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Abstract 

Background  Wet meadows, a type of wetland, are impacted by significant climate fluctuation and human activity, 
impacting soil microorganisms that play an essential role in ecosystem processes. Understanding the underlying eco-
logical mechanisms and processes of wet meadows depends on the fungal communities associated with the plant 
roots. We used Illumina MiSeq profiling for amplicon sequencing to determine how environmental factors and eleva-
tion affect the fungal communities of the rhizosphere and rhizoplane related to three plant species, Cremanthodium 
ellisii, Cremanthodium lineare, and Caltha scaposa, in alpine wet meadows.

Results  The phyla Ascomycota and Basidiomycota dominated the rhizosphere (54.5% and 20.9%) and rhizoplane 
(51.6% and 36.4%), while the predominant fungal genera in the rhizosphere and rhizoplane were Unclassified fungi, 
Unclassified Ascomycota, Pseudeurotium, Tetracladium, Vishniacozyma, Rhodotorula, Cadophora, and Penicillium. Mantel 
test and network analysis revealed that the soil water content (SWC), soil organic carbon (SOC), and total nitrogen 
(TN) were the primary drivers of fungal communities. However, the influence of microbial biomass C (MBC), pH, 
microbial biomass N (MBN), and elevation varied. Stochastic assembly processes were dominant in both rhizosphere 
and rhizoplane fungal communities. FUNGuild functional prediction revealed site-specific variation in the trophic 
level and guild of plant-root-associated fungal communities. The rhizosphere contained 58.5% saprotrophs, 11.7% 
pathotrophs, and 12.6% symbiotrophs. In addition, 60.4% of the observed OTUs were arbuscular mycorrhizae, 13.2% 
were endophytes, 20.9% were ectomycorrhizae, and 1.09% were orchid mycorrhizae. The rhizoplane comprised 51.3% 
of OTUs linked with saprotrophs, 13.9% with pathotrophs, and 7.92% with symbiotrophs. Moreover, 36.1% of OTUs 
represented arbuscular mycorrhizae, 25.0% were endophytes, 30.6% were ectomycorrhizae, and 2.77% were ascribed 
to orchid mycorrhizae in the rhizoplane. The abundance of saprotrophs and pathotrophs in the rhizosphere was high-
est in C. ellisii at SI and SIII, while symbiotrophs were highest in C. lineare at SIII. Similar variations among the plant 
species and sites were observed in the fungal functional groups (guilds).

Conclusions  It was concluded that although root compartments significantly influenced the fungal communities 
in the rhizosphere and rhizoplane, environmental factors and plant types exhibited distinct effects. This study explains 
how physicochemical properties, plant species, and sites can alter the overall structure and functional repertoire 
of fungal communities in alpine wet meadows.
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Graphical Abstract

Background
The global concern surrounding the loss of biodiversity 
has escalated due to the accumulating evidence indi-
cating the detrimental effects of these losses on various 
components of ecosystems. The decline in soil biodiver-
sity can impede various ecosystem characteristics, such 
as above-ground plant diversity, nutrient cycling, and 
nutrient retention [1]. Soil microorganisms are distrib-
uted throughout various soil profiles, from the surface 
horizon enriched with organic matter to the deeper hori-
zons that harbor distinct microorganism communities 
[2]. Researchers have found that the microbial communi-
ties in lower soils vastly differ from those on the surface. 
These differences are essential for soil formation, ecosys-
tem biogeochemistry, and the breakdown of pollutants 
[3]. Fungi and bacteria are the salient organisms in the 
soil microbiota and are involved in the flow of energy and 
the recycling of nutrients in any environment [4].

Wetlands cover less than 9% of the Earth’s geographi-
cal area [5] and are critical natural resources [6]. The 
Ramsar Convention broadly defined wetlands, which 

included all rivers and lakes, subterranean swamps, 
marshes, aquifers, wet grasslands, oases, peatlands, 
tidal flats, estuaries and deltas, mangroves and other 
littoral habitats, coral reefs, and all artificial sites 
including rice paddies, salt pans, and reservoirs [7]. 
The natural wetlands on the Qinghai−Tibetan Plateau 
(QTP) are estimated to cover 13.36  km2 [8]. Approxi-
mately half of the alpine wetlands comprise of wet 
meadows, typically found on the western periphery of 
the plateau. Conversely, Marshlands constitute approxi-
mately 6% of the alpine wetlands and are predominantly 
located along the eastern edge of the plateau [9]. Wet 
meadows and marshlands are becoming more accessi-
ble to grazing animals because of climate change and 
human-caused ditch drainage. As a result, overgraz-
ing and livestock trampling are damaging flora and soil 
structures in this vulnerable area. These disturbances 
are linked to a decreased soil organic carbon (SOC), 
resulting in degradation and substantial wetland loss 
[10, 11].
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Fungi, which are filamentous eukaryotic microorgan-
isms, often constitute a significant proportion of the 
overall microbial biomass found in soil [12]. Further-
more, fungi play a significant role in compound trans-
formation as they can effectively decompose resilient 
organic substances; thus, providing plants with essen-
tial nutrients [13]. The effects of environmental filter-
ing on ecological function are the best understood by 
studying fungal nutrient acquisition, especially for spe-
cies in mutualism with plant hosts. Mycorrhizae are a 
type of symbiotic fungi (sometimes called mutualists) 
that form relationships with plant roots in return for 
resources such as N, C, and P obtained from the soil 
[14]. Mycorrhizae are very important to the environ-
ment because they supply nearly half of a tree’s organic 
N and most of the new carbon that goes into the soil 
[15]. Moreover, ectomycorrhizal fungi and arbuscular 
mycorrhizal (mycorrhizal groups) vary in the input of 
N and P to their hosts [16], and in their extent to C, 
they contribute to the soil [17].

Wetlands are characterized by the presence of mac-
rophytes, which are predominantly vascular plants 
[18]. The plant-root system enhances the effective-
ness of wetlands by creating distinct microhabitats for 
soil microorganisms [19], which support the cycling 
of nutrients [20]. The immediate area of soil around a 
plant’s root system is known as the rhizosphere, and 
the area where the root surface is in touch with the soil 
directly and forms the inner boundary of the rhizos-
phere is known as the rhizoplane [21, 22]. Changes in 
the oxygen, soil pH, C/N, and water levels of the envi-
ronment caused by plants change the rhizosphere and 
rhizoplane ecosystems [23, 24]. The variety and com-
plexity of microorganisms in the rhizosphere and rhiz-
oplane are critical for sustaining equilibrium in the soil 
ecosystem [23, 25, 26].

The composition of soil fungi is influenced by biotic 
factors, such as the plant community and abiotic factors, 
including nutritional substrates, soil microclimate, and 
physicochemical properties [27–29]. Therefore, the pres-
ence of different plant groups directly impacts soil fungi, 
as it alters the quantity and composition of plant litter 
within the soil, including factors such as the C:N ratio 
found in both litter and roots [29]. Soil physicochemical 
properties, such as moisture and pH, are essential driv-
ers of fungal communities in soil [30]. Maestre et al. [31] 
studied the diversity and abundance of soil fungi, which 
decline with decreasing soil pH. Furthermore, it has been 
reported that the quality and amount of soil nutrient 
substrates change soil fungal groups [27, 32]. Since most 
soil fungi are saprophytes, Geml et al. [33] and Zimudzi 
et  al. [34] found that the soil fungi were highly related 
to N content, C: N ratio, and SOC. In the past, studies 

stated that species of invasive plants altered the SOC and 
N sequestration [35], the composition of plant litter [36], 
and soil physicochemical properties [37].

Conventional methodologies merely provide limited 
insights into the vast array of soil microorganisms, with 
a significant majority of approximately 80–90% of soil 
microbiota constituents remaining unidentified [38]. 
Because of this, a wide range of detection approaches 
based on the DNA sequencing procedures have been 
described [39]. Such studies examined the microbial 
communities in a variety of soil settings, including the 
root endospheres, rhizosphere, and rhizoplane [40–46] 
in wetlands [47], alpine meadows [48, 49] meadow steppe 
[50], paddy soil [51], and mud flats [52]. In alpine wet 
meadows, however, not much is known about the diver-
sity and composition of the rhizosphere and rhizoplane 
community of fungi in relation to plant species, site char-
acteristics, and soil physicochemical properties. The pri-
mary objectives of the present study were to address these 
gaps in knowledge by utilizing high-throughput sequenc-
ing (HTS) techniques to (1) assess the fungal diversity of 
alpine wet meadow plants within the rhizosphere and 
rhizoplane; (2) investigate the assembly of fungal com-
munities in the rhizosphere and rhizoplane; (3) examine 
the influence of various physicochemical properties, such 
as soil water content (SWC), soil organic carbon (SOC), 
microbial biomass carbon (MBC), total nitrogen (TN), 
microbial biomass nitrogen (MBN), pH, and elevation, 
on the composition of fungal communities; and (4) ana-
lyze the impact of plant-root compartments (rhizosphere 
and rhizoplane), plant species (Cremanthodium lineare, 
Caltha scaposa, and Cremanthodium ellisii), and differ-
ent sites on fungal functional profiles using FUNGuild 
analysis.

Methods
Experimental design and soil collection
Three dominant plant species, Cremanthodium ellisii, 
Caltha scaposa, and Cremanthodium lineare, were col-
lected from wet meadows at three elevations: 3737  m 
(SI), 3938  m (SII), and 4134  m (SIII), respectively, in 
Maqin county (34.4773° N, 100.2396° E), Qinghai Prov-
ince, Tibetan Plateau, China (Additional file 1: Table S1). 
The annual precipitation averages 580 mm, and the aver-
age air temperature is − 0.6 ℃. The area has various soil 
types, notably dark meadows, swamps, and peat. Three 
random plots, separated by at least 1000 m between any 
two, were selected at each elevation. All three species are 
herbaceous wet meadow plants, with C. ellisii and C. lin-
eare belonging to the family Asteraceae and C. scaposa 
belonging to the family Ranunculaceae. Three individu-
als of each plant species were randomly collected in each 
plot. All samples were treated separately. Plants were 
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carefully cut using a sterilized knife and placed in a steri-
lized bag. The rhizosphere and rhizoplane were isolated 
according to the methods proposed by Oh et al. [53] and 
Kaiser et al. [54]. The rhizosphere of each plant was col-
lected by jerking the roots three times for 60 s to release 
the soil. The soil was then vortexed, and the superna-
tant was discarded to collect the rhizosphere sample. 
The rhizoplane sample was collected by rinsing the plant 
roots three times in a phosphate buffer saline (PBS, 
140  mM NaCl, 3  mM KCl, 8  mM Na2HPO4, 1.5  mM 
NaH2PO4, pH 7.0) up to a volume of 50 ml. After being 
washed, the roots were measured, shaken (350 rpm), vor-
texed, and sonicated (Branson 2800 Ultrasonic Cleaner, 
Branson Ultrasonics, Richmond, Virginia, USA) every 
30  s with alteration for 3  min  to detach microbial cells. 
The suspension was then filtered through a nylon mesh 
(pore size, 200  µm, Spectrum Europe BV) to separate 
microbial cells and centrifuged at 3, 150 ×g for 15 min at 
4 °C. The cell pellets were washed twice with a PBS buffer 
and stored at − 20 °C.

Analysis of soil
The soil samples were air-dried and passed through a 
2  mm sieve to ensure a homogeneous sample. TN was 
examined by a flow injection autoanalyzer (FIAstar 5000 
Analyzer, Foss Tecator AB, Hillerød, Denmark) after 
digestion with sulphuric acid [55], and SOC was acquired 
using colorimetry after oxidation with a combination of 
potassium dichromate and sulfuric acid [56]. MBN and 
MBC were obtained through fumigation−extraction and 
analyzed using the Elementar Vario EL cube elemental 
analyzer (Langenselbold, Hesse, Germany) and the Skalar 
Automatic Analytical Analyzer (BV, Breda, Netherlands). 
SWC was determined by oven-drying at 105  °C [57], 
and the pH of the soil filtrate (soil: water = 1:5, w/v) was 
determined through a pH meter (Benchtop acidity meter 
PHS-3E, Leici, Shanghai, China).

Microbial community analysis
Microbial community DNA was isolated from soil sam-
ples using the DNeasy PowerSoil Pro Kit (Qiagen, USA) 
following the manufacturer’s instructions. The DNA 
concentration was assessed with a Nanodrop ND-2000 
UV–VIS Spectrophotometer (NanoDrop Technologies, 
Wilmington, DE, USA). The internal transcribed spacer 
(ITS) region was amplified using ITS1 (TCC​GTA​GGT​
GAA​CCT​GCG​G) and ITS2 (GCT​GCG​TTC​TTC​ATC​
GAT​GC) primers with Illumina Miseq [58] through ABI 
GeneAmp® 9700 PCR thermocycler (ABI, CA, USA). 
Amplicons were pooled in equimolar concentrations and 
sequenced on an Illumina MiSeq platform (2 × 300  bp 
paired-end reads) at MajorBio Biopharm Technology 
(China). Raw paired-end reads were merged with FLASH 

software (v1.2.11). Merged reads were filtered for qual-
ity and chimera removal using QIIME (version 1.9.1) 
and Fastp (version 0.19.6). Operational taxonomic units 
(OTUs) were clustered at 97% similarity with UPARSE 
(http://​www.​drive5.​com/​uparse/). The OTUs were 
assigned to different taxonomies of fungi at a 70% con-
fidence threshold using the ribosomal database project 
(RDP) classifier (http://​rdp.​cme. msu.edu/) against the 
ITS fungal database (Unite 8.0) [59]. In total, 4,182 rhizo-
sphere and 1488 rhizoplane fungal OTUs were detected 
across all samples.

Data transformation and bioinformatics analysis
The Shannon, Simpson, Ace, and Sobs α-diversity indi-
ces were estimated via Mothur (version v.1.30.2  https://​
mothur.​org/​wiki/​calcu​lators/). The Ace (Abundance-
based Coverage Estimators) and Sobs (observed species) 
are α-diversity indices used to quantify species richness 
within a given community [60, 61]. The Ace α-diversity 
index estimates the total number of species in the com-
munity, considering the potential presence of rare or less 
abundant species that might be missed in small sam-
ple sizes. The index calculates the expected richness by 
extrapolating the observed data to better estimate the 
total species richness. In contrast, the Sobs provide a 
straightforward measure of species richness and calculate 
the number of unique species observed in a sample with-
out considering their abundance or relative frequency 
[62, 63]. The Shannon and Simpson α-diversity indices 
are used to measure the diversity of species in a group 
[64, 65]. The Shannon diversity index analyzes both the 
number of species present and their relative abundances, 
providing a more thorough evaluation of diversity. In 
contrast, Simpson stresses dominance or the concentra-
tion of abundant species in the group. Higher Shannon 
values suggest greater diversity and equal distribution of 
species abundances, whereas higher Simpson values indi-
cate less diversity and domination by a few species [66]. 
The differences in the α-diversity indices of fungal com-
munities between the rhizosphere and rhizoplane were 
assessed by the two-tailed Wilcoxon’s rank sum test using 
the stats package in R. The variations in α-diversity of 
fungal communities among the plant species and eleva-
tions were checked via Kruskal–Wallis with False Dis-
covery Rate (FDR) multiple correction tests (*p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001) through stats package in R. The 
β-diversity was shown by nonmetric multidimensional 
scaling (NMDS) analysis employing ANOSIM and hier-
archical cluster tree using Bray–Curtis dissimilarity 
matrix in vegan and ggplot package in R. The differences 
between the rhizosphere and rhizoplane fungal commu-
nities at the genus level were identified via the Metastats 
differential test with Benjamini–Hochberg multiple 

http://www.drive5.com/uparse/
http://rdp.cme
https://mothur.org/wiki/calculators/
https://mothur.org/wiki/calculators/
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corrections. Metastats is a statistical method designed 
for comparing metagenomic samples of two populations 
based on the count data (i.e., acquired through sequenc-
ing) to detect differentially abundant features [67]. The 
linear mixed model (LLM) was applied to investigate the 
effects of plant species, elevations, and root compart-
ments on the α- and β-diversity of fungal communities 
in SPSS 22. Further, the Null-modeling-based approach 
(iCAMP) was utilized to infer fungal community assem-
bly mechanisms in the rhizosphere and rhizoplane by 
the “Picante” package in R [68]. The Null model identi-
fies the community assembly mechanism by assessing 
the standard deviation of observed ecological patterns 
as compared to the randomly shuffled ecological pat-
terns generated by the null model [69]. The variations 
in the ecological patterns were investigated by compar-
ing β-diversity metrics, i.e., beta-nearest taxon index 
(βNTI) and the Raup−Crick metric (RCbray). The analysis 
was performed based on the methods described by Ste-
gen and coworkers [70] to classify community pairs into 
underlying drivers of stochastic processes (homogene-
ous selection and heterogeneous selection) or determin-
istic processes (undominated, dispersal limitation, and 
homogenous dispersal). The relative influence of homo-
geneous and heterogeneous selection was quantified 
with |βNTI|< −  2 and |βNTI|> 2. At the same time, the 
homogeneous dispersal, dispersal limitation, and undom-
inated ecological patterns were quantified with the pair-
wise comparisons of |βNTI|≤ 2, RC < − 0.95, |βNTI| 2 ≤ , 
RC < 0.95, and |βNTI|≤ 2, RC ≤ 0.95, respectively [71]. 
The “mantel_test” function in the dplyr R package was 
utilized to examine the association amongst the fungal 
phyla and familiae with physicochemical properties using 
Pearson’s correlation coefficient. The co-occurrence net-
work was constructed to visualize relationships among 
fungal genera and environmental variables by Spear-
man’s correlation (p < 0.05), using the “corr.test” func-
tion in the psych R package, while the network analysis 
was visualized with the interactive platform gephi. The 
network-level topology was analyzed in terms of nodes, 
edges, average weight degree, positive and negative cor-
relations, and several modularities. FUNGuild [72] pre-
dicted the functions of rhizosphere and rhizoplane fungal 
communities. Fungal species were categorized into puta-
tive functional groupings by assigning OTUs with a con-
fidence level of “highly probable” or “probable” to trophic 
modes and guilds.

Results
Physicochemical characteristics of the soil
The three plant species, Cremanthodium ellisii, Cre-
manthodium lineare, and Caltha scaposa, varied in their 
physicochemical characteristics at each site. As presented 

in Additional file  1: Table  S2 and Fig.  1, the one-way 
ANOVA exhibited significant differences in SWC 
(p < 0.01) among plant species, whereas SOC (p < 0.001), 
TN (p < 0.001), pH (p < 0.001), SWC (p < 0.001), MBC 
(p < 0.001), and MBN (p < 0.001) contents of the rhizo-
plane differed among sites. Moreover, the two-way 
ANOVA (site × plant species) revealed no significant 
differences (p > 0.05) in the rhizoplane soil (Additional 
file  1: Table  S2 and Fig.  1). The soil parameters of the 
rhizosphere, including SWC (p < 0.001), SOC (p < 0.001), 
MBC (p < 0.001), TN (p < 0.001), MBN (p < 0.001), and 
pH (p < 0.001) varied among sites, whereas TN (p < 0.05) 
was significant among plant species. Similarly, the two-
way ANOVA (sites × plant species) showed no significant 
differences (p > 0.05) in the rhizosphere compartment 
(Additional file 1: Table S2 and Fig. 1).

Fungal community composition
The predominant soil fungal phyla in the rhizosphere of 
C. ellisii, C. lineare, and C. scaposa were Ascomycota at 
54.5% and Basidiomycota at 20.9%, while Rozellomycota, 
Mortierellomycota, unclassified fungi, and others totaled 
24.5% (Additional file  1: Figure S1). Similarly, Asco-
mycota dominated the rhizoplane region at 51.6% and 
Basidiomycota at 36.4%, while Rozellomycota, Mortiere-
llomycota, unclassified fungi, and others totaled 11.9% 
(Additional file 1: Figure S1). Moreover, the rhizosphere 
and rhizoplane fungal genera also varied among C. ellisii, 
C. lineare, and C. scaposa at all sites (Fig. 2). The predom-
inant fungal genera in the rhizosphere were Unclassified 
fungi > Unclassified Ascomycota > Pseudeurotium > Tetra-
cladium > Vishniacozyma, while that of rhizoplane were 
Rhodotorula > Unclassified fungi > Unclassified Asco-
mycota > Cadophora > Pencillium (Fig.  2). However, the 
Unclassified GS11 (p < 0.001), Unclassified Pyronemata-
ceae (p < 0.01), Unclassified Sclerotiniaceae (p < 0.01), 
Wardomyces (p < 0.05), Unclassified Helotiales (p < 0.05), 
and Necteria (p < 0.05) were the significant abundant gen-
era among the rhizosphere and rhizoplane fungal com-
munities, respectively (Additional file 1: Table S3).

Variations in fungal communities
The α-diversity indices of the rhizosphere and rhizoplane 
fungal communities of C. ellisii, C. lineare, and C. sca-
posa at SI, SII, and SIII are presented in Additional file 1: 
Tables S4 and S5. The Ace, Sobs, Simpson, and Shan-
non α-diversity indices significantly differed between 
the rhizosphere and rhizoplane. As shown in Fig. 3, the 
Ace (p < 0.001), Sobs (p < 0.001), and Shannon (p < 0.001) 
indices were significant in the rhizosphere, whereas 
Simpsons’ (p < 0.001) index was substantially different in 
the rhizoplane. In addition, the α-diversity indices of C. 
ellisii, C. lineare, and C. scaposa at SI, SII, and SIII varied. 
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For instance, as shown in Additional file 1: Figure S2, the 
Ace index of the rhizosphere differed between C. ellisii 
and C. lineare (p < 0.05) at SI and SIII, while the Sobs 
index differed among C. ellisii and C. scaposa (p < 0.01) at 
SI, and SIII, respectively. However, the Shannon (p > 0.05) 
and Simpson (p > 0.05) indices showed no differences 
among plant species or sites (Additional file 1: Figure S2). 
In contrast, the Ace, Shannon, Simpson, and Sobs indices 
of the rhizoplane differed significantly among plants and 
sites (Additional file 1: Figure S3).

The nonmetric multidimensional scaling (NMDS) 
analysis among the plant species formed significant 
clusters of fungal diversity (β-diversity) of the rhizo-
sphere (p < 0.001) and rhizoplane (p < 0.001) in the 
ordination space (Fig. 4). The NMDS ordination of the 
rhizosphere revealed that fungal communities of C. 
ellisii at SI and SII were separate from C. lineare and 
C. scaposa. In contrast, fungal communities of C. ellisii, 

C. lineare, and C. scaposa were clustered together at SI, 
SII, and SIII (Fig.  4). Moreover, the NMDS ordination 
revealed that the fungal communities in the rhizoplane 
of C. ellisii, C. lineare, and C. scaposa were separated 
at SI and SII, while C. scaposa was separated from C. 
lineare and C. ellisii at SIII. However, C. scaposa and 
C. lineare at SII and SIII, and C. ellisii at SI and SII 
were clustered together in the rhizoplane (Fig.  4). The 
NMDS ordination of fungal communities across differ-
ent rhizosphere sites was notable; for example, fungal 
communities of C. ellisii at SI were distinct from those 
of C. lineare and C. scaposa, which clustered together. 
Similarly, the fungal communities of C. ellisii differed 
from those of C. lineare and C. scaposa at SII. The fun-
gal communities of C. ellisii, C. lineare, and C. scaposa 
at SIII clustered together, indicating that the fungal 
communities are more comparable between plants 
(Fig. 4). In comparison, the fungal communities within 

Fig. 1  Soil physicochemical properties of rhizosphere and rhizoplane samples associated with Cremanthodium ellisii, Cremanthodium lineare, 
and Caltha scaposa. Mean (n = 3) with lowercase letters in a column within the rhizoplane and rhizosphere differ at p < 0.05. SI, SIII, and SIII represent 
sampling sites, ns non-significant, SOC soil organic carbon, TN total nitrogen, SWC soil water content, MBC microbial biomass carbon, MBN microbial 
biomass nitrogen, *p < 0.05; **p < 0.01  and ***p < 0.001
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the rhizoplanes of all three plants formed different 
clusters at SI, although C. lineare and C. scaposa clus-
tered together at SII, implying similarities. In addition, 
the fungal communities of C. scaposa appeared to be 
distinct from those of C. lineare and C. ellisii, which 
together formed clusters at SIII, as shown in Fig. 4.

The hierarchical cluster tree and clustering heat-
map based on the Bray–Curtis distance algorithm also 
showed that the fungal rhizosphere communities of C. 
ellisii and C lineare at SII and C. scaposa at all sites were 
separate, while C. scaposa at SII and SIII and C. lineare 
at SI, SII, and SIII were clustered together (Additional 
file  1: Figure S4). The results from the linear mixed 
model demonstrated that both the rhizosphere and 
rhizoplane showed a significant effect (p < 0.001) on the 
α- and β-diversities while plant species and elevations 
showed varying results on the α- and β-diversity indi-
ces (Additional file 1: Table S6). However, the combined 
effect of all variables (i.e., plants × elevations × compart-
ments) only exhibited a significant effect on Shannon 

(p < 0.01) and Simpson (p < 0.01) of α-, and bray–Cur-
tis distance (p < 0.01) of β-diversity indices. (Additional 
file 1: Table S6).

Variations in fungal community assembly
Understanding the ecological forces that govern com-
munity formation is a central concern. Communities 
may form in two ways: niche-based deterministic and 
neutral-based stochastic. Niche-based deterministic 
mechanisms include environmental filtering (such as 
pH, temperature, moisture, and salinity) and various 
biological interactions (such as competition, facili-
tation, mutualisms, and predation). In contrast, 
neutral-based stochastic processes include birth/death, 
speciation/extinction, and immigration [73]. As shown 
in Additional file 1: Table S7, variations in rhizosphere 
fungal communities were strongly influenced by disper-
sal limitation, i.e., the dispersal limitation of C. ellisii, 
C. lineare, and C. scaposa was 71.11%, 46.66%, and 

Fig. 2  Distribution of fungal genera in the a rhizosphere and b rhizoplane associated with Cremanthodium ellisii, Cremanthodium lineare, and Caltha 
scaposa 
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Fig. 3  Differences in alpha diversity indices of the rhizosphere and rhizoplane fungal communities based on the Wilcoxon rank sum test; *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001

Fig. 4  Distribution of the fungal communities (β-diversity) in the rhizosphere (a) and rhizoplane (b) associated with Cremanthodium ellisii, 
Cremanthodium lineare, and Caltha scaposa based on the nonmetric multidimensional scaling (NMDS) analysis using Bray—Curtis dissimilarity 
matrix and ANOSIM at the number of replacements = 999; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001
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64.44%. In contrast, the fungal communities of rhizo-
plane were shaped by an undominated niche process, 
i.e., the undominated niche-based selection of C. ellisii, 
C. lineare, and C. scaposa was 51.11%, 28.88%, and 
60.52%, respectively. Overall, the fungal community 
assembly of rhizosphere and rhizoplane was shaped 
by stochastic rather than deterministic processes. For 
example, the stochastic processes within the rhizo-
sphere of C. ellisii, C. lineare, and C. scaposa were 
93.33%, 86.66%, and 93.33%, while that of rhizoplane 
were 93.33%, 28.88%, and 68.42%. In comparison, the 

deterministic processes within the rhizosphere of C. 
ellisii, C. lineare, and C. scaposa were 6.66%, 13.33%, 
and 6.66%, while that of rhizoplane were 6.66%, 71.11%, 
and 31.57%, respectively (Additional file 1: Table S7 and 
Figure S5).

Association among fungal communities 
and physicochemical properties
The association between the fungal communities and the 
physicochemical properties in alpine wet meadows was 

Fig. 5  Mantels’ test based on the Pearsons’ correlation coefficient among fungal phyla and familiae a rhizosphere, b rhizoplane, and correlation 
network analysis based on Spearman’s correlation coefficient among the fungal genera with the observed variables of c rhizoplane, d rhizosphere. 
TN Total nitrogen, SWC soil water content, SOC soil organic carbon, MBC microbial biomass carbon, MBN Microbial biomass nitrogen, EVN elevation, 
and pH; the size of the nodes = abundance, color = genera or soil properties; the green lines represent positive correlation, while the pink lines 
represent negative correlations
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analyzed by mantel test and network analysis. The Mantel 
test investigated the relationship between physicochemi-
cal properties and changes in fungal phyla and familiae 
in the rhizosphere and rhizoplane. The variables SOC, 
TN, pH, SWC, MBC, MBN, and elevation were shown 
to be correlated with the fungal phyla in the rhizosphere 
(r < 0.25; p ≤ 0.05). Although pH (r < 0.25; p = 0.01–0.05), 
MBN (r = 0.25–0.5; p = 0.01–0.05), and SOC, TN, SWC, 
MBC, and elevation (r = 0.25–0.5; p < 0.001–0.01) were 
significantly correlated with the fungal familiae of the 
rhizosphere (Fig.  5). In comparison, SOC, TN, pH, 
SWC, MBC, MBN, and elevation substantially correlated 
(r < 0.25; p ≤ 0.05) with the fungal phyla of the rhizoplane, 
whereas SOC, TN, pH, MBN, and elevation (r < 0.25; 
p = 0.01–0.05), and SWC and MBC (r < 0.25; p = 0.001–
0.01) correlated with the relative abundance of the fun-
gal familiae within the rhizoplane, respectively (Fig.  5). 
In addition, the network analysis explained the effect of 
observed variables on the relative abundances of fungal 
genera in the rhizosphere and rhizoplane (p < 0.05). The 
rhizosphere network comprised 118 nodes connected 
by 433 edges, while the rhizoplane had 63 nodes and 96 
edges. The rhizosphere and rhizoplane exhibited more 

negative than positive links (Fig. 5). Topological features, 
likewise, network diameter, average degree, modular-
ity, and graph density, described the complex pattern of 
fungal genera in the rhizosphere and rhizoplane (Addi-
tional file 1: Tables S8 and S9). Based on the rhizosphere 
network, TN, elevation, and SOC were the deterministic 
observed variables, whereas TN was the most prominent 
soil variable driving the fungal genera of the rhizoplane 
(Fig. 5).

Functional determination of fungal communities
A total of 1124 (26.9%) of 4181 OTUs in the rhizos-
phere and 731 (49.1%) of 1488 OTUs in the rhizoplane 
were assigned to a corresponding fungal trophic mode 
and functional group (guild) via FUNGuild (Additional 
file 1: Table S10). We only selected three trophic modes, 
namely, saprotrophs, symbiotrophs, and pathotrophs, 
and screened the four guilds, arbuscular mycorrhizae, 
endophytes, ectomycorrhizae, and orchid mycorrhi-
zae. The percentages of OTUs assigned to saprotrophs, 
pathotrophs, and symbiotrophs in the rhizosphere with 
a “highly probable” and “probable” confidence ranking 
were 58.5%, 11.7%, and 12.6%, whereas that of rhizoplane 

Fig. 6  Circle packing characterization of the fungal trophic and guilds: a, b rhizosphere, c, d rhizoplane based on the FUNGuild analysis. The size 
of each circle represents the abundance of each function detected in the rhizosphere and rhizoplane of C. ellisii, C. lineare, and C. scaposa at SI, SII, 
and SIII
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were 51.3%, 13.9%, and 7.92%, respectively. The percent-
ages of OTUs representing arbuscular mycorrhizae, 
endophytes, ectomycorrhizae, and orchid mycorrhizae 
within the rhizosphere were 60.4%, 13.2%, 20.9%, and 
1.09%, while that of rhizoplane were 36.1%, 25.0%, 30.6%, 
and 2.77%, respectively. Moreover, the fungal trophic 
modes differed among the three plant species and sites. 
For example, the abundance of saprotrophs and patho-
trophs in the rhizosphere was highest in C. ellisii at SI 
and SIII. In contrast, symbiotrophs were highest in C. 
lineare at SIII (Fig.  6). Similar variations were observed 
in the fungal functional groups (guilds) among the plant 
species and sites (Fig. 6). Interestingly, the fungal taxon-
omy representing the different functional modes changes 
with the change in the root compartment. For example, 
Archaeospora remained the dominant genus of arbuscu-
lar mycorrhizae in the rhizoplane, while Dominikia was 
the dominant arbuscular mycorrhizae in the rhizosphere.

Discussion
Rhizosphere microbiomes of different plant species 
often have different structural properties [74], which 
also applies to microbial rhizoplane communities, albeit 
not many studies have analyzed the rhizoplane [75–77]. 
Rhizosphere and rhizoplane fungi are vital to plant ecol-
ogy, evolution, and growth promotion; hence, more 
studies are needed to understand these microbial com-
munities in wetlands environments, specifically in alpine 
wet meadows. This study used Illumina-Miseq profiling 
to determine how environmental factors and elevations 
affect the fungal communities of the rhizosphere and 
rhizoplane related to three plant species, Cremantho-
dium ellisii, Cremanthodium lineare, and Caltha scaposa 
in Maqin county, Qinghai−Tibetan Plateau, China.

Wetland soil is a complex habitat where soil depth, 
water level, biocrusts, and physical crust affect soil micro-
biota. The differences we observed in the SWC of rhizo-
plane among the plant species and other physicochemical 
properties among sites were in line with the studies by 
[78–80], indicating that the soil contents of water, N, and 
C tend to increase along an elevation gradient. The pH, 
vegetation type, SWC, and elevation can affect soil char-
acteristics. For example, Zhang et  al. [81] reported that 
SOC and TN concentrations increased with altitude, 
coinciding with a vegetation type change along the alti-
tudinal gradient. The alterations of the C and N profiles 
along the elevation gradient could be due to the low air 
temperature, inhibiting microbial processes in mineral-
izing these compounds. Studies have reported on the 
reduction in the decomposition of SOM by the microbes 
with altitude due to low temperature [82, 83]. SWC can 
stimulate or inhibit the growth of microorganisms, which 

influences the mineralization of C and N [84]. Moreo-
ver, the SWC and water level influence the distribution 
of microbial species in wetland habitats, which may limit 
oxygen availability in the soil [6].

Our results agree with Zhang et  al. [85], who stated 
that Basidiomycota and Ascomycota are the predominant 
phyla in the wetlands. The variation in the abundance of 
Ascomycota and Basidiomycota in the rhizosphere and 
rhizoplane can be attributed to disparities in microenvi-
ronmental variables and functional distinctions between 
the soil near the roots and the surface of the rhizoplane 
[41]. These fungi generally establish connections between 
processes occurring above and below the ground in wet 
meadows. However, unclassified fungi could be due to 
the presence of rich organic matter, that is, SOC, in the 
wet meadow soils at the three sites [85, 86]. Earlier stud-
ies that discussed how SOM and microbial function 
relate to one another provided evidence for the low abun-
dance of fungi in the wet meadow [86, 87]. For instance, 
Zhang et al. [85] reported in their study that wetland soil 
was typically covered with water, causing a drop in oxy-
gen content and limiting the growth of fungi. Likewise, 
oxygen availability is a limiting factor in alpine wet mead-
ows [87], which most likely inhibits the growth of fungi, 
resulting in fewer fungi but a more homogenous com-
munity. The SWC also limits the available oxygen [88] in 
soil, which could explain, at least in part, the low diversity 
of fungal communities within the wetland habitat [89]. In 
addition, we observed differences in the fungal commu-
nities among plant species and sites. Similar results were 
observed in the fungal communities across plant-root 
structures [90], plant types [91], and sites [92]. Possible 
reasons for these differences could be due to the plant–
microbe relationship, which is driven by plant exudates 
that contain signaling compounds (flavonoids, strigol-
actones) and organic compounds (organic acids, amino 
acids, proteins, and fatty acids), and by adaptations to 
different characteristics of their niche, such as tempera-
ture, oxygen level, and UV light [93, 94] The abiotic and 
biotic factors which influence the fungal community 
differ significantly across different locations, plant-root 
structures, and plant types [90–92]. Comparatively, the 
rhizoplane fungal community had low species diversity 
and richness, implying that an inadequate number of 
species were screened by plant roots [95]. This means 
that the microbiota in each rhizo-compartment is unique 
in composition and structure and susceptible to further 
manipulation by host-controlled processes [41]. Potential 
variations in plant-fungal communication and mutualis-
tic relationships could exist between the rhizoplane and 
the rhizosphere. An illustration of this phenomenon can 
be observed in the symbiotic relationship between myc-
orrhizal fungi and root cortical cells, wherein the former 



Page 12 of 18Iqbal et al. Environmental Sciences Europe          (2023) 35:115 

might potentially influence the colonization of other fun-
gal species [96]. Differential selective pressures may be 
exerted on the root surface as opposed to the surround-
ing soil environment due to the interplay between plant 
immunity and microbial competitiveness. This phenom-
enon can potentially result in the development of discrete 
fungal communities suited to the rhizoplane [96–98].

The α- and β-diversity showed substantial differences 
in the rhizosphere and rhizoplane of C. ellisii, C. line-
are, and C. scaposa. The findings demonstrated that the 
plant-root compartments, the plant species, and the sites 
impacted the diversity of the fungal groups. Changes in 
the α- and β-diversities of microbial communities were 
reported with respect to the vegetation and site specific-
ity. These changes were linked to either human activities 
that disturb plant cover or soil variables that may change 
with the altitude [99, 100]. According to Bgachelot et al. 
[29] and Chen et al. [90], differences in the root exudates 
and litter inputs of various plant species might influ-
ence the availability of resources and cause alterations in 
the alpha diversity of fungal communities in the rhizos-
phere and rhizoplane. Gradients can also influence fun-
gal alpha diversity in abiotic variables such as moisture, 
oxygen, pH, and nutrients linked to soil depth, location, 
or seasonal dynamics [30, 32]. In addition, the capacity 
of the rhizosphere to select microbes and prevent their 
penetration into other root compartments, such as the 
rhizoplane and endosphere, may be responsible for the 
differences between the rhizosphere and rhizoplane fun-
gal communities [101, 102]. Moreover, the community 
assembly revealed that neutral-based stochastic pro-
cesses governed the fungal communities of both rhizo-
sphere and rhizoplane; however, the intra-stochastic 
processes across the rhizoplane and rhizosphere of C. 
ellisii, C. lineare, and C. scaposa varied. Overall, the fun-
gal community assembly of rhizosphere and rhizoplane 
was shaped by stochastic rather than deterministic pro-
cesses. Our findings are consistent with those of Huang 
et al. [103], who found that stochastic processes played a 
more critical role in the formation of fungal communities 
in wetland soils than deterministic ones, which confirms 
that stochastic processes play a vital role in the assem-
bly of fungal communities in wetland soil. The differ-
ent assemblage processes could be linked to the growth 
strategies of fungi within the succession. Moreover, the 
undominated process accounts for a large proportion 
of the fungal assembly [69], which is evident from our 
results that the undominated neutral-based stochastic 
process influenced the rhizoplane fungal communities. 
The differences in the assembly processes could also be 
linked to the environmental filtration of the given area; 
for example, the soil N content and pH variations can 
affect the balance between stochastic and deterministic 

assembly processes [104]. It has been reported that 
deterministic processes proliferate in nutrient-poor 
environments, whereas stochastic processes thrive in 
nutrient-rich environments [105]. For example, Wang 
et al. [106] found that fungal communities in the bulk soil 
were formed by deterministic mechanisms, as opposed 
to the rhizosphere, where stochastic processes regulated 
fungal communities. They stated that the bulk soil had 
inadequate N levels, whereas the rhizosphere soil had 
appropriate N levels, resulting in a difference in the fun-
gal assembly in the bulk and rhizosphere soil [106]. Thus, 
it is plausible that the altered fungal assembly processes 
within the rhizosphere and rhizoplane associated with C. 
ellisii, C. lineare, and C. scaposa were caused by the alter-
ations in the rhizosphere and rhizoplane soil parameters 
observed in our study.

The association between the fungal communities and 
the soil physicochemical properties in alpine wet mead-
ows was analyzed by mantel tests and network analysis. 
These findings suggested that increasing the positively 
linked variables promoted fungi growth in the rhizos-
phere or rhizoplane. The presence of positive relation-
ships between soil physicochemical properties and fungal 
taxonomic abundance suggests that there are likely direct 
or indirect influences on fungal growth and activity in 
the rhizosphere and rhizoplane environments. As an 
example, the augmentation of moisture and nutrient 
availability has the potential to directly induce micro-
bial metabolism and proliferation by alleviating limita-
tions imposed by the surrounding environment [84]. As 
a significant resource, soil organic matter has been found 
to influence the size of fungal populations positively. 
Moreover, it is worth noting that fungi have the ability to 
react indirectly to variations in soil conditions that lead 
to changes in the patterns of exudation from plant roots. 
This response is mediated by chemicals such as sug-
ars and organic acids, which serve as significant signals 
regulating fungal gene expression [94]. Fungal dynam-
ics can be influenced by various intricate biotic interac-
tions, both direct and indirect, which are modulated by 
soil physicochemical properties. Positive connections 
may ultimately indicate that some environmental fac-
tors facilitate the growth of specific fungal species rather 
than impede it. However, Pearson’s correlation revealed 
that the SOC negatively correlated with the fungal phyla 
of the rhizoplane, suggesting that the SOC may limit the 
growth of fungal communities within the rhizoplane. The 
interplay between plant production and soil C is sensitive 
to the partitioning of several fungal groups. This relation 
could justify the exclusive and prominent fungal commu-
nities in the rhizosphere and rhizoplane of the observed 
plant species. Most likely, the intricacy of the network in 
the rhizosphere was caused by frequent changes in the 
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environment of the roots and the soil near them, such 
as changes in nutrient availability, pH, moisture, oxygen 
levels, and carbon dioxide levels [107, 108]. These results 
indicate that the rhizosphere is the most active locus of 
microbial and plant-microbial interactions. Moreover, it 
also explains why plant species may not be the primary 
determinant of the structure of fungal communities, but 
seasonal changes and soil variables are the main drivers 
[79, 109]. SWC was correlated with fungal phyla, famil-
iae, and genera in the rhizosphere and rhizoplane, which 
implies that SWC was a limiting factor for these micro-
organisms. A change in SWC could lead to alterations 
in C and N mineralization within the soil, which affects 
the distribution of microbial species in wetland habitats 
[6, 84]. Moreover, moisture enables the diffusion of soil 
nutrients [110], and consequently, a more excellent sup-
ply of organic C would be available for the soil microbes, 
increasing their relative abundance.

FUNGuild analysis revealed differences in the func-
tional traits of fungal communities of rhizosphere and 
rhizoplane associated with C. ellisii, C. lineare, and C. 
scaposa. The functional modes and guilds were selected 
based on the importance of their role in climate change 
and environmental filtering by forming plant-host asso-
ciations [111]. Mycorrhizae are symbiotroph fungi that 
interact with plant hosts and contribute carbon, nitrogen, 
and phosphorus [15]. It was predicted that plants typi-
cally direct 10–20%, but can reach 50%, of their photo-
synthates to their fungi, with the major mycorrhizal fungi 
of an ecosystem exerting considerable impact over C 
cycling and storage [112]. In exchange, mycorrhizal fungi 
supply up to 80% of the phosphorus (P) requirements 
of host plants [113], as well as considerable amounts of 
nitrogen (N) and micronutrients [114]. Therefore, the 
maximum abundance of fungal trophic modes at SIII 
could result from more soil C and N matters in the form 
of SOC, MBC, TN, and MBN. The increased availability 
of resources, such as SOC and TN, contributes to the 
provision of additional energy, carbon compounds, and 
essential nutrients that support the growth and metabolic 
processes of saprotrophic fungi, which derive their nutri-
tion by decomposing organic matter [29]. The stimulation 
of saprotroph abundance through bottom-up processes 
is also intensified by the presence of MBC and MBN 
pools, which signify a substantial and dynamic popula-
tion of bacteria and fungi involved in the decomposition 
process [30, 115]. Conversely, a higher concentration of 
SOC is also associated with an elevated allocation of car-
bon below ground by plants. This allocation is believed 
to facilitate a larger population of symbiotrophic mycor-
rhizal fungi, which acquire plant-derived photosynthates 
in exchange for essential mineral nutrients [17]. Several 
factors, including SOC, MBC, TN, and MBN, influence 

detrital resources, plant productivity, and soil microbiota. 
Collectively, these factors provide a conducive environ-
ment that supports the growth and activity of free-living 
decomposer organisms and symbiotic fungi. The dif-
ference between the number of OTUs corresponding 
to the trophic modes and guilds within the rhizosphere 
and rhizoplane could be due to plant–host specificity, 
soil chemistry, and the screening effect of the plant-root 
compartment [116, 117]. Moreover, we also observed 
changes in the fungal taxonomy with different functional 
modes, which could be the reason behind the intra- and 
intercellular fungal association patterns with host plants 
[118]. FUNGuild has been used extensively to analyze 
the functions of fungi. However, more in-depth studies 
focusing on quantifying fungal communities and func-
tional groups are required to strengthen the functional 
profiles of fungi within the plant-root compartments at 
different sites.

The present study is subject to several limitations. 
Firstly, the collection of soil samples was limited to the 
rhizosphere and rhizoplane for a single year rather than 
encompassing a longitudinal time series. Secondly, the 
findings were derived from relative abundance, corre-
lations, modeling, and functional predictions of fungal 
communities rather than employing quantitative tech-
niques such as qPCR. Thirdly, a hypothetical repeated 
sampling approach was utilized, which may restrict the 
generalizability of the results to the specific sampling 
area of alpine wet meadows rather than wetlands in their 
entirety. Further research is required in the form of quan-
titative and time series studies to obtain a more accurate 
and comprehensive understanding of the fungal com-
munities present in the rhizosphere and rhizoplane, as 
well as the ecological functions they serve in alpine wet 
meadows.

Conclusions
The current study provides insights into the spatial dis-
tribution of fungal communities in the rhizosphere and 
rhizoplane of three plant species, namely C. lineare, 
C. scaposa, and C. ellisii, across three distinct sites, 
and expands our understanding of fungal ecology in 
alpine wet meadows. The Unclassified GS11, Unclassi-
fied Pyronemataceae, Unclassified Sclerotiniaceae, War-
domyces, Unclassified Helotiales, and Necteria were the 
significant abundant genera among the rhizosphere and 
rhizoplane fungal communities. Substantial differences 
emerged in fungal α-diversity indices in the rhizosphere 
and rhizoplane, with ACE, Sobs, and Shannon being dis-
tinct in the rhizosphere, while Simpson was the highest 
in the rhizoplane. The intra-fungal community, based 
on the NMDS analysis, also revealed significant fungal 
clusters in the rhizosphere and rhizoplane and across 



Page 14 of 18Iqbal et al. Environmental Sciences Europe          (2023) 35:115 

different sites. Root compartments significantly influ-
enced the fungal population, although plant species and 
elevation had varying effects. In addition, the formation 
of the fungal community showed significant heterogene-
ity, with stochastic process predominating in both the 
rhizosphere and the rhizoplane. The fungal communities 
of rhizosphere and rhizoplane were shaped by total nitro-
gen (TN), soil water content (SWC), and soil organic car-
bon (SOC); however, pH, microbial biomass C (MBC), 
microbial biomass N (MBN), and elevation had a trivial 
effect. The findings from the FUNGuild analysis pro-
vide additional evidence to support the notion that fun-
gal trophic mode and guild variations are influenced by 
plant-root compartments, plant species, and elevation in 
alpine wet meadows, thereby influencing the fungal con-
tribution to the ecosystem. However, additional research 
is necessary to gain a comprehensive understanding of 
the structural and functional properties of the fungal 
ecosystem in the rhizosphere and rhizoplane of alpine 
wet meadows, in conjunction with the metatranscrip-
tome and metaproteome.
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