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Abstract 

The main objective of this research is to evaluate the effects of climate change first on precipitation and tempera‑
ture, and then on the runoff characteristics of two tropical watersheds located in Senegal and Guinea‑Bissau. To 
achieve this, eighteen General Circulation Models (GCMs) were selected to measure various climate change scenarios 
under the Shared Socioeconomic Pathways (SSP) SSP1‑2.6 and SSP5‑8.5, using the reference period of 1985–2014. 
The GR2M hydrological model was employed to replicate past monthly surface runoff patterns for the Casamance 
and Kayanga‑Géva watersheds. After calibrating and validating the GR2M model, the researchers simulated the pre‑
dictable effect of climate change on the flow for the near future (2021–2040), medium future (2041–2060), and dis‑
tant future (2081–2100) for each watershed, using the GCM multi‑model ensemble mean. The quantile method 
was used to correct bias in temperature and precipitation data. The results of bias correction give a correlation coef‑
ficient greater than 0.9% for temperatures and 0,6% precipitation between the outputs of the multi‑model ensem‑
ble and observations used. The results indicate also that all watersheds are expected to experience drier conditions 
in the near‑future, mid‑future, and far‑future periods under both the SSP1‑2.6 and SSP5‑8.5 scenarios. Furthermore, 
the predictable temperature trends consistently show a warmer situation with growing radiative making in the future 
times. However, the primary factor influencing changes in flow for all watersheds is the projected precipitation 
changes. The anticipated drier conditions in the near‑future, mid‑future, and far‑future horizons under both scenarios 
would lead to significantly reduced runoff volumes at the beginning and middle of the rainy season. Consequently, 
the projected seasonal changes in river flow for all catchments (e.g., under SSP5‑8.5 scenario, a decline of ‑34.47%, 
‑56.01%, and ‑68.01% was noted, respectively, for the horizons 2050, 2070, and 2090 for the Casamance basin) could 
lead to new frequent occurrences of drought and water scarcity associated with past hydrological regimes. These sce‑
narios enhance the necessity of improving water management, water prizing, and water recycling policies, to ensure 
water supply and to reduce tensions among regions and countries.
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Introduction
The influence of anthropogenic climate variability  on 
hydrological processes is well documented, affecting 
the energy and mass balance of these processes [42, 63, 
119]. The water cycle is probable to intensify, leading to 
changes in hydrological patterns under dissimilar climate 
scenarios [119, 103, 109]. Climate change exacerbates 
existing challenges in water management and increases 
the vulnerability of water source schemes [20, 105]. 
To assess the possible effects of climate change on the 
hydrology regimes, a common approach is to use general 
circulation models (GCMs) and regional climate models 
(RCMs) to run the hydrological models through various 
greenhouse gas emissions scenarios [30, 75, 94]. GCMs 
are powerful tools for generating future climate projec-
tions [50, 84, 115]. However, they often have a low spa-
tial resolution (100–300 km, which may not be sufficient 
for local impact assessment studies, especially in areas 
with complex terrain [54, 88, 86]. Therefore, downscaling 
techniques are commonly applied today, through GCM 
outputs with the use of higher resolution RCMs over lim-
ited areas [56, 101, 112]. However, climate models have 
uncertainties or biases (such as systematic, random, and 
parameterization biases) [23, 53, 91]. However, long-term 
historical data can overcome uncertainties introduced by 
variability in global climate models [71, 82, 117]. Large 
suspicions in GCM–RCM forecasts show biases in pre-
cipitation and other climate variables, making continued 
use of these results unpredictable for impact assessment 
studies [5, 113, 114, 116]. Furthermore, GCM–RCM pro-
jections often show better performance in areas with 
moderate climates than in tropical regions, where con-
vective precipitation dominates and is not adequately 
represented by climate models [35, 48, 113, 114, 116]. 
Hence, applying appropriate bias correction (BC) 
approaches to GCM–RCM simulations becomes essen-
tial to improve the alignment of variances and observed 
distributions [52, 58, 111].

Climate change can modify the spatio-temporal pat-
terns of hydrological responses in catchments [31, 78, 
111]. Hydrological models have become essential tools in 
water resource management for tasks like flood forecast-
ing and strategy, drought calculation, water storage and 
quality calculation, and studying hydrological replies in 
the climate change scenarios [15,  63, 99]. These models 
provide simplified representations of real hydrological 
systems to simulate believable hydrological processes 
using input parameters, irrespective of the climatic char-
acteristics of the simulation historical [26, 65]. It exhibits 
elevations ranging from develop a framework to enhance 
hydrological model performances under numerous cli-
mate conditions. They argue that models are not yet (in 
2018) ready to be used under different climate conditions, 

explaining why they develop their framework. Hydrologi-
cal models can be broadly categorized into physical and 
conceptual approaches. Physical models utilize math-
ematical equations depend on mass, momentum, and 
energy management principles in a spatially dispersed 
model area [45, 60, 79]. The factor values in these models 
are directly related to catchment characteristics at the cell 
level [8, 122]. However, physical models can be challeng-
ing due to the complexity of the rainfall-flow transforma-
tion process, extensive data necessities, computational 
demands, over-parameterization, and factor severance 
[108, 22]. On the other hand, conceptual models esti-
mated the common physical machines of hydrological 
developments using basic calculations, where input fac-
tors are combined into homogeneous semi-distributed 
or grouped objects. Conceptual hydrological models 
are commonly employed in water resource assessments 
through water balance simulations [36, 77]. These mod-
els simplify the representation of hydrological processes 
and often study the watershed as a system, by spatially 
and temporally aggregated values of input factors [21, 
96]. As the parameters in conceptual models do not 
have direct physical interpretations, they are estimated 
through inverse calibration using observed historical data 
time series [38]. Various conceptual hydrological models, 
such as GR2M, have been utilized to assess water stabil-
ity mechanisms in rivers [81], with surface runoff, and 
groundwater flow, and parameter transferability under 
different climate variation circumstances [2].

Hydrological model uncertainty, while in general 
lesser than climate model uncertainty, ought to be also 
accounted for in climate change impact studies, at least 
for near-term regional projections [34]. Hydrological 
simulations in natural ecosystems are always limited by 
simplified representation of complex processes occur-
ring in the real world [14, 19]. However, complex physi-
cally based models do not necessarily yield better results 
than simpler models, especially in data-scarce regions, 
due to the large number of parameters and their inherent 
uncertainties [98]. Identifying the most suitable hydro-
logical model for a given purpose remains an outstanding 
challenge for the hydrological community. Nonetheless, 
a multi-model approach favoring different model struc-
tures provides better characterization of different hydro-
logical processes [14, 79].

The GR2M hydrological model [66] is extensively 
accepted due to its simplicity and effectiveness [11, 100]. 
Its semi-empirical approach has demonstrated to per-
form adequately when compared to similar monthly 
based hydrological models [43, 107]). Sensitivity analy-
ses have determined that GR2M is sensitive to errors 
in precipitation data [13, 41], but comparatively robust 
to random errors in potential evapotranspiration data 
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demonstrated that the GR2M model parameters are 
robust to non-stationary precipitation series and that the 
optimized parameter values are highly correlated with 
land use [63, 69]. However, Guilpart et  al. [37] indicate 
in their study of the Senegal River basin that the varia-
bility of parameters is significant. It has been widely uti-
lized to research on the influence of climate variation on 
water resource accessibility [4, 11, 24, 100]. However, it 
is important to note that the recital of some conceptual 
hydrological model in varying climate situations can vary 
meaningfully dependent on the area, where it is applied 
[89]. The African continent, in particular, has been rec-
ognized as a major developing tropical "hot spot" due 
to anticipated decreases in total rainfall and increased 
inconsistency by the end of the twenty-first century as a 
consequence of climate change [10, 62]. Historical obser-
vations already indicate a significant increase in tem-
peratures and a decrease in rainfall [60]. The Casamance 
and Kayanga-Géva watersheds are mainly susceptible to 
climate variation due to heavy reliance on the obtain-
ability and circulation of water assets for critical aspects, 
i.e., agriculture, and drinking water supply, etc. [17, 76]. 
Therefore, it is essential to forecast upcoming water 
resources in these catchments in various scenarios to 
precisely assess and familiarize to the excesses of climate 
variation and its impacts. The objective of this research is 
to evaluate the upcoming variations in flow characteris-
tics in the Casamance and Kayanga-Géva catchments by 
utilizing a GCM multi-model collaborative to strength a 
conceptual hydrological model in many climate change 
scenarios.

Study area
The Casamance basin is located in southern Senegal, 
spanning an area of approximately 20,150  km2 between 
latitudes 12°20’ and 13°21’ north and longitudes 14°17’ 
and 16°47’ west (Fig. 1). The region experiences a South-
ern Sudanian climate influenced by geographical and 
atmospheric factors [12, 92]. The topography of the basin 
is characterized by low relief and gentle slopes, leading 
to the intrusion of the sea and subsequent salinization of 
farmland in some areas. The upstream area of the Casa-
mance watershed covers 3650  km2, situated upstream of 
Kolda. It exhibits elevations ranging from 80 to 10 m. The 
Kayanga-Geba catchment, a transboundary basin shared 
by Guinea, Senegal, and Guinea-Bissau, lies to the east of 
the Casamance watershed. Its area measures 10,325  km2 
at the Bafata station in Guinea-Bissau and 1640  km2 at 
the Senegal–Guinea-Bissau border. Over the years, the 
Kayanga-Geba basin has experienced a notable decline 
in groundwater levels, resulting in severe impacts on 
low-water flows [76]. The Kayanga-Geba basin upstream 
of Wassadou encompasses 3163  km2 and includes the 

Anambé sub-basin, which drains an area of 1100  km2. 
The Anambé is a tributary of the Kayanga River, charac-
terized by hydromorphic soils and seasonal flooding last-
ing 3 months. A dam (Niandouba Dam) situated 300 m 
downstream of the confluence on Senegalese territory 
serves as a reservoir with a storage capacity of around 
50 million  m3. In summary, the Casamance basin in Sen-
egal spans a significant area characterized by low relief 
and influenced by Atlantic Sudanian and Southern Suda-
nian climates [92]. The Kayanga-Geba catchment, shared 
among Guinea, Senegal, and Guinea-Bissau, has experi-
enced declining groundwater levels, impacting low-water 
flows. The Anam aspects, i.e., agriculture, and drinking 
water supply é sub-basin, serves as a tributary to the Kay-
anga River and features seasonal flooding, with a dam 
downstream providing storage capacity.

The Kolda region which includes these two watersheds 
(the Kayanga watershed and the Casamance watershed) 
has a South Sudanian type climate [92]. This zone is 
located between the 900 and 1000  mm isohyets (1950–
2000). The average annual temperature is 29 °C, and the 
hydrological regime is tropical. The assessment of the 
impacts of climate variability on water resources in these 
two basins highlights a significant rainfall deficit from 
the 1970s (a deficit which continued over the 1980s and 
1990s) [17], followed by a slight rainfall surplus from the 
2000s.

Materials
Use of GR2M and flow simulation
The GR2M hydrological model has been widely utilized 
for flow simulation in various studies [4, 11, 24, 43, 66, 
100]. Its adoption stems from its simplicity and effec-
tiveness, making it a valuable tool for assessing water 
resources. The model’s semi-empirical approach has 
demonstrated favorable performance compared to other 
hydrological models with monthly time steps [4, 11, 100]. 
We have found that GR2M is sensitive to errors in pre-
cipitation data but relatively robust to random errors 
in potential evapotranspiration data [4, 24, 104]. This 
makes GR2M a suitable choice for simulating hydrologi-
cal responses, including surface runoff and groundwater 
exchange, under different climate change scenarios. The 
model’s parsimonious nature, with fewer parameters 
compared to physics-based models, simplifies the cali-
bration process. Consequently, GR2M has been effec-
tively employed to assess water balance components and 
evaluate the availability of water resources in various 
catchments. In the context of the Casamance and Kay-
anga-Géva watersheds, the GR2M model will be utilized 
to simulate the future changes in flow characteristics and 
provide valuable insights into the potential impacts of cli-
mate change on water resources in these regions.
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Presentation of the GR2M model
The GR2M monthly model was chosen as the foundation 
for this research. The GR2M (Génie Rural à 2 parameters) 
model is a global rainfall–runoff model with two parame-
ters. It was initially developed in the late 1980s at CEMA-
GREF (actual INRAE, Instiut National de Recherche pour 
l’agriculture, l’alimentation et l’environnement, in French) 
with the goal of applying it to water resource manage-
ment. It is operating on a once-a-month period stage and 
has an empirical structure that resembles conceptual res-
ervoir models. It incorporates a process for observing the 
moisture state in the basin, which helps account for past 
conditions and ensures continuous model operation. The 
model consists of a production reservoir, a routing res-
ervoir, and an interface with external factors beyond the 
atmospheric environment [68, 66]. These components 
work together to simulate the hydrological behavior of 
basin. The GR2M model possesses qualities of robust-
ness, simplicity, and efficiency [24, 43, 100], making it 

well suited for the approach proposed in this study. It has 
two adjustable parameters: X1, representing the maxi-
mum capacity of the production reservoir, and X2, rep-
resenting the underground exchange coefficient. To use 
the GR2M model in a specific basin, the following data 
are required: the surface area of the basin in square kilo-
meters, monthly records of rainfall (P) averaged spatially 
over the basin in millimeters, monthly records of poten-
tial evapotranspiration (E) in millimeters, and initial val-
ues for maximum capacity of soil storage controlled by 
parameter X1. The primary output of the model is the 
runoff at the basin outlet (Q). The structure of the GR2M 
model is shown in Fig. 2. P represents the monthly rain-
fall for month k, while E represents the average poten-
tial evapotranspiration for similar month. The model 
calculations govern the production, percolation, rout-
ing, and exchange processes with factors external to the 
atmosphere.

Fig. 1 Geographical location of the Casamance at the Kolda station and the Kayanga at the Wassadou station
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Data used
The monthly maximum (Tmax) and minimum (Tmin) 
data observed on temperature and precipitation extend-
ing from 1981 to 2021 were obtained from the National 
Agency for Civil Aviation and Meteorology of Senegal 
(ANACIM). These data are used for modeling in the 
Casamance basin. As for the Kayanga basin, given the 
missing of data in the upstream part of the basin, the 
maximum (Tmax) and minimum (Tmin) temperature 
and precipitation data from the National Aeronautics and 
Space Administration/Prediction of Worldwide Energy 
Resources (NASA/POWER) are used as alternative (from 
the pixels shown in Fig. 3).

Several methods make it possible, from the rainfall 
gauges installed in a basin, to determine the average 
rainfall of a basin: the weighted average of the surfaces, 
the method of isohyets by planimetry and the Thiessen 
method [24]. In the present study, the Thiessen method 
was used to determine the average rainfall of the basin. 
The choice of the Thiessen polygon method is explained 
by the fact that it allows weighted values to be estimated 
by taking into consideration each rainfall station. It 
assigns to each rain gauge a zone of influence whose area, 
expressed in%, represents the weighting factor of the 
local value [24]. The temperature data are used to calcu-
late Potential Evapotranspiration using the Thornthwaite 
methods. This is a simple method which does not require 
many parameters in its calculation method and which is 
widely used in the literature [51, 70].

The hydrological data used in this study come from the 
database of the Department of Water Resources Manage-
ment and Planning (DGPRE: Direction de la Gestion et 

de la Planification des Ressources en Eau). These are flow 
data from the Kolda hydrometric station, in the Casa-
mance basin, which are only available over the period 
1964 to 2008 (year from which measurements are no 
longer made regularly and continuously) and flow data 
from the Wassadou hydrometric station, in the Kayanga-
Géva basin, which are only available for the period from 
1976 to 2004 (year from which the measurements were 
stopped). The flow series used in these two basins are 
often incomplete and faced with a quality problem, which 
has impacted not only on the performance of the mod-
els on calibration and validation, but also on the periods 
chosen for calibration and validation.

Calibration‑control and validation
The initial step in rainfall–runoff modeling involves the 
calibration of the model, which entails extracting the 
necessary information from input data (rainfall, monthly 
potential evapotranspiration) and output data (simulated 
flows) to define the model parameters that best replicate 
the observed flows at the catchment outlet. This calibra-
tion process ensures that the model closely mimics the 
hydrological behavior of the specific catchment being 
modeled. Typically, parameter optimization techniques 
are employed to approximate these behaviors.

Following the calibration phase, a model evaluation is 
conducted, involving testing the set of calibrated param-
eters on data that were not used during the calibration 
process (e.g., different time periods at the same station). 
In this evaluation stage, the set of parameters remains 
unchanged, and the model is used to simulate flows 
depend on the provided inputs. The show of the model 

Fig. 2 Architecture of the GR2M model [65] (Source: 



Page 6 of 22Sadio et al. Environmental Sciences Europe          (2023) 35:113 

can be assessed during the evaluation phase through the 
calculation of performance criteria. This evaluation helps 
identify any residual errors, assesses the model’s architec-
ture and structure, and ensures its reliability. The valida-
tion step involves applying the calibrated and evaluated 
model to time periods or conditions different from those 
used for calibration. By undertaking the calibration, eval-
uation, and validation stages, the rainfall–runoff model 
can be refined and verified to better represent the hydro-
logical processes of the catchment.

Here, we use the GR2M conceptual model with a 
monthly time step which uses two parameters, and 
whose robustness in simulating flows in an African con-
text has been shown in several studies [4, 11, 24, 100]. As 
part of this work, we seek to implement a methodology 
to simulate and extend hydrometric data using stations 
that have a minimum number of hydrometric data neces-
sary for calibration and validation of the model.

As widely known, the calibration and verification pro-
cesses are imperative for applying the mathematical 
model to find the most suitable model’s parameters. The 
calibration process of the GR2M model was carried out 
over different periods in the Casamance and Kayanga 
basins, taking into account the availability and qual-
ity of flow data at the Kolda and Wassadou stations. In 
the Casamance basin at the Kolda station, a calibration 
was carried out for the period 1981–1986, followed by 

validation for the period 1987–1992. In the Kayanga 
basin, at the Wassadou station, calibration was carried 
out for the period 1985–1988 and validation was carried 
out for the period 1999–2002.

For the GR2M model, only two parameters: the pro-
duction store (X1) and the groundwater exchange rate 
(X2), must be calibrated and validated. In this process, 
the appropriate initial parameters of X1 and X2 are deter-
mined. It enables the model to mimic the basin’s existing 
hydrological behavior at the considered runoff stations 
before conducting the model’s calibration and verifica-
tion. The R-value, the initial or existing water capacity in 
the river, is varied between 10 and 60 mm to determine 
the suitable warm-up period. In our study, we found the 
warm-up periods of approximately 12  months (the first 
year of each series).

Calibrating and verifying the GR2M Model
The algorithm used to calibrate the GR2M model is the 
solver which is a function present in Microsoft Excel. 
It is a tool which allows the optimization of the param-
eters X1 and X2, is often used to solve equations whose 
operating principle is based on the calculation of the 
difference between the observed flow and the simu-
lated flow. The value of the sum of the squares of the 
deviations is reduced by the solver to obtain the right 

Fig. 3 Geographic location of pixels selected to determine climatic model data in the basins
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combination of calibration X1, X2 allowing a better fit 
of the model [7].

The Mann–Kendall test was used to detect possi-
ble gradual changes in the data series over the future 
period. According to [47]  , this non-parametric test, 
based on rank, makes it possible to determine whether 
the correlation between time and the study variable is 
significant or not. Let (× 1,….,xn) be a sample of inde-
pendent values relating to a random variable X whose 
stationarity we seek to evaluate.

Assessment of model performance
The GR2M hydrological model is used to create a time 
series of Qc flows from rainfall (P) and potential evapo-
transpiration (E) inputs. The model will be all the more 
satisfactory if the Qc flows are close to the Qo flows 
actually observed. Assessing the validity of the model 
involves judging the proximity of the two-time series 
Qo and Qc. According to Hamphy [39], this analysis is 
useful not only for developing models but also for vali-
dating them and reducing uncertainties. To measure 
the accuracy of model, the outcomes are associated 
with hydrographs taken from field data.

The Nash–Sutcliffe index To express the correlation 
between the experiential values and the simulated values, 
we express the Nash criterion, written as:

where Qsim is the simulated flow; Qobs is the observed 
flow; n is the number of time steps and the average of the 
observed flows in the series.

This is a concordance between hydrographs of between 
1 and 100%, with a value of unity corresponding to a per-
fect correlation between observed and simulated values. 
It can be interpreted as the proportion of the observed 
flow variance explained by the model. If Nash (Q) = 100%, 
the fit is perfect, but if Nash (Q) < 0, the flow calculated 
by the model is an inferior estimate than the simple mean 
flow [18].

The square root of the Nash–Sutcliffe index These are the 
square roots of the flow rates. This criterion is more sensi-
tive to average flow rates. Its formula is

(1)Nash(Q) = 100×

[

∑n
i=1 (Qsim− Qobs)2

∑n
i=1 (Qsim− Qobs)

2

]

,

(2)Nash
(

√

Q
)

= 100×



1−
∑n

i=1

√

(Qsim− Qobs)2

∑n
i=1

√

(Qsim− Qobs)2



.

The natural logarithm of the Nash–Sutcliffe index The 
Neperian logarithm of flows is more sensitive to low-
water periods. Its formula is

The combined use of these three criteria makes it 
possible to highlight several hydrological situations. 
Model performance can be judged according to the val-
ues taken by the Nash criterion [49, 67]: (1) Nash 90%: 
the model is excellent,(2) 80% < Nash < 90%: the model 
is very satisfactory; (3) 60% < Nash < 80%: the model is 
satisfactory; (4) Nash < 60%: the model is poor.

The volume balance criterion The volume balance 
criterion is used to compare the volumes simulated by 
the model with the measured volumes. The aim is to 
see whether, for an equivalent Nash criterion, a set of 
parameters that differs from the optimum obtained by 
calibration provides a better reproduction of the vol-
umes flowing, both during times of high water in times 
of low water. This criterion therefore makes it possible to 
evaluate the reconciliation of the values of the observed 
and calculated hydrographs.

Assessment of  uncertainties associated with  simulated 
flow values Results are and always will be subject to 
a margin of uncertainty. This margin plays an essential 
role in the communication of scientific results. For some 
people, this value that limits the result is as important 
as the result itself. Errors are traditionally represented 
as changes between actual and simulated flow, as in 
the Nash criterion. However, this representation is no 
longer satisfactory for practice, as the similar absolute 
error may be slight for a flood peak and excessive for a 
low flow. It is, therefore, more appropriate to calculate 
the errors using the ratio of experiential to simulated 
flow [61, 80]. The expression for the uncertainty associ-
ated with the flow calculated by a hydrological model is 
given by the following equation:

I is the uncertainty related with the simulated flow 
rate: I is the uncertainty related with simulated flow 
rate, Qobserved is the observed flow rate and Qsimu-
lated is the simulated flow rate.

When measuring the performance of hydrological 
models, a criterion commonly used is the Nash crite-
ria which evaluates the agreement between observed 
and simulated flows. This criterion is particularly use-
ful for comparing model performance across different 

(3)Nash(lnQ) = 100×

[

1−
∑n

i=1 ln(Qsim− Qobs)2
∑n

i=1 ln(Qsim− Qobs)2

]

.

(4)I =
Qobserved

Qsimulated

.
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catchments with varying flow magnitudes. Conversely, 
a criterion below 60% is typically considered unsatisfac-
tory, indicating a poor agreement between observed and 
simulated flow. However, it is significant to note that the 
Nash criterion does not have an inherent lower limit. In 
evaluating the model performance, it is crucial to dis-
tinguish between the calibration and validation phases. 
While the calibration performance provides insights into 
how well the model reproduces observed flows during 
the calibration period, it may not necessarily reflect the 
model’s ability to simulate the catchment’s behavior in 
real-world conditions. The validation phase, on the other 
hand, offers a more reliable assessment of the model’s 
simulation capabilities [85]. Therefore, the focus of the 
analysis of simulation outcomes should primarily be on 
the model’s show during the validation phase.

Simulation of flows over the future period
After calibrating and validating the GR2M hydrological 
model, the study assessed the influences of changes in 
rainfall and temperature on water resource availability in 
the two catchments depend on upcoming climate varia-
tion scenarios. The simulations are used in the study were 
obtained from the latest CMIP6 simulations, as presented 
in the IPCC 6th Assessment Report [63, 94]. A total of 
18 climate models (Table  1) were utilized (following 
two scenarios SSP1-2.6 and SSP5-8.5), and their outputs 
were ensemble-averaged to reduce natural variability 

and regular biases inherent in separate models [1]. The 
data are first evaluated on the territory of Senegal, the 
South-East zone in particular, and were corrected using 
the modified quantile method according to Bai et al. [6] 
which give good results compared to other methods. For 
temperatures, the quantile method applied is the one 
that uses the difference. For rainfall, the quantile method 
applied is that which uses a Delta Multiplicative Fac-
tor. The model data are used and corrected individually 
by quantile methods before the ensemble averages are 
used. In the Casamance and Kayanga basins, compared 
to the observed data from the Kolda station, the correla-
tion coefficient of the outputs of the multi-model ensem-
ble whose biases are corrected is greater than 0.95% for 
temperatures and 0.60% for precipitation, while it was 
around 0.9% for temperatures and 0.30% for precipitation 
between the observed data. And the uncorrected data 
(Fig.  4). Beyond bias correction, the unique use of the 
average ensemble will make it possible to circumvent the 
divergence of climate models for the future horizon and 
the single future trajectory (the average ensemble) will 
mask the uncertainties on the future climate. For future 
projections, the multi-model ensemble used in this study 
is therefore more reasonable than a single model [122].

Rainfall and temperature data were extracted from 
the aforementioned climate models (Table 1) in netCDF 
format, and ArcGIS was used to extract data from pix-
els located on the basin surfaces (Fig. 3), through which 

Table 1 Some characteristics of the climate models used in the study

GCM name Institute/country Variant-id Résolution 
Horizontale (Lat 
x Lon)

ACCESS‑ESM1‑5 Commonwealth Scientific and Industrial Research Organisation/Australia r1i1p1f1 1.9° × 1.2°

CanESM5 Canadian Centre for Climate Modeling and Analysis, Environment and Climate Change/Canada r10i1p1f1 2.81° × 2.81°

BCC‑CSM2‑MR Beijing Climate Center/China r1i1p1f1 1.13° × 1.13°

UKESM1‑0‑LL Met Office Hadley Centre/UK r17i1p1f2 1.88° × 1.25°

NorESM2‑LM Norwegian Meteorological Institute/Norway r1i1p1f1 2.5° × 1.9°

NESM3 Nanjing University of Information Science and Technology/ China r1i1p1f1 1.9° × 1.9°

MRI‑ESM2‑0 Meteorological Research Institute/Japan r1i1p1f1 1.13° × 1.13°

MPI‑ESM1‑2‑HR Max Planck Institute for Meteorology/ Germany r10i1p1f1 0.9° × 0.9°

MIROC6 Japan Agency for Marine‑Earth Science and Technology/ Japan r10i1p1f1 1.4° × 1.4°

IPSL‑CM6A‑LR Institut Pierre Simon Laplace/France r10i1p1f1 2.50° × 1.26°

INM‑CM5‑0 Institute for Numerical Mathematics/Russia r10i1p1f1 2° × 1.5°

INM‑CM4‑8 Institute for Numerical Mathematics/Russia r1i1p1f1 2° × 1.5°

HadGEM3‑GC31‑LL Met Office Hadley Centre/UK r1i1p1f3 1.86 × 1.25

GFDL‑CM4 National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory/USA r1i1p1f1 2.5° × 2.0°

FGOALS‑g3 Chinese Academy of Sciences/China r1i1p1f1 2° × 2.3°

CNRM‑ESM2‑1 Centre National de Recherches Meteorologiques/France r1i1p1f2 1.41° × 1.41°

CNRM‑CM6‑1 Centre National de Recherches Meteorologiques/France r10i1p1f2 1.41° × 1.41°

CESM2 National Center for Atmospheric Research/USA r11i1p1f1 1.25° × 0.94°
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the average values are calculated. Specifically, the study 
focused on the SSP1-2.6 (low adaptation challenge, low 
mitigation challenge) and SSP5-8.5 (high mitigation 
challenge) scenarios [32]. These are two of four Tier 1 
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), 
designed to provide a full range of forcing targets simi-
lar in magnitude and distribution to the RCPs, used in 
CMIP5. Historical data covering the period 1985–2014 
were selected, along with future data spanning the 
period 2021–2100. Total daily precipitation data from 
each climate model were used for the analysis. The 
model simulations were obtained from the data source: 
(https:// esgf- data. dkrz. de/ search/ cmip6- dkrz/, accessed 
on March 10, 2023).

These two families of scenarios were thus defined 
according to the importance of the adaptation and miti-
gation challenges to be met by societies  [77] . SSP1-2.6 
(low adaptation challenge, low mitigation challenge) 
describes a world marked by strong international coop-
eration, giving priority to sustainable development, very 
close to the “Proaction” family. SSP5-8.5 (low adapta-
tion challenge, high mitigation challenge) describes a 
world that focuses on traditional, rapid development of 
developing countries, based on high energy consumption 
and carbon-emitting technologies; the increase in the 

standard of living makes it possible to increase the capac-
ity for adaptation, in particular thanks to the reduction in 
extreme poverty.

The upcoming forecasts were evaluated over three 
20-year periods: near future (2021–2040), medium 
future (2041–2060), and far future (2081–2100), using 
the 30-year control period of 1985–2014. The choice of 
this division into time horizons is explained by the need 
to generally have three horizons (near, medium and dis-
tant), through which hydroclimate trends are studied and 
compared. The data from the three future horizons (each 
20 years long) are compared to that of the 30-year period 
(1985–2014), a period which constitutes a reference in 
climatology. The use of 30-year periods as a reference 
period is based on a scientific statistical convention that 
a minimum of 30 data points would be required to deter-
mine an average. Thus, calculating an average of data 
over a period of 30 years is the preferred method for rep-
resenting the average state of a climate. This helps ensure 
that what is described is actually an aspect of the climate 
system and not the more variable experience of weather 
conditions. Annual averages can vary greatly from year to 
year, whereas a 30-year average eliminates much of this 
variation and sheds more light on common conditions 
[103]. The input data for the GR2M model consisted of 

0

100

200

300

400

500

600
Ja

n-
80

Ja
n-

81
Ja

n-
82

Ja
n-

83
Ja

n-
84

Ja
n-

85
Ja

n-
86

Ja
n-

87
Ja

n-
88

Ja
n-

89
Ja

n-
90

Ja
n-

91
Ja

n-
92

Ja
n-

93
Ja

n-
94

Ja
n-

95
Ja

n-
96

Ja
n-

97
Ja

n-
98

Ja
n-

99
Ja

n-
00

Ja
n-

01
Ja

n-
02

Ja
n-

03
Ja

n-
04

Ja
n-

05
Ja

n-
06

Ja
n-

07
Ja

n-
08

Ja
n-

09
Ja

n-
10

Ja
n-

11
Ja

n-
12

Ja
n-

13
Ja

n-
14

Ja
n-

15
Ja

n-
16

Ja
n-

17
Ja

n-
18

Ja
n-

19
Ja

n-
20

Ra
in

fa
ll [

m
m

]

Rainfall Observed
Raw
Corrected

Original outputs: r=0.30
Bias-corrected: r=0.60

0

20

40

Ja
n-

80
Ja

n-
81

Ja
n-

82
Ja

n-
83

Ja
n-

84
Ja

n-
85

Ja
n-

86
Ja

n-
87

Ja
n-

88
Ja

n-
89

Ja
n-

90
Ja

n-
91

Ja
n-

92
Ja

n-
93

Ja
n-

94
Ja

n-
95

Ja
n-

96
Ja

n-
97

Ja
n-

98
Ja

n-
99

Ja
n-

00
Ja

n-
01

Ja
n-

02
Ja

n-
03

Ja
n-

04
Ja

n-
05

Ja
n-

06
Ja

n-
07

Ja
n-

08
Ja

n-
09

Ja
n-

10
Ja

n-
11

Ja
n-

12
Ja

n-
13

Ja
n-

14
Ja

n-
15

Ja
n-

16
Ja

n-
17

Ja
n-

18
Ja

n-
19

Ja
n-

20

T
em

pe
ra

tu
re

 [
°C

]

Temperature

Observed
Raw
Corrected

Original outputs : r=0.90
Bias-corrected: r=0.95

Fig. 4 Comparison between observed, raw, and simulated precipitation and temperature data in the basins

https://esgf-data.dkrz.de/search/cmip6-dkrz/


Page 10 of 22Sadio et al. Environmental Sciences Europe          (2023) 35:113 

bias-corrected future scenarios (the results of the mod-
els and the corrected data are evaluated beforehand to 
ensure the quality of the data), which were used to simu-
late future runoff. In this study, it was assumed that the 
precipitation–runoff relationship established from obser-
vational time series and the calibrated/validation periods 
would remain consistent, irrespective of potential land-
use changes.

Results and discussion
Modeling over the historical period
Average flows simulated during the calibration 
and validation phase
The calibration process for the GR2M model was con-
ducted for different time periods in the Casamance and 
Kayanga basins. In the Casamance basin at the Kolda sta-
tion, calibration was performed for the period 1981–1986 
(the year 1981 (over the 12 months) used as a warm-up 
period), followed by validation for the period 1987–1992. 
The results of monthly runoff simulations at the Kolda 
station are presented in Table  2. The calibration out-
comes using the GR2M model demonstrated good qual-
ity, with average Nash criteria performance consistently 
above 60%, except for Nash lnQ, which had a value of 
51.5%. The simulation of peak flows (Q) exhibited a very 
satisfactory performance, as indicated by the Nash value 
of 70.4%. However, the simulation of low flows (NlnQ) 
yielded moderately lower results compared to high flows, 

with a value of 51.5%. The simulation of medium flows 
(Nash (√Q)) also provided good results, with a perfor-
mance value of 73.4%. In the Kayanga basin at the Was-
sadou station, calibration was conducted for the period 
1985–1988, and validation was performed for the period 
1999–2002. The performance in simulating peak flows 
during the calibration period at Wassadou was rela-
tively lower, with a performance criterion of only 21.5%. 
However, the performance improved for simulating low 
flows (Nash (lnQ) = 63.5%) and medium flows (Nash 
(√Q) = 58.9%). Table  2 illustrates the performance met-
rics. Notably, the performance at Wassadou significantly 
improved during the validation period, particularly for 
Nash (Q) and Nash (√Q) in percentage values (Table 2).

In the Casamance basin at the Kolda station, the GR2M 
model is effective in simulating mean and low-water 
flows over the entire basin on a monthly scale (Fig.  5). 
On the other hand, the poor performance of the model 
at the Kolda station and especially at Wassadou, for peak 
flood flows, can be explained by the poor coverage of 
this sub-basin with rainfall stations, resulting in a poorly 
expressed mean value. Figure  5 shows the hyetogram 
of monthly rainfall and the hydrographs of monthly 
observed and simulated flows during the calibration 
period at the Kolda station in the Casamance basin 
(1981–1986) and at the Wassadou station in the Kay-
anga basin (1982–1987). For the observed and simulated 
hydrographs, we have the same signals of variations even 

Table 2 Results of calibration and validation of the GR2M model in the Casamance basin in Kolda and the Kayanga basin in Wassadou

Casamance basin in Kolda Period Nash (Q) Nash (√Q) Nash (ln(Q)) in % (ln(Q) in %) Balance sheet

Calibration 1981–1986 70,4 73,4 51,5 1,18
Validation 1987–1992 69,0 70,3 48,4 1,09
Kayanga basin at Wassadou Period Nash (Q) Nash (√Q) Nash (ln(Q)) in % (ln(Q) in %) Balance sheet
Calibration 1985–1988 21,5 58,9 63,5 1,40
Validation 1999–2002 83,8 52,4 14,2 0,87
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if the amplitudes differ. In the Casamance basin at the 
Kolda station, we also note that the peak flows (floods) of 
1981 and 1985 were underestimated at the Kolda station 
with 135 and 63.11  mm/month, respectively (however, 
the bad performances on the first year in these basins are 
linked to the warming period). From 1982 to 1984, the 
observed and simulated flows were similar. In general, 
the mean monthly water levels calculated reproduce sea-
sonal variations satisfactorily for the calibration sample. 
However, they vary from year to year.

For the validation period, in the Casamance basin at 
the Kolda station, the average performance of the Nash 
criterion was always above 60%. Simulation of peak 
flow (Q) is also very satisfactory (69%). Simulations of 
low flows (NlnQ), unlike the peak flow, gave an aver-
age result (48.4%). Simulation of medium flows (N(√Q)) 
also gave good results (70.3%) (Table 2 and Fig. 6). In the 
Kayanga basin at the Wassadou station, the simulations 
for the validation phase are not as good as in Kolda, but 
they are much better than the results of the calibration 
phase. This may be due to the quality of the rainfall and 
flow data used and whose measurements often suffer 
from errors and uncertainties. The simulated peak flows 
are well situated in time, but are often underestimated 
or overestimated. The performances were 83.8% for the 
Nash (Q), 52.4% for the Nash (√Q), and only 14.2% for the 
Nash (lnQ). While peak flows were poorly reproduced 
by the model during the calibration phase, during valida-
tion, low flows are the least reproduced at the Wassadou 
station.

Overall, both in calibration and in validation, the shape 
of the hydrographs observed is well reproduced by the 
model, and low-water flows are well simulated (with the 
exception of the results obtained from January 2000 to 
November 2002 over the validation period in the Kay-
anga basin). However, the model has difficulty repro-
ducing flood peaks, and there are sometimes significant 
uncertainties [9]. In general, rainfall is the main driver of 
flows at the outlet. A number of observations concern-
ing the rainfall-discharge relationship have been made: 
flood peaks are the consequence of rainfall events, with 
a more or less significant time lag. This can be explained 
by a time of concentration (defined as the maximum time 
required for a drop of water to travel the hydrological 
path between a point and its outlet) in the Kolda catch-
ment, which varies in length depending on the length of 
the main watercourse at the location where the rainfall 
is recorded, the initial humidity conditions in the catch-
ment [47], the lithological conditions in the catchment 
and, finally, the land use [90].

Table  3 shows the small difference between observed 
and simulated flows, both for model calibration and for 
validation, with simulated flows close to, by higher or 
lower values, than observed flows.

In the Casamance basin at the Kolda station, the sim-
ulated mean flow is 14.8  mm in calibration for a mean 
observed flow of 17.4  mm (with the simulated mean 
flow < the observed mean flow), whereas in validation, the 
simulated mean flow is 19.2 mm and the observed mean 
flow is 17.2  mm (with the simulated mean flow > the 
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Fig. 6 Hydrographs observed and simulated during the validation phase using the GR2M model at Kolda in the Casamance basin and Wassadou 
in the Kayanga basin

Table 3 Average flows observed and simulated (mm) by the GR2M model in the Casamance basin at Kolda and the Kayanga basin at 
Wassadou

Descriptors Calibration Validation

Observed flow Simulated flow Difference Observed flow Simulated flow Difference

Kolda 17,4 14,8 − 2,6 17,6 19,2 1,6

Wassadou 0,007 0,005 − 0,001 0,013 0,015 − 0,002
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observed mean flow). Thus, we note a slight underestima-
tion of the water level flowed in calibration (− 2. − 6 mm 
or − 14.9%), whereas in validation, it is a slight overesti-
mation of the water level flowed (1.60  mm or 9.1%). In 
the Kayanga basin at the Wassadou station, the simu-
lated mean flow is 0.005  mm in calibration for a mean 
observed flow of 0.07  mm (with the simulated mean 
flow < the observed mean flow), whereas in validation, the 
simulated mean flow is 0.013 mm and the observed mean 
flow is 0.015  mm (with the simulated mean flow > the 
observed mean flow). Thus, we note a slight underestima-
tion of the water level flowed in calibration (− 0.001 mm 
or − 28.6%), whereas in validation, it is a slight overesti-
mation of the water level flowed (0.002 mm or 15.4%).

Figure  7 shows the scatter plots between simulated 
flows and those observed during the calibration and 
validation periods at the Kolda station in the Casamance 
basin and at the Wassadou station in the Kayanga basin. 
At the Kolda station in the Casamance basin, the per-
formance of the Nash criterion during calibration was 
always better than that obtained during the validation 
phase, which was not always the case at Wassadou. The 
results obtained at the Kolda station show that the flows 
observed are well reconstructed, both during the calibra-
tion phase and the validation one, both for extreme flows 

(flood and low water), which is not necessarily the case 
at Wassadou. The correlation between observed flows 
and simulated flows (Fig.  7) shows better correlation 
coefficients for calibration than for validation at Kolda 
and validation for the Wassadou station. However, the 
results obtained show that the GR2M model is an effec-
tive model for simulating monthly flows, especially in the 
Casamance basin at the Kolda station. The simulated val-
ues are close to those observed and attest to the model’s 
validity. In Kolda, a study of the relationship between 
observed and simulated flows for the 1981–1986 and 
1987–1992 sub-periods (Table  4) shows acceptable cor-
relation coefficient values (often greater than 0.60). An 
adjustment of the scatterplots using linear regression 
showed that there is a good correlation between simu-
lated and observed flows, with a correlation coefficient 
r equal to 0.81 in calibration (1981–1986) and 0.84 in 
validation (1987–1992) at Kolda in the Casamance basin. 
In the Kayanga basin at the Wassadou station, the cor-
relation coefficient r is equal to 0.59 in calibration (1985–
1988) and 0.92 in validation (1999–2002) (Table 5)

The uncertainties and robustness of the GR2M model
Analysis of the different performances (5) first shows 
that calibration performance is better than validation 
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performance. Second, it can be seen that performance 
over the calibration period (1981–1986 with 65.1%) is 
better than that over the validation period (1987–1992 
with 62.6%) at the Kolda station in the Casamance basin. 
At Wassadou, in the Kayanga basin, average performance, 
which was 48% in the calibration period (1985–1988), 
improved slightly in the validation period (1999–2002), 
with a value of 50.2%.

Overall, the results obtained with the GR2M model are 
satisfactory in the Casamance basin upstream of Kolda. 
The Nash criterion generally performs better than 60% in 
calibration and validation. The GR2M model provides a 
satisfactory representation of the relationship between 
the estimated mean monthly rainfall in the Casamance 
basin upstream of Kolda and the mean monthly discharge 
recorded at its outlet (which is not necessarily the case 
at Wassadou). The number of parameters is the same in 
the two basins, making the model robust. However, there 
are still limitations in the modeling of the rainfall–runoff 
relationship, and the associated uncertainties are shown 
in Table 6. These uncertainties in calibration and valida-
tion are given by the ratio between the observed flows for 
each month and the simulated flows for that month.

These uncertainties over each period are given by the 
ratio between the flow rates observed over each month 
and the simulated flow rate for the same month, during 
the calibration and validation period.

In the Casamance basin at the Kolda station, the errors 
are generally around 0 to 9  mm, although there are a 
few that are further away (9.65 in calibration and 9.45 in 

validation). Low flows are sometimes twice underesti-
mated or overestimated. High flows, on the other hand, 
are only slightly underestimated. The simulated flows, 
despite some uncertainty, are on the whole acceptable, 
having regard to the Nash criteria. An analysis of the vari-
ation in the parameters of the GR2M model enables us to 
appreciate the role played by the underground reservoirs 
in the hydrological dynamics of the basin. In the Kayanga 
basin at the Wassadou station, these mean errors are 2.77 
in calibration (1985–1988) and 1.78 in validation (1999–
2002). In the Casamance basin at Kolda and the Kayanga 
basin at Wassadou, in both calibration and validation, the 
worst Nash criterion performances were obtained with 
the lowest values of X1 and X2, whereas the best per-
formances were obtained with the highest values of X1 
and X2. The GR2M model appears to be more sensitive 
to variations in X1 than in X2. In the same way as rain-
fall, soil water capacity is an essential input for the model 
to work properly. In both calibration and validation, the 
delays and advances (lags) in the simulated hydrographs 
are largely explained by the poor simulation of the end 
of the rainy seasons, which, in the case of deficit years, 
is greatly underestimated. On the other hand, in surplus 
years, where the response to high rainfall concentra-
tion at the end of the season is still poorly reproduced 
by the model, it is greatly overestimated [49]. A study of 
the parameters of the GR2M model (X1 and X2 values 
are often low) shows that the various sub-basins studied 
have "soil" reservoirs that do not have very large reserve 
capacities, which indicates that the recharge and sup-
port of underground reserves in the various sub-basins 
is weak. In general, the monthly time step is a relevant 
scale for simulating flows in the Casamance basin in 
Kolda and the Kayanga basin in Wassadou in a context of 
climate variability and change. When the model’s perfor-
mance shows good calibration and validation character-
istics, as was the case for the Casamance basin upstream 
of Kolda, the parameters can be applied for series under 
climate change, as demonstrated by Okkan and Fistiko-
glu [74]. Thus, for future simulations with GR2M, the 
Casamance basin upstream of Kolda will have the best 
results, because the performance of the GR2M model 
is considered sufficient (the model is excellent there, 
because Nash is between 0.6 and 0.8 for both calibration 

Table 4 Correlation between observed and simulated flows in 
calibration and validation in the Casamance basin at Kolda and 
the Kayanga basin at Wassadou

If the coefficients are on an interval of 0.3 to 1, the correlation is considered 
positive and strong

Station Correlation coefficient for 
calibration

Correlation 
coefficient in 
Validation

Kolda 0,81 0,84

Wassadou 0,59 0,92

Table 5 Average robustness criteria of the GR2M model in the 
Casamance basin at Kolda and the Kayanga basin at Wassadou

The average performance used here is the average value of the three types of 
Nash used (Nash (Q), Nash (√Q), and Nash (ln(Q)))

Descriptors Average 
performance 
(calibration)

Average 
performance 
(validation)

Average 
performance

Variation 
% change

Kolda 65,1 62,6 63,8 2,9
Wassadou 48,0 50,1 49,1 0

Table 6 Average uncertainties during the calibration and 
validation phases in the Casamance basin in Kolda and the 
Kayanga basin in Wassadou

Descriptors Calibration uncertainties Uncertainties 
in validation

Kolda 9,65 9,45
Wassadou 2,77 1,78
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and validation). For the Kayanga basin, which does not 
meet this principle (the model is inadequate, because 
Nash < 0.22 in the calibration phase), future modeling has 
been carried out with GR2M for this basin, but the data 
are used just to illustrate the analysis of future flows in 
the Casamance basin upstream of Kolda.

Modelling for the future period
The impact of climate change on future runoff in the 
upstream area of the Casamance basin, specifically 
upstream of Kolda, was assessed using the GR2M model. 
Two different climate change scenarios based on the 
Shared Socioeconomic Pathways (SSPs) were considered. 
SSP1 represents a future with low mitigation and adap-
tation challenges, SSP3 assumes high population growth 
and low economic development, while SSP2 and SSP5 
fall in between with varying characteristics. The hydro-
logical modeling techniques utilized General Circulation 
Models (GCMs) and their ensemble mean to analyze 
historical and projected trends in hydroclimatic param-
eters. Precipitation and potential evapotranspiration data 
under SSP1-2.6SSP1-2.6 and SSP5-8.5 scenarios were 
used in the GR2M model to generate mean runoff rates 
for the upcoming decades in the region. These analyses 
help understand the potential impacts of climate change 
on future flow patterns in the Casamance basin upstream 
of Kolda.

Precipitation and temperature trends from 2021 to 2100
Over the period 2021–2100, a decrease in precipitation 
would be noted for the SSP1-2.6 and SSP5-8.5 scenarios 
of the order of − 0.2 mm per year and − 0.687 mm per 
year, respectively. This trend is corroborated by the Pet-
titt test (Table  7), which shows a break in the prospec-
tive precipitation series in 2065 and 2052 respectively for 
the SSP1-2.6 and SSP5-8.5 climate change scenarios over 
the study period (2021–2100). On either side of the break 
date, there is a decrease of around 4.1 and 17.9%, respec-
tively, for the SSP1-2.6 and SSP5-8.5 climate change 
scenarios.

For the 2030 climate horizon (2021–2040 period), pre-
cipitation should increase slightly, as indicated for the 
SSP1− 2.6 and SSP5-8.5 scenarios, by around 0.147 and 
0.021 mm per year, respectively. On the other hand, for 
the 2050 (2041–2060) and 2070 (1961–2080) horizons, 
a decrease in precipitation would also be noted for the 
SSP1-2.6 and SSP5-8.5 scenarios. This decrease would 
be of the order of −  0.147  mm per year for the SSP1-
2.6 scenario and −  0.505  mm per year for the SSP5-8.5 
scenario over the 2050 horizon (2041–2060), and of the 
order of − 0.274 mm per year for the SSP1-2.6 scenario 
and -0.116  mm per year for the SSP5-8.5 scenario over 
the 2070 horizon (1981–2100). For the 2090 horizon 

(1981–2100), the situation would be disparate, with an 
increase of around 0.158  mm per year for the SSP1-2.6 
scenario, while for the SSP5-8.5 scenario, a decrease in 
precipitation of around −  0.295  mm per year would be 
noted. The decrease in rainfall is confirmed in the Kay-
anga basin upstream of Wassadou, with a decrease 
of around -0.2  mm under the SSP1-2.6 scenario and 
-0.627  mm under the SSP5-8.5 scenario (Table  7). The 
observed trend of decreasing annual precipitation in the 
Casamance and Kayanga-Géva basins is highly variable. 
However, the location of these basins and the evidence 
of precipitation variability align with the projections of 
the Intergovernmental Panel on Climate Change [27, 28]. 
These changes in precipitation patterns are attributed to 
shifts in continental and sea surface temperatures, along 
with variations in wind patterns and ocean currents. The 
observed variability in precipitation is consistent with the 
other studies that have predicted reductions in rainfall 
over West Africa.

For temperatures, this upward trend remains generally 
constant for the four time horizons 2030, 2050, 2070, and 
2090 and for both scenarios. For scenario 126, this rise 
in temperatures at the Kolda station is, respectively, of 
the order of 0.589, 0.347, and 0.116 °C/year for the 2030, 
2050, and 2070 horizons, while for the 2090 horizon, a 
fall of − 0.28 °C/year will be noted. For scenario 585, this 
generalized rise in temperatures would be of the order of 
0.874, 0.905, 0.842, and 0.811 °C/year for the 2030, 2050, 
2070, and 2090 horizons, respectively (Table  7). This 
trend toward higher temperatures leads to an increase 
in potential evapotranspiration, which has an impact 
on water availability in the basin. The Casamance basin 
is located in a region with high climatic variability and 

Table 7 Variation in rainfall and mean annual temperature over 
the future period (2021–2100) compared with the historical 
period (1985–2014) at the Kolda and Wassadou stations

Rainfall Casamance in Kolda Kayanga in Wassadou

SSP1-2.6 SSP5-8.5 SSP1-2.6 SSP5-8.5

2021–2040 − 7,90 2,64 − 6,4 2,3

2041–2060 − 6,11 − 7,77 − 5,2 − 7,7

2061–2080 − 9,25 − 16,31 − 8,4 − 15,6

2081–2100 − 10,97 − 22,15 − 9,0 − 21,2

2021–2100 − 8,61 − 11,04 − 7,2 − 10,6

Temperature SSP1‑2.6 SSP5‑8.5 SSP1‑2.6 SSP5‑8.5

2021–2040 1,43 1,18 1,59 1,29

2041–2060 1,80 2,43 1,98 2,53

2061–2080 2,09 3,77 2,25 3,87

2081–2100 1,98 5,20 2,12 5,31

2021–2100 1,84 3,18 1,99 3,25
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historical increases in temperature. This is also the case 
for the Kayanga basin at the Wassadou station (Table 7), 
where there is a decrease in rainfall (− 7.2% for SSP1-2.6 
and −  10.6% for SSP5-8.5) and an increase in tempera-
ture (1.99  °C for SSP1-2.6 and 3.25  °C for SSP5-8.5), if 
the future period is compared with the historical period. 
Compared with the historical period (1985–2014), a gen-
eral decrease in rainfall and a general increase in temper-
ature over the four horizons studied would be noted in 
the Casamance basin at Kolda (Table 7). This decrease in 
rainfall over the 2030, 2050, 2070, and 2090 climate hori-
zons, compared with the historical period, could reach 
values of 7.90, 6.11, 9.25, and 10.97%, respectively in the 
SSP1-2.6 scenario, and 7.77, 16.31, 22.15, and 11.04%, 
respectively, over the 2050, 2070, and 2090 horizons 
in the SSP5-8.5 scenario. Temperatures could rise by a 
record 2.09 °C over the period 2061–2080 in the SSP1-2.6 
scenario and 5.20  °C over the period 2081–2100 in the 
SSP5-8.5 scenario.

Changes in runoff from 2021 to 2100
Figures 8, 9, 10 and 11 illustrate the changes in monthly 
and annual mean flows for the Kolda station in the 

Casamance basin and the Wassadou station in the Kay-
anga basin under the SSP1-2.6 and SSP5-8.5 scenarios for 
the time horizons of 2030, 2050, 2070, and 2090. These 
basins are situated in the West African region, and the 
observed hydroclimatic variability aligns with the projec-
tions of the Intergovernmental Panel on Climate Change. 
The models indicate a decrease in mean monthly flows in 
the future for both scenarios and across all four time hori-
zons at these stations. These findings suggest that surface 
water resources in these catchment areas are expected to 
continue declining throughout the twenty-first century, 
particularly under the SSP5-8.5 scenario. The Casamance 
sub-basin in Kolda and the Kayanga sub-basin in Was-
sadou remain highly susceptible to climate change due 
to the greater reduction in rainfall. For the Casamance 
basin at the Kolda station, the SSP1-2.6 climate scenario 
forecasts a mean future discharge of 2.73 mm. The appli-
cation of the Mann–Kendall test to the discharge series 
reveals a downward trend, which is supported by the Pet-
titt test. This trend shows a break in 2053 for the 2050 
climate horizon, with an average discharge of 2.84  mm 
before the break and 2.41  mm after the break, repre-
senting a deficit of 15.25% (Fig.  8). Under the SSP5-8.5 
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Fig. 8 Variation in future flow simulated by the GR2M model for the period 2021–2100 at the Kolda station in the Casamance basin, according 
to the SSP1‑2.6 and 585 climate change scenarios for the periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100
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climate change scenario, the expected mean discharge is 
2.26 mm, and the break in the flow series occurs in 2056 
for the 2050 time horizon. The average discharge before 
the break is 3.06  mm, while after the break, it drops to 
1.44 mm, resulting in a flow deficit of 52.76% (Fig. 8). In 
the Kayanga basin at the Wassadou station, the runoff 
projected under the SSP1-2.6 climate scenario indicates 

an average runoff of 0.003  mm. The analysis shows a 
break occurring in 2054 for the 2060 time horizon, with 
an average runoff of 0.0036  mm before the break and 
0.0028 mm after the break, indicating a deficit of 22.61% 
(Fig.  9). For the SSP5-8.5 scenario, the break occurs in 
2060, with a mean discharge of 0.0029  mm. Before the 
break, the average runoff is 0.0046  mm, but after the 
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Fig. 9 Variation in future flow simulated by the GR2M model for the period 2021–2100 at the Wassadou station in the Kayanga‑Géva basin, 
according to the SSP1‑2.6 and 585 climate change scenarios for the periods 2021–2040, 2041–2060, 2061–2080, and 2081–2100
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for the future period at the Kolda station



Page 17 of 22Sadio et al. Environmental Sciences Europe          (2023) 35:113  

break, it reduces significantly to 0.0011  mm, represent-
ing a drop of 75.85% (Fig. 8). These results highlight the 
considerable changes in flow patterns expected in the 
Casamance and Kayanga basins under different climate 
change scenarios, emphasizing the urgency of adapting 
water resource management strategies to mitigate the 
potential impacts of decreased water availability.

The historical discharge observed at the Kolda sta-
tion in the Casamance basin was relatively low, with an 
average of 1.69 mm over the period from 1982 to 2008. 
This period coincided with a drought, which resulted in 
decreased flows in the basin. Due to this drought period, 
the observed discharge falls below the average flows sim-
ulated for the different periods (2021–2040, 2041–2060, 
2061–2080, and 2081–2100) or horizons (2030, 2050, 
2070, and 2090) (Fig.  10). Consequently, it becomes 
challenging to directly compare the observed discharge 
with the simulated flows. However, when comparing 
the near-future horizon (2021–2040) with the 2070 and 
2090 horizons under the SSP1-2.6 climate scenario, a 
downward trend is projected. The simulated flows show 
a decrease of -9.25% and -14.34%, respectively, for these 
future horizons. In contrast, an increase is projected for 
the 2050 horizon, with a value of 3.98% (Fig. 11). These 
findings suggest potential changes in the flow patterns of 
the Casamance basin in the coming decades, indicating a 
potential shift toward decreased discharge under certain 
climate scenarios.

According to the SSP5-8.5 scenario, there is a pro-
jected overall decline in flow compared to the simulated 
flow for the period 2021–2040 in the Casamance basin. 
The decline percentages for each climate horizons (2050, 
2070, and 2090) are − 34.47%, − 56.01%, and − 68.01%, 
respectively (Fig.  10). This decline in water resources 
under the SSP5-8.5 scenario is a matter of concern, con-
sidering the challenging climate change conditions in 
the basin, especially when compared to the SSP1-2.6 
scenario. In the Wassadou station, which is located in 
Kolda, the observed average historical discharge over 
the period 1985–2002 is only 0.01  mm, higher than 
the average discharges simulated for various periods 
(2021–2040, 2041–2060, 2061–2080, and 2081–2100) or 

climate horizons (2030, 2050, 2070, and 2090) (Fig.  11). 
Under the SSP1-2.6 climate scenario, a downward trend 
is expected for the 2030, 2050, 2070, and 2090 horizons, 
with decline percentages of −  60%, −  57%, −  66%, and 
−  68%, respectively, compared to the historical period. 
For the SSP5-8.5 scenario, there is a general decline com-
pared to the historical period, with decline percentages of 
− 28%, − 65%, − 83%, and − 91% for the successive peri-
ods. These findings indicate a worrisome trend of declin-
ing water resources in the Casamance basin, particularly 
under the SSP5-8.5 scenario. It highlights the urgent 
need to address the challenges posed by climate change 
and adapt water management strategies to mitigate the 
potential impacts of decreasing water availability.

Discussion
Modeling the rainfall–discharge relationship has pro-
vided valuable insights into the hydrological behavior 
of the Casamance basin at Kolda and the Kayanga-Géva 
basin. The results demonstrate satisfactory performance 
of the hydrological model in reproducing flows at the 
outlet of the Casamance basin at Kolda. The good fit 
between observed and simulated flows, as indicated by 
the Nash criteria  and the coefficient of determination 
(R2), further validates the model’s capability to realisti-
cally represent the flow dynamics [46]. The hydrological 
model successfully captures the hydrological regimes of 
the basins, consistent with previous studies by Khoulé 
[47]. Interestingly, despite being developed for a spe-
cific type of climate, the application of the model in the 
Casamance basin at Kolda (not generally the case in the 
Kayanga basin at Wassadou), characterized by a south-
ern Sudanian climate, yields acceptable results even in 
significantly different climatic contexts compared to its 
original design [55, 85]. Although the two basins are in 
the same climatic context and there is no significant dif-
ference between them, the worst performance of GR2M 
in Kayanga is more linked to a data problem, but also 
to the impacts of the Niandouba dams and the Conflu-
ent on the measured flow rates (because dams are not 
take into account in global models like GR2M). Looking 
toward the future, the models used in this study indicate 
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a reduction in water resources, particularly toward the 
end of the century, for both basins. These findings align 
with similar studies conducted in other regions, particu-
larly when considering the extreme scenarios of CMIP6 
[33, 97]. Since rainfall is the primary driver of runoff in 
the Casamance basin, changes in seasonal rainfall distri-
bution in climate models directly impact runoff patterns. 
Consequently, the seasonal variations in runoff closely 
follow those of rainfall  [46]. It is important to note that 
the results are heavily influenced by the global hydro-
logical model used (GR2M), which is relatively simple 
and operates with two parameters. Utilizing a distrib-
uted hydrological model could potentially enhance these 
results. Overall, the hydrological modeling approach 
employed in this study provides valuable insights into 
the future water availability in the Casamance and Kay-
anga-Géva basins. However, further refinements, such 
as employing a distributed hydrological model, can be 
explored to improve the accuracy and precision of the 
projections.

Climate change models have predicted a reduction in 
annual runoff in major water-producing basins across 
West Africa, leading to increased drought frequency 
and decreased surface runoff [87]. These changes are 
expected to have a detrimental impact on water avail-
ability for urban and agricultural sectors. Climate 
change has already been observed to negatively affect 
crop productivity, with increased temperatures leading 
to shorter growing periods and temperatures beyond 
the optimal range for plant development [29, 74]. Con-
sequently, it is crucial to take action to minimize water 
losses and enhance water use efficiency, especially in 
sectors with high demand. Measures such as promot-
ing low-water content and heat stress-tolerant crops, 
employing good tillage practices to maintain soil mois-
ture, and implementing advanced irrigation techniques 
have been encouraged to mitigate the consequences of 
climate change on agriculture [91]. The population in the 
Kolda region heavily relies on surface water runoff from 
the Casamance and Kayanga basins for surface irriga-
tion through canals, particularly in the Anambé basin. 
Climate change will significantly impact the ecological 
biodiversity of the basin as the resilience capacity of the 
ecosystem will be exceeded by reduced surface flows, 
affecting various flora and fauna species that depend on 
upstream water runoff for their survival [25]. Overall, 
the three climate change scenarios indicate a decrease 
in average monthly flows across different time horizons 
and scenarios, with a greater reduction observed under 
the SSP5-8.5 scenario compared to the SSP1-2.6 scenario. 
The decline is particularly pronounced during the wettest 
months (June, July, August, and September), while minor 
increases may be observed in less rainy months. Studying 

the impact of climate change on water resources is a 
significant challenge. Optimal management of water 
resources in terms of quantity and quality is essential for 
sustainable development in Senegal. The primary objec-
tive of this study was to provide insights into the poten-
tial impacts of climate change on future flow changes in 
the Casamance basins upstream of Kolda, utilizing the 
GR2M model. Hence, the outputs from climate models 
under the SSP1-2.6 and SSP5-8.5 scenarios were used 
as inputs for the GR2M hydrological model to simulate 
flows up to 2060.

It is important to note that precipitation and runoff 
simulations vary across different regions due to regional 
climate characteristics, uncertainties in global bound-
ary conditions and greenhouse gas scenarios, physical 
parameterization schemes, and algorithms. Therefore, 
differences in precipitation simulation between regions 
and scenarios are reflected in runoff. Generally, both cli-
mate change scenarios indicate peak flows in September. 
However, significant decreases and alterations in the sea-
sonal flow cycle are observed in all scenarios, primarily 
driven by changes in the precipitation regime in terms of 
frequency and intensity [40].

Climate modeling induces many uncertainties in cli-
mate analysis. It is necessary to be aware of this and take 
it into account to best understand the data from model 
outputs, as well as for the interpretation of indicators 
of possible changes in the future climate [3]. The first 
uncertainties relate to the models used. In fact, they are 
based on past data measured in situ. However, the qual-
ity of this measured data varies. The data regionaliza-
tion method also induces statistical approximations and 
uncertainty persists in the modeled data despite the cor-
rections made. There are also uncertainties linked to cli-
mate change scenarios.

Finally, uncertainties linked to the lack of knowledge 
about certain processes exist. Indeed, the carbon cycle 
process is still poorly understood, particularly in relation 
to aerosols.

There is also the coarse resolution of GCMs (~ 200 km) 
which cannot capture local climatic features in small 
watersheds.

Furthermore, using the average ensemble alone will 
certainly make it possible to circumvent the divergence 
of the climate model for the future horizon, but this will 
mask the uncertainties about the future climate.

Conclusion
This paper designed to model the rainfall–discharge rela-
tionship with understand hydrological behavior in the 
Casamance catchment at Kolda and the Kayanga-Géva 
catchment. The GR2M model was chosen for its advan-
tages in terms of little data necessities, basic arrangement, 
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high show, and computational efficiency. By utilizing 
model, native authorities can kind conversant decisions 
and plan water resource management, considering the 
challenges posed by climate change. The emphasis was on 
examining the effects of climate variation on flow charac-
teristics in West African tropical catchments. Historical 
outputs presented that GR2M model effectively simu-
lated precipitation and temperature cycles in the catch-
ments. However, biases existed between the outputs of 
General Circulation Models (GCMs) and observed data. 
Bias correction techniques were applied to obtain more 
reliable projections. Results indicated important fluctua-
tions in periodic rainfall and temperature distribution for 
entire watersheds, with decreased rainfall volumes pro-
jected for the distant future. Using the future bias-cor-
rected simulations to drive the GR2M model, the study 
found that surface runoff responses would vary across 
different future periods and catchment domains, primar-
ily influenced by projected precipitation. Wet conditions 
in the near future led to higher inter-annual runoff vol-
umes, while drier situations in the distant future resulted 
in significantly lower runoff volumes. These findings 
highlight the possible effect of climate change on surface 
runoff and the need for adaptation policies. The study’s 
results will assist local water management authorities in 
decision-making regarding climate change impacts on 
surface runoff, ensuring ecological and financial sustaina-
bility. The methodology employed can be applied to simi-
lar climatic regions, but further research is necessary to 
explore various hydrological models, parameter optimi-
zation techniques, performance measures, and the effec-
tiveness of water conservation measures.
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