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Abstract 

Background:  Toxins produced by plants constitute a potential threat to water supplies in Europe, but have not been 
widely considered in systematic risk assessments. One way to begin to address potential risks of phytotoxins is to con‑
duct screening-level assessments of known phytotoxins for their potential to contaminate source water for drinking 
due to persistence (P) and mobility (M). Chemical properties relevant for such an assessment (octanol–water partition 
coefficient KOW and biodegradation half-life) can be estimated from the structure of phytotoxins with quantitative 
structure–property relationship (QSPR) models found in the United States Environmental Protection Agency’s Estima‑
tion Program Interface (EPI Suite™) software, but predictions must be considered critically since these models have 
been developed using data for anthropogenic chemicals and many phytotoxins could lie outside their applicability 
domain.

Results:  We analyzed two EPI Suite™ models—KOWWIN and BIOWIN5—by evaluating the quality of property 
predictions for their validation sets as a function of Euclidean distances dE to the centroid of descriptor space of the 
models’ training sets. We identified model-specific applicability domain boundaries as local maxima in plots of the 
difference between root mean square error (∆RMSE) of modeled property values of validation set compounds within 
and outside applicability domain boundaries defined by a continuum of possible boundaries. And, we also evalu‑
ated four generic boundaries that have been suggested in literature. The ∆RMSE between validation set compounds 
outside and inside applicability domain boundaries had positive values for all but one of the possible boundaries 
we considered, indicating that properties of chemicals with dE inside the boundaries were better predicted. With our 
proposed model-specific boundaries, 21% of 1586 phytotoxins produced by plants found in Switzerland were out of 
domain of KOWWIN, and 46% of were out of domain of BIOWIN5.

Conclusions:  Estimates of Log KOW and biodegradation half-life of phytotoxins that lie outside the domain of applica‑
bility of the QSPR models should be viewed as extrapolations that are subject to unquantified and potentially large 
errors. Phytotoxins outside the domain of applicability of QSPR models should be prioritized for property measure‑
ments as a basis to expand the training sets of QSPR models and to support hazard identification for better manage‑
ment of drinking water quality in Europe.
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Background
Natural toxins are toxic chemicals produced by living 
organisms including plants, algae, fungi and cyano-
bacteria. They encompass several different chemical 
classes and constitute a potential risk to human and 
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environmental health [1]. Natural toxins are environ-
mental contaminants of emerging concern, particularly 
in the context of climate change, which could drive 
changes in species distribution patterns, and metabolic 
paths that induce increased toxin production [2].

Natural toxins produced by plants (phytotoxins) pose 
a hazard in Europe, but the quantity and severity is 
unknown [1]. An example of a problematic plant-pro-
duced natural toxin is ptaquiloside, which is synthe-
sized by Bracken fern (P. aquilinum) and is known to 
leach into soil and reach surface and groundwater that 
is sourced for drinking [3]. Another example is aris-
tolochic acids, which can leach from European birth-
wort (A. clematitis), contaminate groundwater, and 
are known to cause kidney damage [4]. Recently, there 
have been some studies that reported the presence and 
abundance of other groups of phytotoxins, such as qui-
nolizidine alkaloids [5], pyrrolizidine alkaloids [6] and 
saponins [7], but field data of this kind are still scarce. 
Assessing phytotoxins based on their chemical proper-
ties to identify other potential persistent, mobile and 
toxic (PMT) chemicals that could impact source water 
for drinking is hence an important research priority [8].

Recently, Günthardt and co-workers published the 
Toxic Plants-PhytoToxins (TPPT) database [9], which 
includes 1586 toxins produced by plants in Switzerland. 
They scored the phytotoxins in the TPPT database for 
their potential to contaminate water based on their per-
sistence and mobility using Log KOW (i.e., the log of the 
octanol–water partition coefficient) and biodegrada-
tion half-lives predicted with quantitative structure–
property relationship (QSPR) models in EPI Suite™ 
[10].

The QSPR models in EPI Suite™ have been widely 
applied for predicting physico-chemical properties 
and half-lives of chemicals for screening-level hazard 
assessment (for example, [11]). QSPR models, which 
are examples of QSAR (Quantitative Structure Activity 
Relationship) models use property measurements for a 
“training set” of compounds to build a model, and meas-
urements for a “validation set” of compounds to quantify 
model performance. KOWWIN was developed to esti-
mate measured Log KOW values [12], and BIOWIN to 
estimate half-lives from expert opinions [13]. Both mod-
els use a fragment approach, in which structural frag-
ments and other molecular descriptors are the building 
blocks of regression models. The EPI Suite™ models were 
developed using property data measured for training sets 
of mostly anthropogenic chemicals, such as persistent 
organic pollutants and other organochlorine pesticides, 
modern pesticides, personal care products and industrial 
chemicals. Relatively few compounds of natural origin 
were included, and only 2% and 0.6% of the phytotoxins 

in the TPPT database are found in the training sets for 
KOWWIN and BIOWIN5, respectively.

It is crucial to define the applicability domain of QSPRs 
to evaluate the adequacy of the models to predict chemi-
cal properties [14]. The OECD principles for the valida-
tion of QSAR models highlight the need to have a defined 
domain of applicability which specifies the scope of the 
model [15]. Conceptually, a model’s predictions for 
chemicals within the applicability domain can be viewed 
as interpolations and those for chemicals outside the 
applicability domain can be viewed as extrapolations 
[16]. When QSPR models are extrapolated to predict 
properties for chemicals outside the applicability domain, 
the predictions are subject to unknown and unquantifi-
able uncertainties. However, there is no single accepted 
method to define the applicability domain of a QSPR. 
One way of evaluating the applicability domain of a QSPR 
model is by determining the locations of chemicals in the 
training set in a chemical space defined by the molecular 
descriptors used in the model, and defining an applicabil-
ity domain boundary in that descriptor space [17].

In this work, we define model-specific applicability 
domain thresholds for KOWWIN and BIOWIN5 and 
assess whether the 1586 plant toxins in the TPPT data-
base are within the applicability domains of these mod-
els using both our model-specific thresholds and generic 
threshold values that have been proposed in the litera-
ture. Our goal is to identify phytotoxins in the database 
that are outside the applicability domain of the QSPR 
models, and thus have unquantifiable uncertainties in 
their modeled persistence and mobility profile. These 
substances should be assigned a high priority for experi-
mental determination of Log KOW and biodegradability to 
reduce uncertainties in their environmental fate profile, 
and to generate data that can be added to QSPR training 
sets to improve screening assessments of phytotoxins.

Materials and methods
The TPPT database details toxins produced by a variety 
of different plant species found in Switzerland and Cen-
tral Europe [9]. The 1586 chemicals in the database are 
each assigned a “toxin number” (T1–T1586), and are 
characterized according to occurrence frequency in Swit-
zerland, estimated toxicity and environmentally relevant 
properties, including half-lives and Log KOW values. For 
most toxins, Günthardt et al.  included physico-chemical 
properties and half-lives in the TPPT database that were 
estimated from structure using EPI Suite™ v4.11 [10].

EPI Suite™ is a compilation of QSPR models that pre-
dict environmentally relevant properties of organic 
chemicals, such as Log KOW by KOWWIN and aero-
bic biodegradability by BIOWIN5. The QSPR models 
are based on molecular descriptors that represent the 
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structure of molecules [18]. In EPI Suite™, structural 
fragment counts and correction factors are used as 
molecular descriptors [19]. Each chemical’s structure is 
described as a numerical vector containing the number of 
times each descriptor used in the QSPR model is present. 
The models are formulated by multiple linear regression 
of the number of occurrences of each descriptor for the 
chemicals in the training set against the property of inter-
est. KOWWIN has 2447 chemicals in the training set 
and 10,873 in the validation set, and BIOWIN5 has 589 
chemicals in the training set and 295 in the validation set.

The entire list of molecular descriptors and coef-
ficients for the QSPRs in EPI Suite™ is not directly 
accessible in the software, but the list of training and 
validation sets are available at http://​esc.​syrres.​com/​
inter​kow/​EpiSu​iteDa​ta.​htm We obtained the KOW-
WIN and BIOWIN5 training and validation sets by 
feeding the training and validation set compound 
structures into the models and parsing batch output 
files with Python v. 3.7.3 [20] and the pandas pack-
age [21]. This way, we re-assembled the dataset that 
was used to build the model, and we then constructed 
matrices that contained all information about the 
molecular descriptors of training and validation sets of 
KOWWIN and BIOWIN5. We used the same method 
to extract the descriptor counts for the phytotoxins and 
produce a matrix with the same format. The end results 
were three matrices of molecular descriptors for the 
training, validation and TPPT sets of chemicals, and 
the property data for the training and validation sets of 
chemicals.

To define the applicability domain of KOWWIN and 
BIOWIN5, we measured distance of chemicals to the 
centroid of the training set in multi-dimensional chem-
ical descriptor space. To reduce the dimensionality of 
the chemical descriptor space, principal component 
analysis (PCA) was performed. In PCA, each compo-
nent encompasses variability associated within several 
descriptors, reducing the number of dimensions. We 
therefore calculated the position of compounds in each 
of n PCA-reduced dimensions of molecular descriptor 
space. Then the unitless Euclidean distance (dE,x) that 
each compound (x) lies from the centroid of the space 
occupied by compounds in the training set is calculated 
as:

where n is the number of dimensions in the PCA-
reduced space of the QSPR model, pi,x is the location 
of compound x in PCA-reduced dimension i, and pi 

dE,x =

√

√

√

√

n
∑

i=1

(pi,x − pi)
2,

is the average location of training set compounds in 
PCA-reduced dimension i in the training set. Greater 
dE values indicate higher structural dis-similarity to the 
compounds in the training set and hence dE thresholds 
have been used to classify chemicals as being outside 
of domain [22]. We calculated dE for every chemical in 
the TPPT set, the validation set and for the training set 
itself with R v. 4.0.2. [23], packages Rmarkdown [24] and 
papaja [25] as well as multiple helper functions [26–30].

Thresholds
We consider four threshold values of dE from literature 
[14]; to distinguish between toxins inside and outside 
domain; (1) the maximum distance of a member of the 
training set (dEmax), (2 and 3) three times (3dE) and twice 
(2dE), the average Euclidean distance of members of 
the training set ( dE), and 4) the 95th percentile distance 
(dE95) of the members of the training set.

Furthermore, we estimated model-specific dE thresh-
olds by exploring the performance of the models at calcu-
lating property values for members of the validation set 
as a function of dE. To this end, we plotted the difference 
in root mean squared error (∆RMSE) of chemicals out-
side a continuum of boundaries versus chemicals inside 
the boundaries by sorting the chemicals in the training 
set by increasing dE, then iteratively calculating ∆RMSE 
for boundaries where (n = 1,2,3,…x) of the training set 
chemicals with lowest dE were assumed to be “in domain”. 
We then plotted ∆RMSE of the validation set as a func-
tion of the percentile rank of the training set chemical in 
our ordered list that defined the dE threshold. For refer-
ence, and to confirm that dE is a meaningful metric for 
defining domain of applicability, we performed the same 
analysis 10 times with the training set ordered randomly 
instead of by increasing dE. We then identified applica-
bility domain thresholds unique to KOWWIN and BIO-
WIN5 at local maxima in the plot of ∆RMSE calculated 
for the training set ordered by increasing dE.

Results
Euclidean distances for KOWWIN and BIOWIN5 for training, 
validation and phytotoxin sets
For KOWWIN, Euclidean distances of the compounds 
in the three datasets from the centroid of the training set 
(Fig. 1, left panel) range from 1.34 to 78.41 for the train-
ing set, from 1.31 to 98.03 for the validation set, and from 
1.47 to 131.89 for the phytotoxin set. In BIOWIN5, they 
range from 0.75 to 31.51 for the training set, from 0.84 to 
46.85 for the validation set, and for phytotoxins from 0.79 
to 77.24 (Fig. 1, right panel).

http://esc.syrres.com/interkow/EpiSuiteData.htm
http://esc.syrres.com/interkow/EpiSuiteData.htm
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Threshold estimation based on ∆RMSE
Results of our search for model-specific applicability 
domain boundaries at local maxima in prediction accu-
racy as a function of dE for KOWWIN and BIOWIN5 are 
shown in Fig. 2. The applicability domain of QSPR mod-
els is a property of the model and its training set. There-
fore, for each model the primary horizontal axis of Fig. 2 
is percentile of Euclidean distance of members of the 
training set from its centroid.

For KOWWIN (top panel in Fig. 2), the RMSE of prop-
erty predictions for validation set compounds outside the 
applicability domain threshold is consistently higher than 
for compounds inside the domain threshold for nearly 
the entire range of possible thresholds (red line). ∆RMSE 
decreases with a shallow slope from a peak at about the 
5th percentile dE of training set compounds until a first 
inflection point at approximately the 85th percentile dE 
of the training set compounds, where ∆RMSE begins 
to increase. A local maximum of ∆RMSE occurs at the 
94th percentile dE of the training set compounds, which 
is marked as our proposed model-specific applicability 
domain threshold (vertical dotted line in the top panel in 
Fig. 2). Above the 94th percentile ∆RMSE first decreases, 
then swings randomly as the number of compounds out-
side the domain threshold becomes small. For reference, 
∆RMSE for the continuum of thresholds in ten randomly 
ordered lists of the KOWWIN validation set compounds 

(grey lines in top panel of Fig. 2) are close to zero across 
a wide range of thresholds, and deviate randomly only 
above the 94th percentile dE of the training set com-
pounds (grey lines in the top panel in Fig. 2).

For BIOWIN5 (bottom panel in Fig.  2), ∆RMSE for a 
continuum of thresholds of dE (red line) is close to zero 
and within the range of variability of thresholds defined 
in randomly ordered lists of compounds (grey lines) up 
to about the 80th percentile dE of the training set com-
pounds. It rises to a local maximum at the 93rd percen-
tile, which is marked in the bottom panel of Fig. 2 as our 
proposed applicability domain threshold (vertical dot-
ted line). Above the 93rd percentile ∆RMSE plateaus, 
then increases with increasing dE, in a region where the 
high variability in the 10 randomly ordered lists indi-
cates that ∆RMSE is determined by model performance 
for a small number of compounds classified as outside of 
domain (compare red and grey lines in the bottom panel 
of Fig. 2).

Comparison of chemicals outside and inside domain using 
different thresholds
Our model-specific applicability domain thresh-
old for KOWWIN is at the 94th percentile dE of the 
training set, and is very close to the 95th percentile 
threshold suggested in previous literature [14] (Fig.  3 
and Table  1). Our suggested model-specific threshold 

Fig. 1  Distribution of dE values in the training, validation and phytotoxin compound sets of KOWWIN and BIOWIN5. Boxes encompass the 
interquartile range (IQR) and whiskers extend to 1.5 times IQR. Training and validation sets have similar dE values, while the phytotoxin set has 
consistently greater values of dE in the structural descriptor space of both models
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for KOWWIN is set at local maximum of ∆RMSE, 
where Log KOW of validation set compounds inside 
the threshold are predicted 0.17 log units more accu-
rately on average than Log KOW of compounds outside 
the threshold (Table 1). However, ∆RMSE is also posi-
tive and similar in size for three of the other thresh-
olds that have been suggested in literature, 3 d  E, 2 d  E 
and dE95q. The exception is dEmax, which has a ∆RMSE 
value close to zero that likely reflects random variabil-
ity in prediction errors for the few validation set com-
pounds that lie above this threshold (see Fig. 3).

Our model-specific threshold for BIOWIN5 is at 
the 93rd percentile dE of the training set, and is again 
close to the 95th percentile threshold suggested in pre-
vious literature (Fig.  4 and Table  1). Because ∆RMSE 
for the BIOWIN validation set increases with increas-
ing dE above our model-specific threshold (Fig. 2), the 

∆RMSE values for our model-specific threshold are 
not the highest of the group of possible thresholds 
(Table 1).

Distribution of in and out‑of‑domain phytotoxins 
across chemical classes
Among chemical classes, phytotoxins, steroids and sapo-
nins are most likely to be out of domain in both KOW-
WIN and BIOWIN when using our model-specific 
thresholds (Table  2). All saponins and 95% of steroids 
were classified as out of domain for BIOWIN5. On the 
other hand, 97% of the alkaloids and phenylpropanoids in 
the TPPT database are classified as within the applicabil-
ity domain of KOWWIN, but higher percentages (46% 
and 19%) of these chemicals are out-of-domain for BIO-
WIN5 (Table 2).

Fig. 2  Red: difference in root mean squared error of predictions (ΔRMSE) for validation set compounds with Euclidean distances below and above 
a continuum of thresholds set at percentiles of Euclidean distance of training set compounds from their centroid, in both models (top: KOWWIN, 
bottom: BIOWIN). Grey: ΔRMSE for 10 trials of randomly ordered lists of the validation set chemicals
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Discussion
There is no universal method to establish the applicabil-
ity domain of a QSPR model [14, 31, 32]. In this work, 
we define applicability domain using different Euclidean 
distance thresholds. Structural similarity is measured 
exclusively using the chemical space defined by struc-
tural descriptors that are part of the models. All Euclid-
ean distance threshold approaches to define applicability 
domain are thus specific to the selected model and its 
descriptors since a different chemical space defined by 
different molecular descriptors would be distorted [31].

Our results show that up to 46% of the TPPT data-
base predictions for half-lives reported by Günthardt 
and co-workers [9] are outside the applicability domain 
of BIOWIN and thus subject to unquantifiable errors in 
the predictions. Moreover, multiple stereoisomers and a 
high number of ionized forms are expected to be present 

Fig. 3  KOWWIN: Euclidean distance to the centroid of the training set (dE, plotted on a log scale on the horizontal axis) versus number density of 
chemicals in the training set (red), validation set (blue), and for the phytotoxins (green). Vertical grey lines correspond to thresholds from literature 
[14] (dEmax, 3 d E, 2 dE and dE95q) and our estimated threshold from Fig. 2 is represented as a black line, dEmodel

Table 1  Comparison of five different thresholds to define the 
domain of applicability of KOWWIN and BIOWIN5

dEmax—maximum Euclidean distance of a member of the training set from the 
centroid of the training set, 3 d E and 2 d E—3 and 2 three times the average 
Euclidean distance of members of the training set from the centroid, dE95q—the 
95th percentile distance of the members of the training set from the centroid, 
and dEmodel—the model-specific threshold identified at an inflection point of 
ΔRMSE (Fig. 2)

Model Threshold Value ΔRMSE Toxins

KOWWIN dEmax 78.41 − 0.03 1.20

3 d E 36.04 0.09 7.57

2d E 24.02 0.13 20.81

dE95q 32.44 0.14 10.84

dEmodel 30.65 0.17 11.92

BIOWIN dEmax 31.51 0.98 3.96

3d E 15.66 0.40 16.79

2d E 10.44 0.14 40.25

dE95q 10.53 0.14 38.93

dEmodel 9.72 0.08 45.60
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among many members of this group, which are not rep-
resented in the BIOWIN5 descriptor set.

The applicability domain of KOWWIN encompasses 
more of the natural toxins in the TPPT database. Only up 
to 21% of toxins in the database are outside the applica-
bility domain of KOWWIN and thus subject to unquan-
tifiable errors. Research to improve exposure hazard 
screening of phytotoxins should prioritize chemicals out-
side the applicability domain of KOWWIN and BIOWIN 
for experimental determination of properties, as these 
are the chemicals where new measurements will con-
strain unquantified uncertainties, and also could be used 
to expand the training sets of QSPRs in a way that also 
expands their domain of applicability.

The TPPT database of phytotoxins is focused on toxins 
produced by plants that grow in Switzerland, and thus is 

not fully representative of plant biodiversity in Europe. 
However, the database from Günthardt et al. is the larg-
est compendium of European plant toxins to date, and a 
good starting point for screening assessment. Neverthe-
less, more specific knowledge of biodiversity and occur-
rence of toxin-producing plants is needed to estimate 
potential phytotoxin hazard for a specific region.

Conclusions
Our distance approach for determining applicability 
domain of QSPR models shed light on the adequacy of 
using KOWWIN and BIOWIN5 models for physico-
chemical property estimation in the TPPT database. 
The model-specific approach produced applicability 
domain thresholds close to the 95th percentile for both 

Fig. 4  BIOWIN: Euclidean distance to the centroid of the training set (dE, plotted on a log scale on the horizontal axis) versus number density of 
chemicals in the training set (red), validation set (blue), and for the phytotoxins (green). Vertical grey lines correspond to thresholds from literature 
[14] (dEmax, 3 d E, 2 d E and dE95q) and our estimated threshold from Fig. 2 is represented as a black line, dEmodel
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models. The 95th percentile threshold [14] could thus be 
a preferred choice for defining the applicability domain of 
other similar QSPR models.

Using the model-specific threshold, almost half of the 
TPPT phytotoxins were out of domain of BIOWIN, and 
steroids and saponins were nearly all out of domain. 
Saponins are the biggest out-of-domain group in both 
models, suggesting their structure is underrepresented 
in the training sets. Therefore, measuring property data 
for these substances should be prioritized. Model pre-
dictions for out-of-domain phytotoxins are extrapola-
tions, and thus their predicted hazard properties carry 
unknown uncertainties and should be interpreted with 
caution.
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