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Abstract 

Background Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by 
degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub 
for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread 
of alien species. While reported costs of biological invasions to some member states have been recently assessed, 
ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably 
underestimated.

Results We used the latest available cost data in InvaCost (v4.1)—the most comprehensive database on the costs 
of biological invasions—to assess the magnitude of this underestimation within the European Union via projec-
tions of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to 
project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate 
for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have 
reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost 
entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species 
within European Union member states, we projected unreported cost data for all member states.

Conclusions Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently 
recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly 
species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of great-
est concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien 
species in the European Union and globally.
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Background
Invasive alien species—those introduced into regions 
where they are not native and in which they cause nega-
tive impacts to nature and/or society—are among the 
main drivers of global biodiversity decline [1, 2], and 
considered  a growing threat with multiple feedbacks to 
ecosystem services and human well-being [3–6]. The eco-
logical and socio-cultural impacts of invasive alien spe-
cies are substantial and expected to continue increasing 
due to climate [7], geopolitical [8], and economic changes 
[9].

Most assessments of the impacts of invasive alien spe-
cies have relied on scoring systems, such as those pro-
posed by Panetta [10] and subsequently updated by 
Kumschick et al. [11] and Vilà et al. [12]. However, scor-
ing systems are often context-dependent, with some 
scoring criteria lacking objectivity or requiring advanced 
assessor expertise [13], rendering them unsuitable for 
broader generalisation or prediction. There is therefore 
a need to improve the reliability of impact assessments 
by considering monetary costs arising from the loss and 
damage of resources as well as management actions. 
Attempts to quantify the economic costs of invasive alien 
species at broad spatial scales have occurred in recent 
decades [14], although early attempts had considerable 
shortcomings [15] or were limited to economic invento-
ries of specific sectors [16, 17].

Most recently, the InvaCost project and the structured 
and publicly available database it has produced [18–20], 
have provided an unprecedented opportunity to investi-
gate taxonomic and geographic trends in the monetary 
costs of invasive alien species worldwide (e.g., [21, 22]. 
Studies with a national (e.g., [23]), regional (e.g., [24]), 
continental (e.g., [25]), taxonomic (e.g., [26]), or pathway 
(e.g., [27, 28]) focus have, however, all identified difficul-
ties with making comprehensive monetary cost estimates 
owing to spatial and taxonomic gaps. These data gaps 
include: (i) costs for many known, established invasive 
alien species that have not been assessed; (ii) cost infor-
mation that is often inaccessible or otherwise not avail-
able publicly, or (iii) many cost estimates that do not fulfil 
quality criteria (i.e., peer-reviewed and/or transparent 
calculations).

In Europe, the monetary costs incurred by invasive 
alien species from 1960 to 2020 were recently estimated 
to be US$140.2 billion [22], although persistent data gaps 
suggest that this is an underestimate [29]. This inferred 
cost might appear low relative to the annual gross domes-
tic product of some European countries (e.g., 3.3% when 
compared to Germany’s 2021 gross domestic product 
[GDP] of US$4.3 trillion; data.worldbank.org). How-
ever, it is a more substantial quantity when considering 

countries with smaller economic turnover such as Hun-
gary (US$182.3 billion) or Slovakia (US$115.0 billion).

The combined economic turnover of European Union 
member states makes it the third largest economy world-
wide (data.worldbank.org), and Europe as a whole has 
been a historic centre of trade, human migration, and 
tourism. As such, both continental Europe and the Euro-
pean Union (with its current 27 member states) have 
been particularly vulnerable to biological invasions, 
despite recent transboundary legislation to tackle inva-
sive alien species [30–33]. The European Union Invasive 
Alien Species Regulation 1143/2014 [34] directs efforts 
to tackle the threats presented by invasive alien species 
to the European Union. However, many such species, 
including the 88 identified species of Union concern 
(of which 12 are thought not to be present yet in the 
Union’s territory), lack any evidence of economic costs 
[19], despite the European Union being an economic 
and monetary union with coordinated economic and 
fiscal policies (e.g., a common monetary policy and cur-
rency). The problem is compounded because there are 
already several thousand established alien species in the 
European Union [35], with large discrepancies between 
the total number of established invasive alien species 
and those with assessed costs (for instance, France has a 
conservative minimum of 2621 alien species, but only 98 
species [< 4%] with reported costs; [23]).

An absence of information on economic impacts risks 
downplaying the threats posed by invasive alien species 
(including costs and other impacts), because it underesti-
mates the economic threat biological invasions represent 
and hinders national policies, governance, research, and 
educational efforts along with broad-scale multinational 
initiatives to combat the problem [36–38]. Improved 
quantification of these species’ impacts is also essential 
for prioritisation, mitigation, and eradication that under-
lie the Convention on Biological Diversity 2020 [39], the 
2022 Kunming-Montreal Global Biodiversity Framework, 
and the European Union Invasive Alien Species Regula-
tion 1143/2014 [34]. However, even when implemented, 
such actions are most often locally focused, and are fre-
quently of insufficient length or magnitude to address the 
scale of the problems because of budget limitations. This 
lack of allocated funding compromises outcomes while 
simultaneously increasing both long-term management 
and damage costs [40, 41]. Thus, the feasibility of man-
agement remains impaired by the political choice not to 
ensure adequate resources [42].

Because cost information for many invasive alien spe-
cies is missing, national and transnational estimates 
would benefit from a more complete accounting. Given 
that invasion history is one of the best predictors of 
eventual impacts [43], using existing cost estimates of a 
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measured species would seem the most appropriate and 
straightforward approach to interpolate missing costs in 
other invaded countries. However, context is also impor-
tant, and we would not necessarily expect impacts to be 
identical across countries [5]. For instance, macroeco-
nomic differences could influence the cost of labour (and 
management) or the per-unit currency value of a sec-
tor, and hence, the magnitude of damages. Alternatively, 
wealthier or larger countries could be better prepared to 
respond to invasions, resulting in inverse relationships 
between costs and macroeconomic indicators [44]. Given 
the challenges triggered by a lack of detailed cost infor-
mation, we projected the available data to fill both spatial 
and taxonomic gaps to assess the extent to which we have 
so far underestimated the costs of invasive alien species 
to the economies of European Union member states. We 
also forecast how baseline invasion costs and factors cor-
related with costs (i.e., the  number of costs reported in 
the literature and number of species with reported costs) 
will develop up to 2040 using several temporal model-
ling approaches. As a result, we develop a more com-
prehensive accounting of the costs of alien species to the 
European Union using invasion history and fitted macro-
economic scaling factors.

Our analyses are therefore important methodologi-
cal and applied advances towards improving spatial and 
temporal estimates of costs. We expected that (i) the pro-
jected amount of costs of invasive alien species will be 
considerably higher than those reported in the InvaCost 
(v4.1) database due to (ii) mismatches between known 
invaders and those with recorded costs [23, 45–47], and 
(iii) expected increasing future trajectories of costs of 
invasions [19, 48, 49]. Our study makes a critical step 
towards improving cost predictions of biological inva-
sions for the European Union as well as elsewhere and 
represents a substantial development beyond existing 
representations of their monetary impacts.

Methods
Cost data
To estimate the cost of biological invasions on the com-
bined economy of the European Union, we used the 
latest available version of the InvaCost database (v4.1; 
[19]). InvaCost currently includes 13,553 entries of 
reported economic costs from invasive alien species 
retrieved from peer-reviewed, official, or grey-literature 
sources in both English and 21 other languages [45], 
and over 60 descriptor variables (i.e., impacted sec-
tor, type of cost, etc.). InvaCost (v4.1) has standardised 
individual cost records to a common currency and year 
to account for variation and inflation: 2017 US$ (see 
[19] for detailed information on conversion; exchange 
rate for 2017: US$1 = €0.8852; World Bank, 2022). We 

applied the conversion (except for the temporal projec-
tion; see below) for the period following 1960, because 
we could not obtain monetary exchange rates from offi-
cial institutions (e.g., World Bank) prior to that year. 
We then converted costs from 2017 US$ to 2022 EU€ 
values using an inflation correction factor = 1.10545941 
for the period between 2017 and 2022 and an average 
currency exchange rate for 2022 of US$1 = €0.9515 
(World Bank, 2022).

To ensure that we used cost data from only the 27 
member states, we selected costs for every individual 
country currently in the European Union (excluding can-
didate countries), using the ’Official_country’ column 
from the InvaCost database: Austria, Belgium, Bulgaria, 
Croatia, Cyprus, Czech Republic, Denmark, Estonia, 
Finland, France (excluding French overseas territories), 
Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithu-
ania, Luxembourg, Malta, Netherlands, Poland, Portugal, 
Romania, Slovakia, Slovenia, Spain, and Sweden. This fil-
tering step identified 5,442 cost entries from the original 
global dataset (13,553 entries).

To obtain comparable costs of invasive alien species, 
we considered all costs lasting for a period of < 1 year as 
’annual costs’, and re-calculated (and thus ‘expanded’) 
costs covering multiple years on an annual basis by 
spreading the total cost across the time covered, using 
the expandYearlyCosts function in the invacost pack-
age version 0.3–4 [20] in R version 4.1.3 [50]. Deriving 
the total cumulative cost of invasions over time requires 
taking into account the probable duration of each cost 
occurrence. The duration is the number of years between 
the probable starting (’Probable_starting_year’) and end-
ing (’Probable_ending_year’) years of the costs reported 
by each publication included in the InvaCost database 
[19].

Expansion resulted in 7,214 annualised, European 
Union-relevant cost entries. To exclude cost estimates 
with doubtful reliability, we first filtered the InvaCost 
database to obtain a ’highly reliable, observed’ dataset of 
only ’observed’ costs using the ’Method_reliability’, the 
‘Method_reliability_refined’ and ’Implementation’ col-
umns reflecting (i) the perceived reliability of the type of 
publication and/or cost-estimation approach (’high’, when 
originating from peer-reviewed articles, official reports, 
or from grey material but with documented, reproduc-
ible and traceable methods, and ’low’ otherwise), and 
(ii) whether the cost was realised or empirically incurred 
(’observed’) or whether it was based on predictions or 
costs expected over time or space (’potential’). The result-
ing dataset of ’highly reliable’ and ’observed’ costs con-
tained 5,592 entries. Further analyses focused on two 
descriptors: (i) type of cost: ’damage’ refers to damage or 
losses incurred by invasion, and ’management’ includes 
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control-related expenditures (i.e., costs due to monitor-
ing, prevention, management, eradication); (ii) impacted 
sector: the activity, societal, or market sector incurring 
the cost (see Additional file 1).

Taxonomic gaps
To identify taxonomic gaps in the reporting of poten-
tially costly invasive alien species, we (i) quantified the 
ratio between recorded invasive alien species in Inva-
Cost and established alien species nationally within 
European Union member states, and (ii) assessed the 
number of species of Union concern (last update, Com-
mission Implementing Regulation (EU) 2022/1203 of 
12 July 2022 Amending Implementing Regulation (EU) 
2016/1141 to Update the List of Invasive Alien Species of 
Union Concern. Available online: https:// eur- lex. europa. 
eu/ legal- conte nt/ EN/ TXT/ HTML/? uri= CELEX: 32022 
R1203 & from= EN) on invasive alien species recorded in 
InvaCost. For this, we assembled the most comprehen-
sive dataset of established alien species in the European 
Union by combining the SInAS database of alien species 
occurrences [51] with Casties et al. [52], as well by add-
ing species that were not yet included in either of the two 
lists. We used the SInAS_AlienSpeciesDB_2.4.1 [51] file as 
the base file for our dataset. We removed species with-
out assignment of invaded country/region, or those not 
reported in the European Union from the dataset. Then, 
we also removed species with assignment only as CAS-
UAL and ABSENT in the columns ’degreeOfEstablish-
ment’ (N) and ’occurrenceStatus’ (L), respectively, due to 
their unclear establishment status in those regions [53]. 
Finally, we checked species identity and the spelling of 
scientific names against the Global Biodiversity Informa-
tion Facility [54]. If we did not find a species in the Global 
Biodiversity Information Facility, we did general internet 
searches in June and July 2022 to confirm species authen-
ticity. We corrected misspelt species names and removed 
any duplicate species from the dataset.

We applied a paired t-test to compare the total number 
of recorded, established alien species and those of Union 
concern listed within the dataset of established alien spe-
cies in the European Union (github.com/LeungEcoLab/
EU_costs), with the respective total number of invasive 
alien species recorded in InvaCost at the level of indi-
vidual European Union member states. We also removed 
species not authenticated and thus, included only spe-
cies-specific entries from the InvaCost database, thereby 
excluding any mixed or unspecified data.

Spatial and sectoral projections
We used invasion history to interpolate costs to countries 
where a species was confirmed present using the dataset 
of established alien species in the European Union, but 

where the cost was not estimated, and also tested for dif-
ferences due to macroeconomic factors. We restricted 
our interpolations only to species and sectors (e.g., agri-
culture, health, management and control, etc.) where a 
given species’ impact had been estimated in at least one 
European Union member state, and we only used highly 
reliable observed, country-level costs reported in the 
InvaCost database. We focused our analyses on country-
level costs because they constitute most (92%) costs and 
are directly comparable. For full transparency, we also 
reported interpolated costs at the site level (see Addi-
tional file  1), although these are more difficult to com-
pare because spatial scales of analyses varied widely, and 
no area information was available. Thus, our interpreta-
tion of interpolated costs at the site-level is speculative. 
After filtering for only highly reliable, observed costs, we 
obtained a total of 162 entries at the country level encom-
passing monetary costs of 49 species from 22 European 
Union member states. The site-level costs represented 
2907 entries in 12 countries of the European Union for 
179 species.

We also tested for differences resulting from macro-
economic factors and to account for potential socio-
economic differences, we analysed the following: GDP, 
population size, country area, and importance of the 
impacted sector (in %). We expected costs to increase 
with GDP and population size because these are typical 
macroeconomic predictors with broad data availability, 
and they were relevant socio-economic predictors for 
the costs of invasive alien species in previous studies [22, 
24, 55]. Further, the size (value) of a given sector logically 
relates to the potential magnitude of effect [56]. This last 
predictor scaled health and agriculture pest costs by the 
current health expenditure and the value added by agri-
culture, forestry, and fishery (both in % of GDP) (data.
worldbank.org), respectively.

We scaled costs by the relative magnitudes of socio-
economic factors, but costs need not change proportion-
ally with macroeconomic factors, and a model should be 
flexible to account for this. For example, if the value of 
agriculture in country A was lower than in country B, the 
impact of an agricultural pest in A should also be frac-
tionally, but not necessarily proportionally, lower than in 
B. We modelled relative differences in economic factors 
as a ratio (e.g.,  GDPA/GDPB), and accounted for non-pro-
portional effects using a fitted coefficient (γ ). In notation:

where X is the InvaCost-listed cost, X̂ is the interpolated 
cost based on averaged, scaled observed costs, s is spe-
cies, c is country, h is type of cost (damage, management, 

X̂s,ci ,h,j =
1

n

n∑

k=1

Xs,ck ,h,j

M∏

m=1

(
Vm,ci

Vm,ck

)γm

,

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022R1203&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022R1203&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022R1203&from=EN
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or both), and j is impacted sector. V  denotes each of the 
M macroeconomic variables analysed. ci refers to each 
country i where species s has been observed, where we 
are trying to interpolate, whereas ck refers to the country 
where species k has been both observed and measured in 
InvaCost. To avoid unreasonable extrapolations beyond 
the data, we truncated scalar ratios by the maximum 
(or minimum) observed in the fitted model. The model 
allows for effects ranging from proportional scaling of 
costs with macroeconomics ( γ = 1) to no effect ( γ = 0), 
and to either positive ( γ> 0) or negative ( γ< 0) effects.

We fitted values of γ through maximum likelihood 
(using the Optim function in R), using the deviation 
between predicted costs (Eq.  1) and costs observed in 
InvaCost for species–sector combinations where there 
were entries across multiple countries. We considered 
alternative models using all possible combinations of 
our four macroeconomic variables and calculated the 
Akaike’s information criterion (AIC) for each model 
(Additional file  1). Finally, we used the AIC-weighted 
average across all our models [57] to estimate the cost of 
each species–sector–country combination. We applied 
these values to species present in countries (Briski et al., 
unpublished data) but that were missing economic esti-
mates. We estimated uncertainty in the parameter values 
(γ ) as well as the resulting economic estimates through 
bootstrapping.

Temporal projection
To project the temporal dynamics of the monetary 
impacts at the European Union-level, we used the highly 
reliable  and  observed data subset. We then identified 
‘extreme’ cost entries that can distort statistical analy-
ses and violate model assumptions. These were any 
cost value exceeding the third quartile + 1.5 times the 
interquartile range for each year [21]. Using the sum-
marizeCosts function implemented in the invacost 
package, we estimated the average cost for each decade 
in the time range 1970–2020 to visfit the raw cost trends 
over time because the first highly reliable, observed cost 
entry occurred in 1970. Accordingly, we did this analysis 
with the highly reliable, observed dataset with (n = 5592 
entries) and then without (n = 4872 entries) ‘extreme’ cost 
entries.

To identify periods in which the variance of costs 
reported within InvaCost (v4.1) changed over time, we 
applied a first-order autoregressive AR (1) process for the 
residuals [58]. This enabled the computation of deriva-
tives of fitted splines using the method of finite differ-
ences to estimate the rate of change (slope) in the fitted 
smoother [59]. This produces diagnostic plots of the costs 
over time, where we could identify periods of non-ran-
dom change(s) and superimpose them on the respective 

temporal trend [60]. Following the non-random changes 
identified throughout the entire period, we identified a 
non-random change in costs after 1980 at which point 
a change in the trend is apparent and the few costs 
repeated over time prior to this point limited our ability 
to estimate the variance in costs. We therefore restricted 
this analysis to the period 1980–2017, excluding (i) the 
values reported from 2018 to 2020 due to lag times in 
reporting of costs after they are incurred [61, 62], and (ii) 
all years prior to 1980. We then modelled the annual total 
of this subset over time (using the ’Impact_year’ of each 
cost entry as the year of occurrence) using both linear 
and quadratic robust regressions on the highly reliable, 
observed data via the lmrob function of the R robust-
base package [63], with maximum iterations set to 
n = 1,000. Ultimately, we projected the trend in total costs 
until 2040, by using the predict function in the fore-
cast R package [64]. Because we were interested in 
determining the projected trend of management expend-
iture in the European Union, we repeated the procedure 
considering only management costs—which constituted 
90% of the entries with, and 93% of the entries without 
extreme values—by filtering the data using the ’Type_of_
cost_merged’ column. We therefore estimated both ’total’ 
and ’management’ costs separately and applied this anal-
ysis to our highly reliable observed data set and another 
subset without the identified extreme values (resulting in 
a final dataset of 3,685 cost entries). We did all analyses in 
R version 4.1.3 [50].

Results
Trends in documented costs
The total cost of biological invasions across all European 
Union member states from 1960 to 2020 reported in 
InvaCost v4.1 amounted to US$129.9 billion (2017 value), 
corresponding to €138.6 billion (2022 value). Of these, 
US$7.3 billion (€7.7 billion; 5.9%) was highly reliable and 
observed, with US$752.9 million (€791.9 million; 10.28%) 
dedicated to management costs. Both total and highly 
reliable, observed costs varied substantially across Euro-
pean Union member states (Fig. 1; Additional file 1).

Including extreme values, the average annual cost 
from 1970 to 2020 was US$143.9 million (€151.4 million) 
although this varied substantially by decade, falling from 
an initial US$19.17 million (€20.17 million) annually in 
the 1970s to US$0.5 million in the 1980s, before increas-
ing to US$53.3 million (€56.1 million) in the 1990s and 
ultimately reaching US$461.1 million (€485.0 million) 
annually in the 2010s (Fig.  2a). Excluding extreme val-
ues (Fig. 2a), the average annual cost from 1970 to 2020 
was US$8.3 million (€8.7 million) and followed a simi-
lar decadal trend overall, increasing to US$11.6 million 
(€12.2 million) annually in the 2000s before a decrease in 
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the 2010s. Decadal trends followed the projected change 
in reported costs over time, indicating the strongest 
increase between the 1980s and 1990s (Fig. 2b).

Taxonomic gaps
We identified 1459 (± 1011) established alien species on 
average recorded per European Union member state, 
ranging between 217 alien species established in Lux-
embourg and 3691 in France (Fig.  3; Additional file  1). 
In contrast, there was only an average of 15 (± 32) costly 
invasive alien species per European Union member state 
within InvaCost v4.1, ranging between one species in 
Luxembourg to 161 in Spain. This disparity implies that 
only ~ 1% of established alien species reported from 
European Union member states have recorded costs. Of 
the 88 species of Union concern, 66 are established in 
the European Union (Additional file  1), with 48 having 
reported economic cost in InvaCost (Additional file  1). 
On average, 21 (± 12) species of Union concern occur 
per European Union member state, but only 4 (± 8) have 
reported costs within that country. The number of estab-
lished alien species by European Union member states 
recorded in our data and those listed as of Union concern 
were both statistically different from the member states’ 
respective number of invasive alien species in InvaCost 
(Briski et al.: t26 = 7.3786, p < 0.001; European Union Reg-
ulation 1143/2014: t45 = 6.0722, p < 0.001; Fig. 3).

Spatial and sectoral taxonomic projections
Highly reliable, observed, species-specific costs totalled 
at US$6.5 billion (€6.8 billion), from which country-level 
costs (from 49 species; n = 162 entries) totalled US$4.7 
billion (€4.9 billion; representing 89.8% of all highly reli-
able, observed costs entries for European Union member 
states). On this conservative basis of highly reliable, coun-
try-level costs, the different projections (Additional file 1) 
estimated the missing cost data to be ~ 869 cost entries 
across all European Union member states, contributing 
an additional US$23.4 billion (€24.6 billion) with uncer-
tainties around the estimated missing costs after model 
averaging of a minimum 8.39 billion and maximum 54.9 
billion, summing to a total of US$28.0 billion (€30.9 bil-
lion; + 501%). However, when excluding two high-lev-
erage points from the final dataset (reported annualised 
costs of > $500 million as reported damage from Roma-
nia and Hungary), the averaged models (Additional file 1) 
estimated the missing costs for European Union member 
states at US$7.2 billion (€7.6 billion) with uncertainties 
around the estimated missing costs after model averaging 
of a  minimum 6.43 billion and maximum 20.26 billion. 
Adding the missing costs resulted in a total of US$11.8 
billion (€12.4 billion; + 153%) in this scenario. For a 
breakdown of cost imputations excluding high-leverage 
points, see Additional file 1.

4 8 12 16
US$ billions (2017 value)

0 0.25 0.50 0.75 1
US$ billions (2017 value)

0

(a) (b)

Fig. 1 a Total invasion costs across European Union member states. b Highly reliable, observed cost subset across European Union member states. 
Note the different scales
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The extent of projected costs across European Union 
member states varied substantially. The final dataset 
revealed that the highest increase in projected costs 
occurred in Lithuania (US$201.19 million; 1,093,525%), 
followed by Malta (US$193.25 million; 129,923%), Czech 
Republic (US$ 3,818.83 million; 60,093%), and Denmark 
(US$524.67 million; 54,670%). In terms of raw costs, the 
highest increase was in Czech Republic (US$3.8 billion; 
€4.0 billion), followed by Germany (US$2.4 billion; €2.5 
billion), France (US$2.3 billion; €2.4 billion), the Nether-
lands and Poland both with US$2.0 billion (€2.1 billion). 
Added costs for all other countries were < US$2 billion 
(€2.1 billion). We provide a detailed breakdown of pro-
jected country-level costs in Fig. 4 and Additional file 1. 
On average, the projection of costs increased national 
invasion costs by 4750% (± 15,216%).

We also found that the projection of costs in European 
Union member states increased by an average of 2340% 

for impacted sectors (Additional file  1). Following the 
projection, costs to public and social welfare increased 
the most (US$4,243.49 million; 7950%), followed by 
costs to forestry (US$8,157.39; 4588%), authorities and 
stakeholders (US$9,333,86 million; 2611%), fisheries 
(US$88.28 million; 2112%), health (US$273.23 million; 
30%), and the agricultural sector (US$549.73 million; 
18%) (see Additional file  1 for a detailed description of 
the sectors considered in the InvaCost database). Finally, 
scenarios considering the missing costs of the two main 
types of costs resulted in projections increasing man-
agement costs by US$8,786.76 million (3933%), and by 
US$14,400.38 million (325%) for damage costs (Addi-
tional file 1).

Temporal projection
Using the 1980–2017 subset of highly reliable (observed 
costs), we identified substantial increases with both linear 
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and quadratic robust regressions. This increase held even 
without extreme values, albeit reducing the US$7.3 bil-
lion (€7.7 billion) in highly reliable, observed costs to 
US$420.6 million (€442.4 million), with US$116.6 mil-
lion (€122.7 million; 27.7%) associated with management 
expenditure. Linear and quadratic robust regressions 
estimated similar slopes, but including extreme values 
estimated a larger increase in projected trends. Projected 
costs for 2040 ranged from US$21.1 billion (€22.2 billion) 
to US$30.6 billion (€32.2 billion) excluding extreme val-
ues; and from US$42.2 billion (€44.4 billion) to US$148.2 
billion (€155.9 billion) including extreme values. This was 
also reflected in projected increases in the total num-
ber of invasive alien species (155–296 annually without 

extreme values; 166–439 with extreme values; Fig.  5) 
and the number of references reporting costs (53–178 
annually without extreme values; 71–240 with extreme 
values). Projected management costs followed similar 
trajectories but at lower magnitudes to those of overall 
costs for all measures (Additional file 1).

Discussion
Data gaps in taxonomic, economic sectors, and coun-
try-level cost caused by biological invasions within the 
European Union are pervasive. Notwithstanding a con-
servative total cost of US$7.3 billion (€7.7 billion) that has 
already been incurred, we have shown that after account-
ing for taxonomic and geographic gaps in cost reporting, 
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the magnitude of invasion costs was at least 1.5 to 6 
times higher, even while using a conservative subset of 
the available data. We expect these costs to rise further 
towards 2040 in accordance with the temporal increase 
in numbers of alien species [48]. In addition, we found 
that the presence of high-impact (i.e., highly costly) spe-
cies increased decadal averages by a factor of 10, under-
lining the importance of understanding the impacts and 
effective management actions for these particularly costly 
invasive alien species.

Spatial, sectoral, and taxonomic projections
Economic costs are available for just 1% of alien species 
recorded as established across the European Union. For 
the 88 invasive alien species currently identified as being 
of Union concern, a much higher proportion of 54.5% had 
reported costs (although many still lacked costs evaluated 
at the level of individual member states). This absence of 
data is concerning given that ~ 14,000 alien taxa are listed in 
the European Alien Species Database [65] for Europe, and 
that invader distribution assessments can be incomplete 
or decades out of date [66]. This disparity between species 
with cost records and invader richness assessments indi-
cates that the full economic burden on the European Union 
will be much higher than currently reported. Indeed, it is 
precisely this low proportion of alien species with reported 

costs at national levels that is one of the major limitations 
to estimating true total costs and raising awareness of the 
severe impacts of invasions across the European Union.

This underestimation is further underlined for multiple, 
highly impactful taxa that either have extensive potential 
distributions under current and future scenarios of envi-
ronmental change [67, 68], or are present and have the 
potential to spread from the 32 neighbouring countries 
into the European Union. Further, we did not include  in 
our analysis the European Union candidate countries 
(Albania, Moldova, Republic of North Macedonia, Monte-
negro, Serbia, Turkey, Ukraine), nor other European coun-
tries beyond the European Union, such as Switzerland, the 
United Kingdom, and Norway. When accounting for some 
of these gaps, cost projections revealed a potentially > six-
fold (>500%) rise using only a conservative subset including 
only country-level entries from 49 species, thereby exclud-
ing 172 species (n = 3080 entries) with costs inferred only 
at the level of specific sites. We found that growth due to 
the scaling of missing costs was particularly burdensome 
to the public and social-welfare sector, followed by sectors 
encompassed by the circular economy initiatives and the 
European Green Deal (i.e., fisheries and forestry, both eco-
nomic sectors of high importance to the European Union; 
[69, 70].

Although the projected cost increased by only 164% 
when we excluded two high-leverage points, we emphasise 
that this model was a poorer fit than the model including 
all values. While this does not necessarily mean that the 
higher projection is the most realistic, it does underline 
the importance of assessing the robustness of outliers. 
Here, these two high-leverage costs were both highly reli-
able and observed and thus not unreliable per se, as exem-
plified by massive costs arising from national eradication 
programmes of single species [71] or a few ‘hyper-costly’ 
invasive alien species [55].

Our cost modelling has taken into account all manage-
ment costs, regardless of whether they were effective or 
inefficient, and hence we did not differentiate between, 
e.g., costly eradication measures and cheaper mitigation 
measures (i.e., based on efficacy or effectiveness). This 
information is often unavailable in underlying studies, 
but would constitute a major step forward in understand-
ing management decisions for future work [72]. However, 
while costs from eradication efforts can be substantial, 
these can be short-term expenses for long-term savings 
[73, 74], and inevitably increase with per-capita effort over 
time as the populations or individuals most difficult to 
eradicate are targeted last, leading to an unequal temporal 
distribution of management costs. There is the possibility 
that such a substantial increase in projected management 
costs could undermine enthusiasm for future management 
efforts. However, it is also likely that when such control 

Costs in US$ million

Reported costs at the 
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additional costs)
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Fig. 4 Comparison of highly reliable observed country-level costs 
and projected costs at the level of individual European Union 
member states. The size of the circles is scaled to the respective cost
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and eradication (a component of management costs) are 
successful, future costs are reduced to routine monitoring 
while avoiding the costs of inaction [61, 75].

Although not all alien species do or will cause mon-
etisable damage or elicit management expenditure (e.g., 
non-monetised negative environmental impacts or 
incompatibility with current economic sectors; [76, 77]), 
the identified disparity with invader richness indicates 
that the full economic burden on the European Union 
will be much higher than the estimate we provide here. 
This reinforces the need for a coordinated effort across 
the European Union to adopt better reporting of invasion 
costs, and for central and accessible collation, as found 
within InvaCost, a living database that has grown con-
siderably in only a few years (v0, 2017: 260 entries; v1.0: 
2,419; v3.0: 9,823; v4.1, 2022: 13,553). Simplifying the 
process of adding information to such databases would 
facilitate use and uptake. This should include increasing 
outreach to industry groups, health insurance sectors, 
and others where a lack of communication among those 
who are affected by damage or loss, those who assess 
costs, and those who synthesise costs results in currently 
recorded but inaccessible data. Such efforts would pro-
vide a more complete and accurate picture of the total 
costs and the full economic impacts of biological inva-
sions. While technical updates to database accessibility 
are complex and ongoing, our scaled projection approach 
provides a more complete estimate of costs and a major 
advance in the interpolation of invasion costs from lim-
ited data. Unlike previous attempts to investigate the 
temporal dynamics of the damage costs of invasive alien 
species [61, 75], the scaling model we developed permits 
spatial cost projections from one region to another given 
regional-specific species records or context-specific dif-
ferences in conditions (e.g., economic factors). Such 
extrapolated costs then provide a basis for modelling 
incurred costs across a range of spatio-temporal scales.

Temporal projection
Early cost reporting for invasive alien species was par-
ticularly sporadic (e.g., reporting high cost from the rab-
bit Oryctolagus cuniculus in Germany in the 1970s; [78]), 
with countries joining the European Economic Com-
munity in the 1980s and the first international research 
programmes (ERASMUS) being founded, before the 
foundation of the European Union in 1993. Hence, our 
models revealed further increases in costs, new costly 
invasive alien species, but also cost reports across the 
European Union over the next 20 years until 2040. Varia-
tion in decadal costs remained low, likely due to the con-
servative approach to include costs used to inform these 
temporal projections and exclude costs characterised 
as ’potential’, meaning that they had not materialised at 

the time of reporting. However, it is possible that some 
of those costs could have been incurred following the 
year of reporting and that they might not have yet been 
recorded in InvaCost. The projected increase in the num-
ber of invasive alien species reflects a robust predicted 
rise identified in invasion rates and an increasing aware-
ness of their impacts [79].

The well-characterised effect of reporting lags in the 
costs of invasive alien species [22, 20, 80] most likely 
explains the declines in total annual costs reported in 
recent years. An increasing number of alien species [7, 
79] enabled by changing global climates and transport 
networks [81] will demand increasing management 
interventions and thereby inflate their future monetary 
burden, even though not all of them will become inva-
sive [82]. This is particularly emphasised by reported 
management costs contributing 90–93% of the available 
data, while contributing only ~ 11% of the highly reliable, 
observed costs and ~ 28% when we excluded extreme 
values, and showing the steepest projected incline 
(Additional file 1). This increasing burden could also be 
exacerbated by continued economic growth, given the 
positive relationship between costs and economic output 
[22], changes in the economic output of sectors over time 
where resident invasive alien species impose the most 
damage, as well as reduced efficacy of management (e.g., 
via chemical resistance).

Uncertainties
While projecting unknown costs of biological invasions 
in the European Union, our research has revealed large 
disparities between the total number of invasive alien 
species that have established themselves and those that 
have had their associated costs assessed (1%). Out of all 
the European Union member states, Romania and Hun-
gary have notably higher reported costs resulting from 
invasive species at the country level. These high costs 
are driven by estimated damages caused by the common 
ragweed Ambrosia artemisiifolia and can potentially be 
explained by the large proportion of agricultural land 
invaded (36% and 61% in Romania and Hungary, respec-
tively; [83]). This indicates how single species can have a 
disproportionate effect on cost reporting depending on 
the prevalence of impacted sectors within a location or 
region.

Because we estimated potential costs caused by inva-
sive species for European Union member states where 
monetary impacts were unknown, it is important to 
emphasise the inherent uncertainty involved. Conse-
quently, projected costs, whether over space or time, 
should be considered with caution. Nevertheless, we also 
note that these estimations were based only on a con-
servative subset of the richest country-level data, while 
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considering that for invasive alien species from which 
models were fit, the costs were still fragmented and 
underestimated, thereby highlighting the importance of 
the costs involved. An additional source of uncertainty 
lies in lack of knowledge about the efficiency of man-
agement costs. Information on whether management 
expenditure has turned out to be efficient and to what 
degree, in relation to their objectives, can be essential 
for building a more comprehensive understanding of the 
true costs associated with biological invasions.

Our analyses do not consider any positive effects of 
invasive alien species, which are generally not captured 
in the InvaCost database. Examples could include, for 
instance, an increase in biological production in semi-
arid ecosystems, the restoration of industrial or con-
taminated areas where native species cannot survive, 
with benefits from the acceleration of succession and soil 
formation or reductions in nutrient leakage and water 
basin eutrophication [84, 85], or fast-growing plants that 
increase carbon sequestration while outcompeting native 
species [86]. Alternatively, some invasive  alien species 
such as Buddleja davidii might provide certain local eco-
nomic benefits [87, 88], although these cannot discount 
or undermine the presence of costs because they often 
affect different actors and ecosystem functions [89], and 
nor have they been documented or known to be any-
where close to the magnitude of costs.

Outlook
The number of invasive alien species and resultant eco-
nomic costs will likely increase in the future, even if pro-
jections remain uncertain [7, 90], due to reporting lags 
[20], the emergence of new invasive alien species as costly 
[9], the high variance in reported costs between 1980 and 
2020, and the low sample of cost estimates before 1980 
[91]. Even so, the reported total of US$7.3 billion in highly 
reliable observed costs is a substantial sum, especially 
considering that fewer than 1% of alien species within 
the European Union have documented costs. Our results 
strongly indicate the need for collective mitigation and 
prevention actions within the European Union to prevent 
biological invasions and their associated costs. These 
include, in addition to existing legislation: (i) improved 
biosecurity protocols; (ii) well-coordinated, large-scale 
management; (iii) targeted research to improve pre- and 
post-invasion mitigation; and (iv) horizon scanning to 
include a consideration of costs [92]. Well-communi-
cated, timely actions and coordination substantially miti-
gate the negative impacts of invasive alien species [75, 76, 
93, 94]. Based on the projected increases in future costs, 
we urge the European Union member states to expand 
their efforts in Union-wide coordination to combat the 
threat posed by invasive alien species. We further urge 

investments in a more granular understanding of man-
agement-expenditure efficiency that will allow for a more 
comprehensive idea of the costs of management actions 
that contribute to lowering invasion costs. This can in 
turn be expected to help capture with more accuracy the 
true toll of biological invasions, and identify and fill any 
knowledge gaps.

Cost assessments play an important role in improving 
management efficiency and effectiveness by promoting 
early, focused, and evidence-based management inter-
ventions towards alien species, ultimately leading to 
long-term cost savings, relieving the burden on taxpay-
ers, and enabling governments to allocate their financial 
resources more effectively. This is further substantiated 
because prior work has emphasised the ability of early 
investments (e.g., in biosecurity) to lower impacts of bio-
logical invasions in the long term [75, 93]. However, eco-
nomic downplaying of risks or impacts, often triggered 
by insufficient budget allocation for conservation, further 
reduces the likelihood of cooperation among and within 
countries to implement risk assessments and manage-
ment planning. Additional economic burdens imposed 
by invasive alien species could exacerbate an already dif-
ficult period of geopolitical tension [95]  regarding the 
cost of natural resources and biodiversity. The identified 
growing socio-economic impacts of invasive alien species 
[9, 80] and the current persistent misallocation of strate-
gic investment [96], mean that invasive alien species are 
degrading many aspects of human life, and placing an 
additional burden on human and social well-being [2]. 
Rising resource losses and damages due to invasive alien 
species could fuel further political debates among Euro-
pean Union member states and affect conservation and 
research budgets. This relative instability could weaken 
the European Union in the future following recent cri-
ses (e.g., COVID-19 pandemic, Brexit, Russian invasion 
of Ukraine) [97–99] and could drive policy changes that 
have negative  consequences for trade and biosecurity. 
For example, the case of changing food-export pathways 
and cost increases in selling prices received by domestic 
producers for their output occurred after the invasion of 
Ukraine [100], a phenomenon that could in turn reduce 
attention on environmental challenges such as biological 
invasions. Considering these ongoing economic stressors 
within the European Union [98], our results warn against 
the pattern of reduced investment in environmental 
management [101, 102]. Without improved actions, the 
rates of biological invasions and associated costs will 
continue to rise, degrading natural capital, and hamper-
ing industries, sustainable development, and sustainabil-
ity targets [103].
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