to four types of cancer on average.

Individuals with non-melanoma skin cancer appeared 
to have similar pesticide exposure patterns as those with 
other types of skin cancer, including 3-phenoxybenzoic 
acid (model 1: OR = 1.204, 95% CI 1.201–1.207, P < 0.01; 
model 2: OR = 1.260, 95% CI 1.257–1.263, P < 0.01) and 
oxypyrimidine (model 1: OR = 1.131, 95% CI 1.129–
1.133, P < 0.01; model 2: OR = 1.019, 95% CI 1.016–1.021, 
P < 0.01). Breast cancer only correlated to oxypyrimidine 
exposure (model 1: OR = 1.700, 95% CI 1.697–1.702, 
P < 0.01; model 2: OR = 1.506, 95% CI 1.503–1.508, 
P < 0.01) and melanoma only correlated to fluoro-phe-
noxybenzoic acid exposure (model 1: OR = 1.321, 95% 
CI 1.317–1.326, P < 0.01; model 2: OR = 1.207, 95% CI 
1.203–1.212, P < 0.01).

Although all pesticides increase the risk of cancer, 
prostate and cervical cancers are particularly susceptible 
to them. Exposure to fluoro-phenoxybenzoic acid and 
dichlorovnl-dimeth prop carboacid does not significantly 
increase the risk of developing prostate cancer (before 
and after adjusting for covariates, model 1: OR = 1.195, 
95% CI 1.192–1.199, model 2: OR = 0.911, CI 0.908–
0.914, P < 0.01) or cervical cancer (model 1: OR = 0.813, 
95% CI 0.811–0.815, P < 0.01).

The impact of oxidative stress on predictive models
To investigate the potential mechanisms, we stratified 
cancer risk according to the concentration of oxidative 
stress indicators (Table 4). Based on oxidative stress indi-
cator levels, we divided the association between cancer 
and pesticide exposure into subgroups. We found that 
many regression relationships showed trend changes in 
the subgroup analysis, with a significant positive correla-
tion (such as ALT, AST, and GGT) or negative correla-
tion (such as iron and uric acid) between the indicator 
concentration and cancer risk.

Elevated AST levels were accompanied with increased 
risk of cancers, showing a significant positive correla-
tion (such as colon, prostate, breast, and cervical cancers 

patients exposed to 2,4-D; melanoma, prostate cancer, 
and breast cancer patients exposed to oxypyrimidine). 
Iron, in contrast, exhibited a significant negative correla-
tion trend in most regression relationships (such as colon 
cancer and melanoma patients exposed to 4-fluoro-
3-phenoxybenzoic acid; colon cancer, melanoma, and 
other types of skin cancer patients exposed to dichlo-
rovnl-dimeth prop carboacid).

It should be noted that, we did not observe an increase 
in the risk of melanoma with exposure to any chemical 
substances, as we did not observe OR values greater than 
1 in any regression model related to melanoma (Addi-
tional file 1: Table S1).

Machine learning reveals the importance of different 
variables
Machine learning is an advanced form of pattern recog-
nition that enables machines to make judgments by ana-
lysing large amounts of data. By comparing the predictive 
performance of different machine learning models, we 
found the random forest model showed the highest accu-
racy values (0.707) and AUC values (0.720) (Fig. 2A, B), 
and was also higher than other models in the ROC curve 
(Fig.  2C), showing the best predictive performance. 
Therefore, the random forest model was chosen as the 
final model for evaluating oxidative stress indicators.

After determining the Random Forest model, we con-
ducted hyperparameter optimization and analysed the 
importance of variables (Fig.  3A). Iron, creatinine, ALT, 
AST, albumin, and GGT levels were found to be the most 
significant in the model of Mean Decrease Accuracy. 
However, in terms of the mean decrease, Gini coefficient, 
paranitrophenol, 3-phenoxybenzoic acid, and 2,4-D dem-
onstrated high relevance. Iron, creatinine, ALT, AST, and 
GGT have contributed significantly to the prediction 
model. The ranking of the importance of the six pesti-
cides was low. To visually explain the selected variables, 
we used SHAP to illustrate how these variables affect the 
cancer risk in the model. It can be considered that cre-
atinine has the largest positive effect, while iron has the 
largest negative effect on cancer risk (Fig.  3C). Receiver 
operating characteristic analysis showed that our pre-
diction model had an accuracy of 74.2% (AUC = 0.742), 
which indicates that our model can better evaluate the 
contribution of different variables to cancer risk (Fig. 3B).

Discussion
The International Chemical Safety Program defines EDC 
(endocrine disrupters) as exogenous substances with the 
potential to alter numerous endocrine and hormonal pro-
cesses in the human body, causing a wide range of abnor-
malities and affecting hormone synthesis, metabolism, 
and excretion during homeostasis and development. 
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Fig. 2 Comparison of different machine learning models. A Comparison of prediction performance of machine learning models based on accuracy 
and AUC values. boost_tree: Boosting Tree; decision_tree: Decision Tree; logistic_reg: Logistic Regression; mlp: Meridian Lossless Packing; naive_
Bayes: Naive Bayes; nearest_neighbor: K Nearest Neighbor; rand_forest: Random Forest; svm_rbf: Radial Basis Function Kernel. B ROC curves of eight 
machine learning models
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Fig. 3 Random Forest prediction model for evaluating the importance of oxidative stress biomarkers and pesticides for cancer A The 
result of variable importance. Pesticide 1:2,4-D; Pesticide 2:4-fluoro-3-phenoxybenzoic acid; Pesticide 3: 3-phenoxybenzoic acid; Pesticide 4: 
Oxypyrimidine; Pesticide 5: Paranitrophenol; Pesticide 6: Dichlorovnl-dimeth prop carboacid. B ROC curve of a stochastic forest model optimized 
by hyperparameters. C SHAP value interpretation based on random forest model
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EDCs interfere with a series of functions of endocrine 
system either by enzyme and receptor-mediated mecha-
nisms or epigenetic effects, thereby adversely inducing 
various aspects of reproductive, metabolic problems 
of human life [7, 16]. In recent years, more and more 
human health problems have been reported to be related 
to EDCs. Additionally, due to their unique physical and 
chemical properties, EDCs can be widely present in the 
air or attached to particle surfaces. With the widespread 
use of insecticides, they bring potential pathogenic risks 
[9].

The United States used 857 million pounds of conven-
tional insecticides in 2007 (EPA, 2020). With 7–9 mil-
lion pounds applied, chlorpyrifos is the most frequently 
employed pesticide in the agricultural market. 2,4-D is 
the second most commonly used herbicide in the agri-
cultural sector and the most commonly used herbicide 
in the commercial, home, and garden sectors. Malathion 
is the most popular insecticide in the commercial sector 
and the second most popular insecticide in the home and 
garden sectors. Pyrethroids are the most popular insec-
ticides in the home and garden markets. In 2007, 22% of 
all pesticides used worldwide were applied in the United 
States [17–20].

Epidemiological studies on the effects of pesticides 
have mainly been conducted among farmers, highlight-
ing the association between pesticide exposure and an 
increased risk of cancer in specific locations, neurologi-
cal diseases (Parkinson’s disease, Alzheimer’s disease, and 
amyotrophic lateral sclerosis), and reproductive disorders 
(spontaneous abortions, stillbirth, and sperm quality). 
Currently, most existing studies have associated pesti-
cides with endocrine dysfunction and immune dysfunc-
tion. The endocrine disruptor properties of pesticides 
(such as lipophilicity, persistence, etc.) are often consid-
ered the main causes of cancer induction. However, few 
studies have considered the role of oxidative stress as the 
main toxicological mechanism of pesticides in this pro-
cess. Besides, previous studies have been mostly limited 
to specific regions and times, with few large-scale, long-
term, and cross-sectional studies [10, 21].

In this study, we built a machine learning prediction 
model in R utilizing eight years of nationally representa-
tive data from the NHANES database. During this pro-
cess, we found that most cancers, such as colon, skin, 
cervical, and prostate cancers, were at an increased risk 
under the influence of three or more pesticides. Whereas 
a few cancers, such as breast cancer and melanoma, were 
only affected by one or two pesticides, indicating differ-
ent mechanisms behind this process.

In addition, as the concentration of different oxidative 
stress markers increases, the risk of cancer increases, 
which indicates a mechanism by which pesticides damage 

cells through oxidative stress and promote cancer initia-
tion. Previous studies have shown that organophospho-
rus pesticides can induce inflammation [10, 22], affect 
lymphocyte function [23], and interact among micro-
organisms [24] and the immune system [23], increase 
oxidative stress [25], disrupt estrogen pathways [26, 27] 
damage brain function [28], and increase the risk of cell 
carcinogenesis. It is important to note, only a small frac-
tion of pesticides can increase the risk of cancer and also 
raise the inflammatory markers, indicating that the main 
mode of damage caused by pesticides to the human body 
is oxidative stress.

Certain physical and chemical characteristics of organ-
ophosphorus pesticides, such as their high fat solubility, 
transmembrane properties, and extended half-life, allow 
them to persist in the body for a long time, thus provid-
ing a concealed risk for cell canceration [29]. In this case, 
we can speculate that the metabolites of organophos-
phorus pesticides may act on the endoplasmic reticulum 
[30], interfere with endocrine hormones, or act as can-
cer promoters or inducers of cytochrome P450 enzymes 
[31], which may lead to the formation of genotoxic DNA 
adducts, further causing reproductive system-related 
cancers, including prostate and cervical cancers.

Molecular studies have also supported the idea that 
pesticides increase cancer risk. Endosulfan can upregu-
late β-actin [32]. The expression of catenin and interleu-
kin-6 promotes colitis [33]. The insecticide chlorpyrifos 
can also promote the development of colon cancer by 
activating the EGFR/ERK1/2 growth signalling pathway 
[34]. And Dennis et al. showed that the combined effect 
of paraquat exposure and light damage significantly 
increased the probability of agricultural workers suffer-
ing from skin cancer and melanoma. These findings dem-
onstrated that pesticides can cause mutant cells to clone 
and multiply, offer them the opportunity to further alter 
the genome through high proliferative activity or the 
emergence of additional carcinogenic sites.

Since GGT is both an oxidant of AST and an anti-
oxidant of iron, it has a positive relationship with some 
cancer risks and a negative relationship with others. 
Meanwhile, iron is an antioxidant, and as its concen-
tration increases, the risk of cancer decreases. But for 
some cancers, higher iron concentrations actually lead to 
higher cancers risk. The phenomenon may be explained 
by ferroptosis, a new type of oxidative regulation of cell 
death. Ferroptosis is associated with severe impairment 
of mitochondrial morphology, bioenergy, and metabo-
lism, and high iron concentrations increase disease risk 
[35, 36].

Moreover, we observed that 2, 4-D increased AST 
levels in four cancers (colon, prostate, breast, and cervi-
cal) and oxypyrimidine increased AST levels in three 
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(non-melanoma skin cancer, prostate cancer, and breast 
cancer). It is possible that pesticides may affect oxidative 
stress by damaging the liver to induce cancers.

Breast cancer, non-melanoma skin cancer, and other 
types of skin cancer exhibited an increase in the num-
ber of lymphocytes under exposure to 3-phenoxybenzoic 
acid, which increased the incidence of chronic inflam-
mation. Several studies have demonstrated that inflam-
matory reactions cause oxidative stress and lower the 
antioxidant capacity of cells. Fatty acids and proteins in 
the cell membrane react with an abundance of free radi-
cals, irreversibly impairing their function. Free radicals 
can cause DNA damage and mutations that may lead to 
cancer and other age-related disorders. However, there 
is no evidence that other pesticides have comparable 
impacts over time.

The machine learning random forest prediction model 
led to a conclusion consistent with the findings presented 
above. The model’s reliance on exposure factors, includ-
ing pesticides, led us to hypothesise that some pesticides 
may not directly cause cancer but instead cause oxidative 
stress by harming organs, which in turn may indirectly 
cause cancer. As is well known, changes in ALT, AST, 
and GGT levels often coincide with liver injury and have 
a high contribution in our machine learning prediction 
model. This means that the role of pesticides as endo-
crine disruptors may be achieved through liver damage 
[37, 38].

Although no significant continuity was found in the 
regression analysis, the high contribution of lymphocytes 
and neutrophils to the Gini coefficient in the random for-
est prediction model suggested that chronic inflammation 
may be involved in the process of pesticide induced cancer.

Our study also has some limitations. First, the 
NHANES database was a cross-sectional study and did 
not provide longitudinal follow-up information. Owing 
to the retrospective nature of this study, future research 
should focus more on the longitudinal effects of pesticide 
exposure, providing more convincing clinical evidence 
through long-term follow-up data. Besides, cellular toxi-
cology experiments and animal experiments are also nec-
essary. Second, some of the data came from a self-report 
questionnaire and resulted in recall and self-report 
biases. The last, other potential confounding factors such 
as lifestyle factors, genetic factors, and other environ-
mental exposures need to be analyzed in future studies.

Conclusion
In summary, our analysis, based on national repre-
sentative surveys, demonstrated that pesticides may 
induce oxidative stress by damaging organs (such as 
liver), increase the risk of cancers. And different can-
cers showed distinct sensitivities to pesticides. Iron, 

creatinine, ALT, AST, albumin, and GGT had high sen-
sitivity to changes in cancer risk under pesticide expo-
sure, which made them potential as detection markers 
for cancer prediction.
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