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Abstract 

Rainfall is crucial for the development and management of water resources. Six hybrid soft computing models, 
including multilayer perceptron (MLP)–Henry gas solubility optimization (HGSO), MLP–bat algorithm (MLP–BA), 
MLP–particle swarm optimization (MLP–PSO), radial basis neural network function (RBFNN)–HGSO, RBFNN–PSO, 
and RBFGNN–BA, were used in this study to forecast monthly rainfall at two stations in Malaysia (Sara and Banding). 
Different statistical measures (mean absolute error (MAE) and Nash–Sutcliffe efficiency (NSE) and percentage of BIAS 
(PBIAS)) and a Taylor diagram were used to assess the models’ performance. The results indicated that the MLP–HGSO 
performed better than the other models in forecasting rainfall at both stations. In addition, transition matrices were 
computed for each station and year based on the conditional probability of rainfall or absence of rainfall on a given 
month. The values of MAE for testing processes for the MLP–HGSO, MLP–PSO, MLP–BA, RBFNN–HGSO, RBFNN–BA, 
and RBFNN–PSO at the first station were 0.712, 0.755, 0.765, 0.717, 0.865, and 0.891, while the corresponding NSE 
and PBIAS values were 0.90–0.23, 0.83–0.29, 0.85–0.25, 0.87–0.27, 0.81–0.31, and 0.80–0.35, respectively. For the sec‑
ond station, the values of MAE were found 0.711, 0.743, 0.742, 0.719, 0.863 and 0.890 for the MLP–HGSO, MLP–PSO, 
MLP–BA, RBFNN–HGSO, RBFNN–BA, and RBFNN–PSO during testing processes and the corresponding NSE–PBIAS 
values were 0.92–0.22, 0.85–0.28, 0.89–0.26, 0.91–0.25, 0.83–0.31, 0.82–0.32, respectively. Based on the outputs 
of the MLP–HGSO, the highest rainfall was recorded in 2012 with a probability of 0.72, while the lowest rainfall 
was recorded in 2006 with a probability of 0.52 at the Sara Station. In addition, the results indicated that the MLP–
HGSO performed better than the other models within the Banding Station. According to the findings, the hybrid 
MLP–HGSO was selected as an effective rainfall prediction model.

Keywords MLP, RBFNN, Probability matrix, Markov chain, Rainfall modelling

*Correspondence:
Ozgur Kisi
ozgur.kisi@th‑luebeck.de; ozgur.kisi@iliauni.edu.ge
1 Department of Civil Engineering, College of Engineering, University 
of Diyala, Diyala Governorate, Iraq
2 Department of Civil Engineering, Technical University of Lübeck, 
23562 Lübeck, Germany
3 Department of Civil Engineering, Ilia State University, 0162 Tbilisi, 
Georgia
4 Department of Water Engineering and Hydraulic Structures, Faculty 
of Civil Engineering, Semnan, Iran
5 Civil Engineering Department, Faculty of Engineering, University 
of Malaya, Kuala Lumpur, Malaysia
6 Civil, Environmental and Natural Resources Engineering, Lulea University 
of Technology, 971 87 Lulea, Sweden
7 Department of Civil Engineering, Istanbul Technical University, Ayazaga 
Campus, 34469 Maslak, Istanbul, Turkey

8 College of Agricultural Engineering and Technology, SKUAST‑Kashmir, 
Srinagar 190025, India
9 Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional 
(UNITEN), 43000 Selangor, Malaysia
10 School of Civil Engineering, Faculty of Engineering, Universiti Teknologi 
Malaysia (UTM), 81310 Johor, Malaysia

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12302-023-00818-0&domain=pdf


Page 2 of 16Sammen et al. Environmental Sciences Europe          (2023) 35:112 

Introduction
Water is one of the planet’s most critical and life-sustain-
ing resources [1, 2]. Water management is a significant 
concern  due to rising water consumption and pollution 
[3, 4]. Accurate and timely rainfall forecasting is crucial 
for water resource management, irrigation planning, and 
reservoir operation [5]. Forecasting rainfall is crucial, 
because heavy rain frequently poses hydrological risks 
[6]. The nature of the atmospheric circulation system 
that generates rain makes rainfall forecasting difficult [7]. 
Physically based models commonly used for rainfall fore-
casting perform poorly when predicting rainfall 1 month 
in advance. However, rainfall forecasting 1  month in 
advance is crucial for water resource management. Con-
sequently, hydrological modelers continuously attempt to 
develop a perfect model for rainfall prediction [8].

Soft computing techniques have been extensively used 
for parameter prediction and modeling in various fields 
of water resources, such as hydraulics [9], hydrology 
[10-12], and water quality [13, 14]. In addition, rainfall 
prediction methods based on soft computing have been 
frequently investigated in recent years [15, 16]. Soft com-
puting models  have been found to be quite effective at 
identifying nonlinear systems in a variety of engineering 
domains. Using various forms of soft computing, numer-
ous studies have been conducted on rainfall forecasting. 
Rainfall was modeled by Mandal and Jothiprakash [17] 
utilizing a multilayer perceptron (MLP) neural network, 
a radial basis neural network (RBFNN), and a time-
lagged recurrent network (TLRN). Regarding accuracy, 
the ANN models performed better than the regression 
models.

Hipni et al. [18] modeled rainfall using ANFIS and sup-
port vector machine (SVM) models. They observed that 
the ANFIS model could provide accurate estimates of 
rainfall. Nourani and Komasi [19] examined the perfor-
mance of integrated geomorphological adaptive ANFIS 
(IGAANFIS) in modeling rainfall and reported that it 
outperformed the other models. Akrami et al. [20] com-
pared the ANFIS and ANN rainfall prediction models. 
According to their findings, the ANFIS provided greater 
accuracy than the ANN model. They utilized various time 
delays between time (t) and time (t–4) (scale: month).

Mehdizadeh et al. [21] estimated monthly rainfall time 
series using gene express programming autoregressive 
conditional heteroscedasticity. The outcomes demon-
strated that the new method was more precise than gene 
expression programming. Mehr and Nourani [22] com-
pared multi-gene-genetic programming (MGGP) and 
genetic programming (GP) for estimating seasonal rain-
fall and demonstrated that the MGGP is more accurate 
than the GP. Ouyang and Lu [23] predicted monthly rain-
fall using MGGP, echo state network, and SVM models. 

In terms of predicting monthly rainfall, the results indi-
cated that the MGGP performed poorly compared to 
other models.

Recent research has demonstrated that combining soft 
computing models with preprocessing and optimiza-
tion algorithms can boost their performance. Adiwjaya 
(2015) improved rainfall forecasting by combining ANN 
with evolutionary algorithms. Feng et al. [24] combined 
the wavelet technique with SVM and ANN and dem-
onstrated that the wavelet SVM (WSVM) model out-
performed others. Yaseen et  al. [25] investigated the 
application of integrated ANFIS model with the fire-
fly optimization algorithm (FFA) and revealed that the 
FFA-optimized ANFIS is more accurate in stream-flow 
forecasting than standalone ANFIS. Mehr et  al. [26] 
investigated the combination of SVM and FFA for rainfall 
forecasting. According to the results, the new model gen-
erated accurate precipitation forecasts.

Pham et al. [27] developed ANN–particle optimization 
(PSO) and SVM–PSO models for predicting rainfall. The 
results indicated that the SVM–PSO was the most accu-
rate model. Basha et al. [28] predicted rainfall using auto-
regressive integrated moving average (ARIMA), ANN, 
and SVM. The outcomes revealed that the ANN model 
outperformed the ARIMA model. Aknier (2021) devel-
oped an ANN model for rainfall forecasting. The Leven-
berg–Marquardt algorithm was employed to adjust ANN 
parameters. The study reported that the ANN provided 
accurate results. Ahmed et al. (2021) developed different 
hybrid models including MLP–HGSO, MLP–NRO and 
MLP–EO for estimation of stream flow for High Aswan 
dam. They used data of 130 years for training and test-
ing of the developed models. They concluded that the 
NRO was the best optimization algorithm that improves 
the capability of MLP model for hydrological modeling. 
Ruma et  al. [29] used PSO to enhance the performance 
of ANN and LSTM for water level prediction in one of 
Bangladesh rivers. They concluded that the PSO could 
enhance the performance of the LSTM better than the 
ANN.

Wang et  al. [30] combined  wavelet packet decompo-
sition (WPD) and an extreme learning machine (ELM) 
model. They stated that the WPD enhanced the ELM 
model’s effectiveness. Kumar et al. [31] coupled biogeog-
raphy-based optimization (BBO) models with ELM and 
deep neural network models. They selected the inputs 
using partial autocorrelation function (PACF). They 
reported that the ELM–BBO was a reliable tool for risk 
mitigation. Li et al. [32] designed the pruned ELM (OP–
ELM) to forecast rainfall. Different activation functions 
of the OP–ELM model were utilized. The OP–ELM was 
highly capable of predicting rainfall.
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The review above indicates that the soft computing 
model integrated with an optimized algorithm performs 
better than the standalone model in terms of rainfall mod-
eling. However, the performance of such a hybrid model 
varies greatly depending on the optimization algorithm 
chosen. Consequently, it is essential to evaluate the perfor-
mance of various optimization algorithms after their incor-
poration into soft computing models. In this study, new 
and conventional optimization algorithms were compared 
in terms of their performance in enhancing the accuracy of 
soft computing models for rainfall forecasting.

The RBFNN has numerous benefits. While MLP mod-
els can have multiple hidden layers, the RBFNN models 
have one. Therefore, it is faster and can converge sooner. 
In addition, RBFNN models offer simplicity of imple-
mentation and high precision. There are various machine 
learning models for predicting rainfall, such as optimized 
ANFIS and ELM models. However, adjusting these models’ 
unknown parameters may be time-consuming and chal-
lenging. These unknown parameters may increase the val-
ues of model uncertainty. Consequently, the current study 
employs optimized MLP and RBFNN models for rainfall 
forecasting.

This study evaluates the effectiveness of new optimiza-
tion algorithms in training ANNs and analyzes the uncer-
tainty of new RBF and MLP models. Monthly rainfall with 
varying time lags was used as input parameters to predict 
rainfall 1  month in advance. Several models were devel-
oped using different input combinations that include time 
lags ranging from months (t–1) to (t–9), where (t–1) was 
used as input for the first model and (t–1) and (t–2) for the 
second model and so on. The main objectives and novelties 
of the current paper are as follows:

(1) Developing a new hybrid models of MLP and 
RBFNN using meta-heuristic algorithms, Henry gas 
solubility optimization (HGSO), bat algorithm (BA) 
and particle swarm optimization (PSO) for predict-
ing long-term rainfall.

(2) Developing the transient probability matrix (TPM) 
rainfall for identifying rainy days, where the TPM 
can be used as an early warning system to identify 
and motoring of the flood and drought periods.

(3) The principal component analysis (PCA) was used 
to preprocess the data, where it is considered as the 
best tool to decide the best-input data.

Materials and methods
Materials
Study area
In Peninsular Malaysia, the Sara Station (station A) is 
located at latitude  5o 25ˊ and longitude 101° 25ˊ, while 
the Banding Station (station B) is located at latitude  5o 

30ˊ and longitude 101° 30ˊ. Figure 1 depicts the locations 
of stations on a map of peninsular Malaysia. Accord-
ing to the Koppen classification, both stations have cli-
mates characterized by tropical rainforests. The average 
monthly rainfall was obtained from station A and sta-
tion B for the period January 2001 to January 2014 to 
develop the models. The monthly rainfall time series for 
both stations are depicted in Fig. 2a, b. The models devel-
oped in the current study can be applied to other global 
regions. These models can predict other variables, such 
as groundwater level, temperature, runoff, and sediment. 
In addition, these models can be used to predict vari-
ous variables under climate change conditions. Since the 
water resource management is important for the basin, 
these stations are chosen.

Data preprocessing and input selection
Principal component analysis (PCA) was used to reduce 
a large number of input variables to a manageable num-
ber [33, 34]. PCA transforms a collection of correlated 

Fig. 1 Location map of rainfall stations
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variables into a collection of principal components 
(uncorrelated variables). The initial PCA accounts for as 
much information variability as possible. PCA searches 
for a linear combination of input variables to extract the 
maximum data variance. This study used PCA to select 
inputs in various time lags from month (t–1) to month 
(t–9).

Methods
Artificial neural network (ANN) models
ANN is a technique based on the workings of the 
human  nervous system [35]. MLP is one of the most 
significant ANN models for predicting meteorological 
variables. It is composed of individual processing units 

called neurons. The neurons in the MLP structure are 
arranged in distinct layers. When applied to problems, 
ANNs do not require prior knowledge of atmospheric 
conditions [36]. They can circumvent the limitations of 
empirical models. The neurons of the first layer receive 
the input variables (x0). Neurons can learn complicated 
features via hidden layers. A weight (w0) associated 
with each input is considered in the structure of the 
MLP model. Each neuron also has a bias. Additional 
inputs to neurons are classed as biases (b). By gener-
ating weight values, ANNs build associations between 
input and output data. The MLP output is obtained 
by applying the nonlinear activation function to the 
weighted input sum (Fig. 3).

Fig. 2 Time series of rainfall stations
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The weights and biases must be updated to minimize 
the error predictions. Different algorithms are used to 
optimize the network parameters. The learning algo-
rithms can be categorized into two groups. The first 
group employs optimization algorithms, while the sec-
ond employs conventional numerical optimization tech-
niques. Although numerous optimization algorithms for 
training ANNs have been studied in the past, the prob-
lem of local minima remains unsolved. Consequently, 
novel MLP and RBFNN methods based on new optimi-
zation algorithms are proposed in this article [37].

Henry gas solubility optimization (HGSO)
Hashim et  al. [38] introduced a new optimization tech-
nique based on Henry’s law, termed HGSO. The algo-
rithm’s performance was evaluated on benchmark 
functions, a speed reducer design problem, and real-
world engineering difficulties. In the experiments, parti-
cle swarm optimization (PSO), genetic algorithm (GA), 
gravitational search algorithm (GSA), whale optimization 
algorithm (WHOA), and cuckoo search algorithm (CSA) 
performed poorly. HGSO can imitate Henry’s law behav-
ior. Local optimums are omitted through this method. 
Henry’s law determines how soluble low-solubility gases 
are in liquids. First, the population (number of gases) 
and position of gases are initialized using the following 
equation:

where Xi denotes the position of ith gas, N is the popula-
tion size, r represents a random number, Xmin and Xmax 
are bounds of the problem, t is the iteration number, and 
Xi(t + 1) denotes the new position at the t + 1 iteration.

The population gases are divided into equal categories 
based on their number. Because the gases in each group are 
comparable, Henry’s constant value for each group is the 
same. Every gas has its own unique Henry’s law constant. 

(1)Xi(t + 1) = Xmin + r(Xmax − Xmin)

Henry’s law constant for every gas is proportional to the 
gas concentration in liquid form and partial pressure in the 
gas phase. Henry’s law states that the amount of dissolved 
gas in a given volume of liquid is proportional to its par-
tial pressure above the liquid. Each cluster j is analyzed to 
determine the optimal gas in its class with the highest equi-
librium phase. Different ranks of gases are used to iden-
tify the optimal gas for the swarm. Equation (2) is used to 
update Henry’s coefficient: 

where Hj denotes Henry’s coefficient of cluster j, T rep-
resents temperature, T θ is constant (298.5), Pij represents 
partial pressure, Cj denotes enthalpy of dissolution, l1 
is constant (0.05), l2 is constant (100), and l3 is constant 
(0.01). The solubility is updated based on the following 
equation:

where Si,j(t) denotes gas i’s solubility in cluster j’s, Pi,j rep-
resents gas i’s partial pressure in cluster j. The position of 
gases is updated using the following equation:

where Xi,j denotes the position of gas i in cluster j, r is 
a random constant, t is iteration time, Xi,best(t) denotes 
the optimal gas,  Fi,j is the objective function of gas i in 

(2)

Hj(t + 1) = Hj(t)× exp

(

−Cj ×

(

1

Tt
−

1

T θ

))

,

Tt = exp

(

−t

iter

)

Hj(t) = l1 × rand (0, 1),

Pij = l2 × rand (0, 1),Cj = l3 × rand (0, 1)

(3)Si,j(t) = K ×Hj(t + 1)× Pi,j(t)

(4)

Xi,j(t + 1) = Xi,j(t)+ F × r × γ ×
(

Xi,best(t)− Xi,j(t)
)

+ F × r × α ×
(

Si,j(t)× Xi,best(t)− Xi,j(t)
)

γ = β × exp

(

−
Fbest(t)+ ε

Fi,j(t)+ ε

)

, ε = 0.5

Fig. 3 a Computation process in the MLP and b The details of the structure of the MLP model
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cluster j, Xi,best(t) denotes the optimal gas in the group, 
β is constant, Fbest is the objective function of the opti-
mal gas, Fi,j represents the objective function of gas i in 
cluster j, α is the effect of other gases on gas i in cluster 
j equal to 1, and F denotes the flag that alters the search 
gas’ direction. Finally, Eq. (9) is used to rank and choose 
the quantity of the worst gases:

where Nu denotes the number of worst gases, and N rep-
resents the number of gases.

Equation (10) is used to update the worst gases’ position:

where Gi,j denotes gas i’s position in cluster j, r is a ran-
dom number, and Gmax (i,j) and Gmin (i,j) are the bounds of 
the problem.

Particle swarm optimization (PSO)
PSO is utilized in various optimization domains and inte-
grated with other algorithms. This algorithm uses particles 
to determine the optimal solution. The achieved and opti-
mal swarm positions are utilized to identify each particle. 
Equations (7, 8) change the positions of the particles as fol-
lows [39]:

where xBest denotes the best particle position, g repre-
sents the best group position, ω is inertia weight, c1 and 
c2 are acceleration coefficients, and ω denotes the inertia 
coefficient. PSO’s stochastic features ensure that the solu-
tion space is exploited.

Bat algorithm (BA)
The BA is an optimization algorithm based on swarm intel-
ligence introduced by Yang [40]. The algorithm mimics the 
echolocation behavior of bats.

Bats employ echolocation to locate prey and avoid obsta-
cles. Bats utilize the temporal difference between emission 
and environmental reflection to locate prey. The bats’ vol-
ume decreases from a high positive value to a low constant 
value. Virtual bats are used to produce novel solutions for 
the bat algorithm:

(5)Nu = N × (rand(c2 − c1)+ c1), c1 = 1, c2 = 0.2

(6)Gi,j = Gmin (i,j) + r ×
(

Gmax (i,j) − Gmin (i,j)

)

(7)
vt+1
i = ωvti + c1r1

(

xBestti − xti
)

+ c2r2
(

gBestti − xti
)

(8)xt+1
i = xti + vti .t

(9)fi = fmin +
(

fmax − fmin

)

β

(10)vti = vt−1
i +

(

xt−1
i − x∗

)

fi

where vti  denotes velocity, xti  represents location, t is 
iteration, x∗ denotes the optimal solution, β is a random 
value, and fmin and fmax are min and max frequency, 
respectively.

The loudness and pulsation rate must be changed to 
manage the exploitation and exploration stages. To this 
end, Eq.  16 is used to calculate the pulsation rate and 
loudness parameters:

where At+1
i  denotes the average loudness of all bats, rt+1

i  
represents the pulsation rate at time t + 1, α and γ are a 
constant and initial loudness, respectively, and r0i  is the 
initial pulsation rate.

Locally, the random walk is used to determine a new 
position for each bat:

Optimization algorithm for training RBFNN and MLP
Each candidate ANN (MLP and RBFNN) is encoded as 
a dimensional vector for each member (particle, gas, and 
bat). Vectors consist of a set of weights connecting the 
first layer to the hidden layer, a set of weights connect-
ing the second layer to the final layer, a set of biases, a set 
of widths of hidden neurons, and a set of centers of hid-
den neurons. To assess the objective function value of the 
candidate RBFNN and MLP networks, the RMSE is com-
puted over all training data for each member. The work-
flow of the optimization algorithms used in this article to 
train the MLP and RBFNN is outlined in the steps below:

1. Initialization: A predefined number of particles, bats, 
and gases show a possible RBFNN and MLP net-
work.

2. An objective function evaluates the equality of gen-
erated RBFNN and MLP networks. The provided 
search agents (weights, biases, widths, and centers) 
are first assigned to MLP and RBFNN networks, and 
then the networks are evaluated. The RMSE is a pop-
ular objective function in integrated ANNs. Based 
on the training data, the training algorithm attempts 
to construct the MLP and RBFNN with the lowest 
RMSE value possible.

3. The position of each agent is updated.

(11)xti = xt−1
i + vti

(12)
At+1
i = αAt

i

rt+1
i = r0i .

(

1− e−
γ t
)

(13)xnew = x∗ + εAt
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4. Levels 2 to 3 are iterated until the maximum num-
ber of iterations is achieved. Finally, the RBFNN and 
MLP models with the minimum RMSE are tested on 
the unobserved part of the data.

The current study’s MLP–HGSO model contains one 
hidden layer. There were four hidden neurons. A pro-
cess of trial and error was used to determine the num-
ber of hidden neurons and layers. Moreover, there were 
four hidden neurons in RBFNN–HGSO, obtained using a 
trial-and-error method (Fig. 4).

Evaluation of models performance
To evaluate and compare the results of the developed 
models in this study, different statistical indices were 
used, including mean absolute error (MAE), percentage 

of BIAS (PBIAS) and Nash–Sutcliffe efficiency (NSE). 
The equations of these statistical indices are shown as 
follows:

(14)MAE =
1

n

n
∑

i=1

(

yi − y−i
)

(15)PBIAS =

n
∑

i=1

(

yi − y−i
)

∗ 100/

n
∑

i=1

yi

(16)NSE = 1−

[

n
∑

i=1

(

yi − y−i
)2
/

n
∑

i=1

(

yi − ymean

)2

]

Fig. 4 Flowchart of the developed models
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where yi is the observed value, y−i  is the predicted value, 
ymean is the mean value of the data and n is the total num-
ber of data [39, 41, 42].

Results and discussion
Taguchi model
The Taguchi model is one of the commonly applied 
methods for adjusting the parameters of optimization 
algorithms. In this model, some experiments are con-
sidered based on different integrations of some effective 
parameters to achieve the best integrations of effective 
parameters. Taguchi’s model uses some special orthogo-
nal arrays (OR). The OR are special cases of the fractional 
factorial design. In this model, there are two important 
parameters: noise parameters and controllable param-
eters. Analyzing the results employs the signal-to-noise 
ratio. To implement the Taguchi model for adjusting the 
parameters of optimization algorithms, it is necessary to 
identify the parameters with the most significant impact 
on the output. Table  1 outlines the algorithm’s parame-
ters that were determined for this purpose. To conduct 
the experiments in the Taguchi model, it is necessary 
to determine the parameter values that result in good 
fitness.

Consequently, the parameter values are determined 
using a trial-and-error approach. Next, considering the 
available degrees of freedom, an appropriate orthogo-
nal array is selected. Since the minimization problem is 
considered, the signal-to-noise ratio can be calculated 
through the following equation:

In this study, 4, 5, and 2 parameters were selected for 
the PSO, BA, and HGSO, respectively,  using the Tagu-
chi model with four levels. Based on L16, L16, and L16 
orthogonal arrays, 16 experiments were performed for 
the PSO, BA, and HGSO parameters, respectively. The 
outputs of tuning parameters using the Taguchi model 
are presented in Table 1.

PCA results
Inputs to the various soft computing models were 
selected based on the past monthly average rainfall. 

(17)
S

N
= −10 log

(

objective ( function)
)

.

As shown in Table  2, the total number of experimen-
tal input data is nine, including rainfall at t–1 (previous 
month) to t–9 (9 previous months). The PCA was applied 
to data from 2001 to 2014 to obtain PCs and reduce the 
dimension of the input data. Table 3 displays the selected 
important components. Eigenvalues larger than one indi-
cate significant components, where significant compo-
nents must be retained. The variance described indicates 
what percentage of its component’s data can describe 
the variability of raw rainfall inputs. It was determined 
that the first five PCs accounted for 80% of the total 
variance, so the input was set to 5. Table  3 displays the 
loading matrix of the input variables for these compo-
nents. Greater loading indicates that input data describe 
more information. The results indicate that the first five 
components are strongly correlated with the five sets of 
lagged input data [R (t–1), R (t–2), R(t–3), R(t–4), and R 
(t–5)].

Table 1 Parameters of the algorithm implemented in this study

PSO Population size: 100, c1: 2, c2 and w: 0.9

BA Population size: 100, maximum freqency: 0.9, minimum 
frequency: 0.3, maximum loudness: 7 and minimum loud‑
ness: 0

HGSO Population size: 100, number of clusters: 10

Table 2 Input data and Eigen vectors

Inputs
R (t–1), R(t–2), R (t–3), R (t–4), R 
(T–5), R (t–6), R (t–7), R(t–8) and R 
(t–9)

% %

*Components Eigen values Variance 
explained

Cumulative 
variance 
explained

1 3 0.33 33

2 2 0.22 55

3 1 0.12 67

4 0.75 8.3 75

5 0.75 8.3 83

6 0.5 5.5 88.5

7 0.4 4.4 93

8 0.3 3.3 96.6

9 0.3 3.3 100

Table 3 Loading matrix for input variables

Input PC1 PC2 PC3 PC4 PC5

R (t–1) 0.93 0.90 0.87 0.84 0.82

R (t–2) 0.89 0.86 0.83 0.81 0.80

R (t–3) 0.87 0.84 0.82 0.78 0.77

R (t–4) 0.83 0.82 0.81 0.76 0.75

R (t–5) 0.81 0.80 0.78 0.75 0.72

R (t–6) 0.72 0.70 0.72 0.71 0.70

R (t–7) 0.65 0.64 0.63 0.60 0.58

R (t–8) 0.61 0.60 0.59 0.57 0.55

R (t–9) 0.60 0.58 0.55 0.52 0.50
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Statistical results for soft computing models
The PSO, BA, and HGSO were combined with a stan-
dalone MLP model to develop new models for forecast-
ing monthly rainfall at two stations based on antecedent 
values. Three important indices including the MAE, NSE, 
and PBIAS were used. They illustrate the disparity 
between measured and observed data. These indices 
serve to assess the performance of models. In addition, 
the calculation of these indices is straightforward.

As shown in Table 4, using the MLP–HGSO model, as 
an illustration, the MAE value for station 1 during the 
testing period is 0.712  mm. Table  4 demonstrates that 
the MLP–HGSO model is more accurate than the other 
soft computing models. Table 4 clearly demonstrates that 
the MLP–BA model outperforms the MLP–PSO model. 
Regarding the obtained results of MLP and RBFNN 
models for two stations, it could be concluded that the 
MLP outperforms the RBFNN. The MAE = 0.812  mm 
and PBIAS = 0.27 values reflected in the RBFNN–HGSO 

outputs for the testing level exceeded the accuracy level 
of the MLP–HGSO developed with the same inputs.

In terms of the RMSE and PBIAS indices, Table  4 
shows that the MLP–HGSO model has the lowest values 
when compared to other applied soft computing mod-
els. According to Table  4, the RBFNN–HGSO model 
with lower MAE and PBIAS values is more accurate than 
the other RBFNN models. However, the MLP–HGSO 
model has the lowest RMSE and PBIAS values among the 
other models. In addition, Table 4 demonstrates that the 
RBFNN–HGSO model outperforms the RBFNN–PSO 
and RBFNN–BA across all performance metrics. Moreo-
ver, the HGSO appears to be a more effective optimiza-
tion tool than the PSO and BA for improving results.

Taylor diagram (TD) for soft computing models
TDs are graphical representations of mathematical mod-
els that highlight the most realistic models. TD is used to 
evaluate the degree of accuracy between simulated and 
observed data using standard deviation, RMSE, and Pear-
son’s coefficient of correlation. According to the findings, 
the MLP–HGSO model is more accurate than the other 
soft computing models (Fig.  5). The MLP–HGSO and 
RBFNN–HGSO are found to be closer to the reference 
point (observed data).

Gradient color curves
Figure 6 depicts the RMSE–observation standard devia-
tion ratio (RSR) values. As can be seen, the maximum 
MLP–HGSO RSR values at stations 1 and 2 are 0.25 
and 0.2, respectively. The HGSO model outperforms the 
BA and PSO models. According to a previous literature 
review (Braga et al. 2018), model performance is deemed 
“satisfactory” if RSR ≤ 0.7  [43]. Various reports indicate 
that the model’s performance can be deemed “very good” 
if RSR ≤ 0.5. In addition, the R2 analysis indicates that 
the MLP–HGSO model is more closely aligned with the 
observed data compared to other models.

Transient probability matrix rainfall
The Markov chain is a mathematical model that explains 
stochastic processes and offers probability information 
on phase transitions. In n time steps, the probability of 
moving from state i to state j is given as [17]:

where Xt denotes a random variable, i0, i1, i2,…,it+1 repre-
sents the state at each time and P

(

xt+1 = j|Xt = i
)

= pij 
is the transition probability from phase i at time t to 
phase j at time t + 1:

(18)
P[Xt+1 = it+1|Xt = it , ....,X0 = i0]
= Pr [Xt+1 = it+1|Xt = it ]

Table 4 Statistical indexes for different soft computing models

Index MAE, mm NSE PBIAS

Station (1) (Train)

 MLP–HGSO 0.687 0.95 0.17

 MLP–PSO 0.727 0.89 0.22

 MLP–BA 0.825 0.91 0.19

 RBFNN–HGSO 0.722 0.93 0.16

 RBFNN–BA 0.924 0.87 0.26

 RBFNN–PSO 0.941 0.84 0.28

Station (1) (Test)

 MLP–HGSO 0.712 0.90 0.23

 MLP–PSO 0.755 0.83 0.29

 MLP–BA 0.765 0.85 0.25

 RBFNN–HGSO 0.717 0.87 0.27

 RBFNN–BA 0.865 0.81 0.31

 RBFNN–PSO 0.891 0.80 0.35

Station (2) (Train)

 MLP–HGSO 0.683 0.97 0.15

 MLP–PSO 0.725 0.90 0.21

 MLP–BA 0.723 0.92 0.20

 RBFNN–HGSO 0.691 0.93 0.17

 RBFNN–BA 0.914 0.89 0.22

 RBFNN–PSO 0.930 0.86 0.23

Station (2) (Test)

 MLP–HGSO 0.711 0.92 0.22

 MLP–PSO 0.743 0.85 0.28

 MLP–BA 0.742 0.89 0.26

 RBFNN–HGSO 0.719 0.91 0.25

 RBFNN–BA 0.863 0.83 0.31

 RBFNN–PSO 0.890 0.82 0.32
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where 0 ≤ pij ≤ 1,
∑s

j=1 pij = 1, s : the
(

number
)

of ( state)

Given the strong performance of the newly imple-
mented hybrid MLP–HGSO model, future research 
could include the hybrid MLP–HGSO model to fore-
cast other hydrological variables in the short and long 
run. To avoid duplication of discussions, station 1 was 
selected as a representative example for analyzing rain-
falls. A state matrix, which is a row matrix, displays the 
probabilities for each state. For instance, the steady-
state matrix (0.77, 0.23) indicates that station 1’s pre-
cipitation follows the probability distribution (Table 5).

In 2001, the probability of precipitation on a given 
month at station 1 was 0.77, and the probability of dry-
ness on a given month at station 1 was 0.23. The pre-
dicted monthly rainfall used in this article was derived 
from the observed data at stations 1 and 2 for the years 
2001–2014, a period of 13  years. Notably, MLP–PSO 
and RBFNN–PSO were omitted from Table  5 due to 
their significantly inferior estimates compared to MLP–
HGSO, RBFNN–HGSO, MLP–BA, and RBFNN–BA. 
The results indicate that the rainfall pattern of MLP–
HGSO closely resembles those of observed data. For 

(19)p =
[

pij
]

=

[

p11 p1s
ps1 pss

] example, the predicted rainfall values of MLP–HGSO 
and observed data reveal that the highest rainfall for 
station 1 occurred in 2001 with a probability of 0.77 
and that the highest rainfall for station 2 occurred in 
2007 and 2009 with the same probability. Other values 
also demonstrate that the MLP–HGSO model is supe-
rior to other alternatives.

When modelers encounter incomplete, noisy, or small 
data sets, signal decomposition is a useful performance-
enhancing technique. Optimization algorithms, pre-
processing techniques, and decomposition methods can 
improve the performance of ML models. Our data are 
reliable and complete; thus, optimization and principal 
component analysis are used to enhance model perfor-
mance. The models produced the best results without 
error index-based decomposition techniques. A set of 
input variables carefully selected can aid forecasting 
models in capturing the nonlinear characteristics of run-
off data. However, ensemble empirical mode decomposi-
tion with the MLP model is combined to determine the 
difference between MLP–EMD and MLP models.

The ensemble empirical mode decomposition 
(EEMD) is a useful tool for preprocessing  data. The 
EMD generates a finite number of oscillatory modes 
from the original time series data. Every oscillatory 

Fig. 5 TD for soft computing models
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mode is described by an intrinsic mode function (IMF). 
Depending on the data-driven mechanism, the IMF can 
be derived directly from the data.  An EMD algorithm 
converts a time series into IMF modes through a shift-
ing process. More details about the EMD can be found 
in Wang et al. (2015). The results of MLP–HGSO with 
and without EMD are displayed in Table  3. As shown 
in the table, MLP–HGSO–EMD does not significantly 
improve MLP–HGSO performance.

Since robust optimization algorithms and PCA were 
used to improve the performance of MLP models, 
the MLP–HGSO results are reliable without an EMD 
model. At the first station, the MLP–HGSO–EMD and 
MLP–HGSO models had training MAEs of 0.685 and 
0.687 mm, respectively. At the testing level, the MLP–
HGSO–EMD and MLP–HGSO models had MAE val-
ues of 0.710 and 0.712 Table 6.

Fig. 6 Gradient color curves for soft computing models
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This research found that optimization algorithms play 
a crucial role in modeling. They can improve the output 
prediction accuracy of machine learning models. To 
select the optimal input scenarios, developers should 
employ methods, such as PCA. However, there are a 
variety of ways to define optimal features. The gamma 
test is a reliable method for selecting inputs. Since 
the optimization algorithms use different operators, 
the MLP and RBFNN models have different accuracy. 
Moreover, these models are highly adaptable.

The modelers can integrate these models with climate 
scenarios to predict targets under climate change con-
ditions. The models of the current paper can be used 
for predicting spatial and temporal variation of rainfall 
in different regions. Figure  7 shows the boxplot mod-
els at the testing level. At the Sara Station, the median 
of the observed data, MLP–HGSO, RBFNN–HGSO, 

Table 5 Stable probability matrix for stations

Years Observed Value MLP–HGSO RBFNN–HGSO MLP–BA RBFNN–BA

Station 1 2001 0.77 0.23 0.77 0.23 0.75 0.25 0.76 0.24 0.78 0.22

2002 0.65 0.35 0.65 0.35 0.64 0.36 0.63 0.37 0.65 0.35

2003 0.55 0.45 0.55 0.45 0.57 0.43 0.58 0.42 0.59 0.41

2004 0.52 0.48 0.52 0.48 0.54 0.46 0.59 0.40 0.60 0.40

2005 0.57 0.43 0.56 0.44 0.59 0.41 0.60 0.40 0.61 0.39

2006 0.56 0.44 0.57 0.43 0.57 0.43 0.57 0.43 0.57 0.43

2007 0.59 0.41 0.58 0.42 0.60 0.40 0.60 0.40 0.60 0.40

2008 0.61 0.39 0.60 0.40 0.64 0.36 0.68 0.32 0.68 0.32

2009 0.64 0.36 0.62 0.38 0.65 0.35 0.67 0.33 0.67 0.33

2010 0.64 0.36 0.64 0.36 0.67 0.33 0.69 0.31 0.69 0.31

2011 0.65 0.35 0.65 0.35 0.69 0.31 0.69 0.31 0.69 0.31

2012 0.72 0.28 0.72 0.28 0.71 0.29 0.71 0.29 0.71 0.29

2013 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35

2014 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38

Station 2 2001 0.65 0.35 0.65 0.35 0.64 0.36 0.63 0.37 065 0.35

2002 0.66 0.34 0.66 0.34 0.65 0.35 0.65 0.35 0.65 0.35

2003 0.57 0.57 0.57 0.43 0.57 0.43 0.58 0.42 0.58 0.42

2004 0.64 0.36 0.62 0.38 0.65 0.35 0.67 0.33 0.67 0.33

2005 0.66 0.34 0.66 0.34 0.65 0.35 0.60 0.40 0.61 0.39

2006 0.56 0.44 0.57 0.43 0.57 0.43 0.57 0.43 0.57 0.43

2007 0.72 0.28 0.72 0.28 0.71 0.29 0.71 0.29 0.71 0.29

2008 0.61 0.39 0.60 0.40 0.64 0.36 0.68 0.32 0.68 0.32

2009 0.72 0.28 0.72 0.28 0.71 0.29 0.71 0.29 0.71 0.29

2010 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38

2011 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35

2012 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38 0.62 0.38

2013 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35 0.65 0.35

2014 0.64 0.36 0.64 0.36 0.67 0.33 0.69 0.31 0.69 0.31

Table 6 Comparison of MLP–HGSO–EMD with MLP–HGSO

Model MAE NSE PBIAS

Training (Station 1)

 MLP–HGSO 0.687 0.95 0.17

 MLP–HGSO–EMD 0.685 0.96 0.14

Testing

 MLP–HGSO 0.712 0.90 0.23

 MLP–HGSO–EMD 0.710 0.92 0.18

Training (Station 1)

 MLP–HGSO 0.683 0.97 0.15

 MLP–HGSO–EMD 0.681 0.98 0.12

Testing

 MLP–HGSO 0.711 0.92 0.22

 MLP–HGSO–EMD 0.709 0.94 0.20
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Fig. 7 Boxplots of models for comparing models
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MLP–BA, RBFNN–BA, MLP–PSO, and RBFNN–PSO, 
M5Tree and multivariate adaptive regression splines 
(MARS) was 478 mm, 486.5 mm, 494.5 mm, 502 mm, 
529. 4mm, 534 mm, 536 mm, 541 mm, and 544 mm, 
respectively. At the Banding Station, the median of 
the observed data, MLP–HGSO, RBFNN–HGSO, 
MLP–BA, RBFNN–BA, MLP–PSO, and RBFNN–PSO, 
M5Tree and multivariate adaptive regression splines 
(MARS) was 189 mm, 190 mm, 192 mm, 202 mm, 
205. 4mm, 207 mm, 209 mm, 212 mm, and 221 mm, 
respectively.

Acharya et  al. [44] used multi-model ensemble using 
ELM for monsoon rainfall forecasting over south penin-
sular India and the correlation coefficient (R) of simple 
arithmetic mean (EM), singular value decomposition-
based multiple linear regression (SVD–MLR) and ELM 
in the test stage were found to be − 0.34, 0.47 and 0.63, 
respectively. Beheshti et  al. [45] used three different 
algorithms, centripetal accelerated PSO (CAPSO), a 
gravitational search algorithm and an imperialist com-
petitive algorithm in training ANN for forecasting 
monthly rainfall in Johor State, Malaysia. Among the 
available methods, the MLP–CAPSO provided the best 
accuracy in the test stage with R value of 0.9103. Helali 
et al. [46] forecasted rainfall using generalized regression 
ANN (GRNN), ANN, least square SVM and multi-linear 
regression (MLR) for 1–6-month lead times. The best 
GRNN, MLP, LSSVM, and MLR models gave the R values 
of 0.65, 0.74, 0.48, and 0.74 in the test stage, respectively. 
In the presented study, the best model MLP–HGSO 
accurately forecasted the monthly rainfalls with an effi-
ciency of 0.90 and 0. 92 for the first and second stations, 
respectively.

Concerning water resources management, the out-
comes offer valuable insights for policymakers aiming 
to ensure fair water resource distribution, especially in 
densely populated, water-scarce regions in Malaysia. 
With the use of rainfall forecasts, water managers can 
make well-informed decisions regarding water resource 
management. This may include adjusting water releases 
from reservoirs to enhance storage capacity based on 
anticipated inflow or implementing water conservation 
measures to safeguard water supplies during drought 
conditions [47]. In addition, rainfalls forecasts can aid 
in establishing early warning systems for floods and 
droughts, guiding water management strategies to allevi-
ate the impact of weather-related disasters [46].

Conclusion
Rainfall is critical to irrigation and hydrological pro-
jects. This study explores the potential of hybrid soft 
computing models (MLP–PSO, MLP–BA, MLP–HGSO, 

RBFNN–BA, RBENN–PSO, and RBFNN–HSO). 
Monthly rainfall data from two Malaysian stations were 
used as model inputs. In terms of efficiency, the hybrid 
MLP–HGSO model outperformed the MLP–BA, MLP–
PSO, RBFNN–BA, RBFNN–PSO, and RBFNN–HGSO 
models. The RFNN–HGSO outputs for the testing level 
reflected a value of MAE = 0.812 mm and PBIAS = 0.27, 
which was also more accurate than the MLP–HGSO 
developed with the same inputs.

The MLP–HGSO predicted and observed rainfall values 
revealed that the highest rainfall was observed in 2012, with 
a probability of 0.72. Given the newly implemented hybrid 
MLP–HGSO model’s strong performance, further research 
could include using the hybrid MLP–HGSO model to fore-
cast other hydrological variables in the short and long run.

The current paper’s challenges and limitations are data 
collection, adjusting computer systems and models, and 
determining the best input scenarios. It is recommended 
that the current models be tested in different climate zones 
and compared with other soft computing models could be 
adopted to find more precision results in rainfall modeling. 
In addition, another limitation of the present study is that 
conducted using rainfall data of two stations, it can be fur-
ther augmented to use data of more stations (greater num-
ber of observations) to obtained better prediction results. 
In addition, the models are currently being researched for 
use as early warning systems in various regions. Some of 
the ML models are heavy and hence require huge compu-
tational resources and large computing time, and there-
fore, the proposed method can be compared with other 
ML methods which has simpler structure so as to see if the 
solution of the investigated problem is possible with sim-
pler ML method. On the other hand, with the advanced 
technology (parallel computing), it is possible to use more 
complex ML models in real-time applications.
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