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Abstract 

Microplastics (MPs) and nanoplastics (NPs) have become an important global environmental issue due to their wide-
spread contamination in the environment. This review summarizes existing literature on the effects of MPs/NPs on 
three important biomarkers including enzymatic activity, gene expression, and histopathology in various organisms 
from 2016 to 2021 and suggests a path forward for future research. Application of enzymatic activity, gene expression, 
and histopathology biomarkers are increasingly used in experimental toxicology studies of MPs/NPs because of their 
early signs of environmental stress to organisms. Between 2016 to 2021, 70% of published studies focused on aquatic 
organisms, compared to terrestrial organisms. Zebrafish were widely used as a model organism to study adverse 
impacts of MPs/NPs. Polystyrene (PS) were the most important polymer used in experimental toxicology studies of 
MPs/NPs. Fewer studies focused on the histopathological alterations compared to studies on enzymatic activity and 
gene expression of different organisms exposed to MPs/NPs. There is a growing need to better understand toxic 
effects of environmentally relevant concentrations of MPs/NPs on enzymatic activity, gene expression, and histopa-
thology biomarkers of both aquatic and terrestrial organisms.
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Introduction
Plastic is one of the most widely used materials in mod-
ern society [161]. However, current production and con-
sumption is unsustainable [13]. Plastics are widely used 
for a wide range of consumer products [41]. Since the 
creation of the first commercial plastic polymers in the 
1950s, an estimated 9.2 billion metric tons of plastic has 
been produced and more than 6.9 billion metric tons has 

ended up in landfills around the world, or worse, ‘leak-
ing’ into the environment [41]. In 2019, global plastic 
production reached 368 million metric tons [123], but 
is estimated to double within 20  years [123]. Synthetic 
plastic production has increased by 8.3 billion metric 
tons since the 1950s, and is anticipated to reach 33 billion 
metric tons by 2050 [132]. Asia is the largest manufac-
turer of plastic materials (51%,China: 31%, Japan: 3%, rest 
of Asia:18%, followed by Europe (16%, North American 
Free Trade Agreement (NAFTA: 19%, Middle East Africa 
(7% and Latin America (4% [123].

Plastics comprise different polymer types, such as 
polyethylene (PE), polystyrene (PS), polyvinylchloride 
(PVC), polyethylene terephthalate (PET), polyamide 
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(PA), polypropylene (PP) and polyhydroxybutyrate 
(PHB), based on polymer structure and characteristics 
and have different applications [71]. Over production 
and use of plastics, followed by waste mismanagement 
has resulted in increasing amounts of plastic waste leak-
ing into the environment. Borrelle et  al. [13] estimated 
that 19–23  million metric tons of plastic waste gener-
ated globally in 2016 entered aquatic ecosystems but is 
predicted to reach up to 53 million metric tons annually 
by 2030. Most consumer plastics are designed for single-
use with limited recyclability (< 10%), and has resulted in 
increased global production and consumption leading to 
unprecedented plastic waste generation and widespread 
plastic pollution [13, 137]. In 2015, around 60–99 million 
metric tons of plastic waste globally were produced, and 
it is expected to reach 155–265 million metric tons by 
2060 [79].

Plastic pollution caused by tiny plastic particles are 
classified according to their sizes. Microplastics (MPs) 
are particles < 5  mm [134], but even classified from 1 
to 1000  μm [118], and nanoplastics (NPs) are parti-
cles < 1 µm or 1000 nm [5, 23, 38, 54, 75, 140]. Although 
a clear distinction between MP and NP size defini-
tions have not been agreed upon [54], this review uses 
size definitions of < 5  mm and < 1  µm for MPs and NPs, 
respectively.

MPs/NPs are classified as primary or secondary based 
on their origin in the environment. Primary MPs/NPs 
are intentionally manufactured plastics in micro/nano-
size ranges (e.g., microbeads) intended for industrial or 
commercial uses including hygiene and personal care 
products like scrubbers in cosmetics or clothing drill-
ing fluids and paints that are easily discharged into the 
environment [70]. Secondary MPs/NPs arise from physi-
cal, chemical, and biological degradation of larger plas-
tics discarded in the environment. Sources of secondary 
MPs/NPs include water bottles, wastewater treatment 
plants, disposable packaging, and agricultural mulch film 
[39, 122].

Organisms that ingest MPs/NPs are exposed to a wide 
range of chemicals from various plastic additives added 
during production and other pollutants [116]. Plastic 
additives are plasticizers (e.g., phthalates, bisphenol A) 
colorants, UV filters, flame retardants. Furthermore, 
persistent organic pollutants such as polychlorinated 
biphenyls (PCBs), organochlorine/organophosphorus 
pesticides, polycyclic aromatic hydrocarbons (PAHs) 
and metals can be adsorbed onto MP/NP surfaces in 
the aquatic environments [74, 135]. One recent study 
reported that combinations of MPs and chlorpyrifos 
reduced nutritional parameter concentrations in muscle 
of rainbow trout (Oncorhynchus mykiss) [50].

As of 2020 there have been 2500 studies on occurrence 
of MPs/NPs in the environment, sampling techniques, 
and impacts on organisms [5, 12]. Exposure of organ-
isms to MPs/NPs produces physical and chemical toxic 
effects, including enzymatic activity, gene expression, 
and histopathological effects [1, 52, 58, 69]. Ingestion of 
MPs/NPs alters expression of immunity-related genes, 
genes associated with immune function and antioxidant 
enzyme [30, 109, 164]. Oxidative stress is an important 
response that induces following interaction between 
plastic and cellular environment [109]. Reactive oxygen 
species (ROS) are generated by induction of oxidative 
stress, which is one of the most well-documented toxic-
ity mechanisms of MP/NP polymers in organisms [109, 
117]. Overproduction of ROS is damaging to gut homeo-
stasis and increases lethality of immune regulatory cata-
lase. Thus, antioxidant enzyme activity against ROS is 
critical [117]. MPs alter digestive enzyme activities and 
energy acquisition in the marine bivalve (Mytilus gallo-
provincialis) [158].

Vertebrates including fish and mammals are considered 
suitable model organisms for the investigation of differ-
ent types of pollution. The potential of various model 
organisms exposed to MP pollution is dependent on 
characteristics of individual species such as environmen-
tal stress tolerance, their ecological status, type of feed-
ing, behavioral flexibility and life history strategies, and 
MPs properties such as their type, size and concentra-
tion. Zebrafish were one of the most studied groups of 
fish in toxicological studies [83, 101, 127, 162]. The main 
characteristics that render zebrafish interesting for toxi-
cological studies are their small size, genetic similarities 
with humans, ease of breed, short life cycle and inex-
pensive maintenance. Mollusca and Crustacea are also 
known as suitable model organisms due to their feeding 
filtration type, omnipresence, their role in trophic sys-
tems, which are primarily primary consumers, and major 
contribution to human nutrition. According to review of 
previous studies, Molluscs and Crustaceans were marked 
as the most studied taxa among invertebrates [4].

Although there has been a dramatic increase in the 
number of studies on toxicological effects of MPs/NPs on 
organisms, there has been no comprehensive review of 
this literature. This comprehensive review examined and 
analyzed existing literature on enzymatic activity, gene 
expression, and histopathological effects on terrestrial 
and aquatic organisms exposed to individual MPs/NPs 
and their combination with other pollutants. Gaps identi-
fied in the literature based on this review will help inform 
recommendations for future research.
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Methodology
Research papers from January 2016 to November 2021 
were searched from ScienceDirect, Google Scholar and 
Web of Science databases using the terms (“microplas-
tic” OR “nanoplastic”) and (“enzyme activity” OR “gene 
expression” OR “histopathology”). The search returned 
249 research papers on the effect of MPs/NPs on enzyme 
activity, gene expression and histopathology with differ-
ent terrestrial and aquatic organisms used as experimen-
tal organisms (Additional file  1: Table  S1). Studies on 
interactive effects of MPs/NPs and other contaminants 
were also included in this review.

All types of MPs/NPs (i.e., PA, PE, PP, PVC, PET, PHB 
and PS) particles of different sizes of nano and micro 
were included in this study. The PE family includes both 
high density PE (HDPE) and low-density PE (LDPE). 
Plastic particles of 1 μm to 5 mm were considered MPs, 
whereas particles of < 1  μm were considered NPs. MP 
size ranges were assigned according to de Sá et  al. [25] 
into the following classes: < 50  μm (including NPs); 
50–100  μm; 100–200  μm; 200–400  μm; 400–800  μm; 
800–1600 μm; > 1600 μm; or not specified.

Studies were summarized according to the following 
criteria: species and common name of organisms, MPs 
type and size, contaminants absorbed to MPs, MPs and 
contaminant concentration, duration of the experiment, 
toxicological effect (enzyme activity, gene expression and 
histopathology) and organism tissues (Additional file  1: 
Table S1). Any article that included data from more than 
one of the above parameters resulted in the same num-
ber of studies as the number of elements per assumption. 

For example, if one article only reported on fish, it was 
regarded as one study; however, if it reported on both 
fish and Mollusca, it was regarded as two studies. There-
fore, the number of studies examined in the results shows 
the number of interactions of the parameters (e.g., organ-
ism group, MP type, MP size), rather than the total num-
ber of publications. Figures were created using Microsoft 
Excel 2016.

Results and discussion
Reports of organisms exposed to MPs/NPs
MPs/NPs are easily ingested by aquatic and terrestrial 
organisms and transferred along the food chain [21, 65]. 
Contamination of MPs/NPs in terrestrial environments 
is considered potentially more hazardous compared to 
aquatic environments due to their direct impacts on 
food chains such as plants, insects, and animals that are 
directly consumed by humans [157]. Previous reports 
suggest that soil is a major terrestrial sink of MPs/NPs 
[112]. Thus, MP/NP pollution in terrestrial environments 
might be 4- to 23-fold greater than in oceans [56].

This review returned 249 research papers on the effects 
of MPs/NPs on enzyme activity, gene expression and his-
topathology of different organisms. Fish (38.15%), Mol-
lusca (17.67%), crustacea (9.64%) and mammals (6.43%) 
were the most studied groups, whereas limited studies 
(< 1%) were conducted on amphibians and microbiota 
(Fig.  1). Most studies focused on aquatic organisms 
(~ 70%), compared to terrestrial organisms, presumably 
due to different methods and difficulties in maintain-
ing and handling terrestrial organisms under controlled 

Fig. 1  Number of studies per groups of organisms exposed to MPs/NPs with enzymatic activity/gene expression/histopathological effects in 2016 
to 2021
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laboratory conditions. Zebrafish were increasingly used 
as a model organism (43.47%) among fish studies because 
of their small size, ease of rearing, short life cycle, genetic 
similarities with humans and cost-effective maintenance. 
Around 100–200 eggs are produced in a single spawning 
of zebrafish. In addition, larvae can survive for 7 days on 
yolk sac contents, providing a reliable and cost-effective 
method for investigating potentially toxic effects of envi-
ronmental pollutants [12].

Control groups (negative and positive controls) in toxi-
cological studies play an important role to compare pol-
lutant effects on study organisms. The control group is 
free of carriers known as a negative control group. For 
example, in a study on MPs accumulation patterns and 
transfer of BaP to D. rerio, the positive control group of 
BaP (100  nM waterborne BaP) was analyzed separately 
against the negative control group to show detectable 
biomarker response in organisms.

In studies on effects of MPs/NPs on Molluscs, spe-
cies such as Mytilus galloprovincialis [6, 37, 43, 114, 158, 
169], Mytilus coruscus [44, 48, 139], Mytilus spp. [22, 113, 
120, 131], and Mytilus edulis [104, 105], and clams such 
as Corbicula fluminea [45, 46, 90], Tegillarca granosa 
[150, 154, 189], Mactra veneriformis [183], and Ruditapes 
philippinarum [119, 143] are the most studied Mollusca. 
Previous studies have shown that mussels can easily 
ingest MPS/NPs via their effective water filtration capac-
ity in natural [184] and laboratory conditions and are 
considered as reliable model organisms for experimental 
studies [2, 120, 169]. In addition, MPs/NPs are captured 
and aggregated in gills and digestive glands or adhere to 
other organs such as adductor muscles, foot and mantle 
of mussels that lead to harmful toxicological effects. For 
example, M. galloprovincialis exposed to 3  μm PS-MPs 
showed modulation of multixenobiotic resistance activ-
ity [37]. Among studies on Mollusca organisms, only one 
other study has considered the impact of PET-MPs on 
snails (Achatina fulica), in which MPs induced signifi-
cant villi damage in gastrointestinal walls of snails and 
reduced glutathione peroxidase and total antioxidant 
activity [146].

Most studies on effects of MPs/NPs from 2016 to 2021 
on Crustacea occur in shrimp and Daphnia species 
which are considered model organisms for toxicological 
research. Studies on shrimp species include Litopenaeus 
vannamei [58, 163, 168], Penaeus monodon, Marsupe-
naeus japonicas [164], Artemia salina [149], Artemia 
franciscana [32, 47, 160], Macrobrachium nipponense 
[89], and Artemia parthenogenetica [167]. Studies on 
Daphnia species include Daphnia magna [34, 62, 81, 102, 
153, 180], Daphnia pulex [97, 98, 171, 182]. In a study 
by Liu et al. [96, 97], typical environmental NPs concen-
trations of 1  µg L−1 modulated response of antioxidant 

defenses, gene transcription, vitellogenin synthesis and 
development in Daphnia pulex.

Mice were the most widely studied mammal model 
organism in experimental studies on effect of MPs/NPs 
on enzyme activity, gene expression and histopathology 
[49, 147, 185, 186]. Some studies also used rats [7, 57, 61]. 
Most research on the biological toxicity of MPs/NPs have 
been conducted  on marine and aquatic organisms (e.g., 
fish and invertebrates). However, few studies have been 
performed on the health effects of MPs/NPs on higher 
trophic level organisms such as mammals (including 
humans). In medical research, mice and rats are the most 
commonly studied mammalian model organisms. Jin 
et al. [68] showed 0.5 μm, 4 μm, and 10 μm PS-MPs cause 
testicular inflammation and the disruption of blood–tes-
tis barrier in mice.

Other groups of organisms including Annelida (4.47%), 
plants (4.88%), and nematodes (4.88%) were used in some 
studies on the effects of MPs/NPs on enzyme activity, 
gene expression and histopathology (Fig.  1). Annelida 
species such as Eisenia fetida [85, 88, 176], Tubifex [138], 
Lumbricus terrestris [124] and Eisenia andrei [136] were 
used in different experimental studies. Lettuce (Lactuca 
sativa) [163], Soybean (Glycine max L. Merrill) [175], 
Vallisneria natans [165], Sea cucumber (Apostichopus 
japonicus) [108], rice (Oryza sativa) [172, 181], maize 
[121], Utricularia vulgaris [178], Salvinia cucullate [178], 
Allium cepa [106], cucumber (Cucumis sativus) [90], 
Vicia faba [66], wheat (Triticum aestivum) [92], radish, 
wheat and corn [42] were various plants exposed to MPs/
NPs.

MP/NP pollution has been recognized as worse in 
agroecosystems rather than other terrestrial ecosystems 
because of intensive agricultural activities such as waste-
water irrigation, high use of plastic mulch and sewage 
sludge [112]. MPs have been found in a wide range of 
agricultural soils around the world, with concentrations 
ranging from 10 to 12,560 MPs kg−1 [20, 42]. Further-
more, plant diversity is an important property of ter-
restrial environments, and over 300,000 species are the 
main food source for humans [35, 87]. Therefore, evalu-
ating the ecotoxicology of MPs/NPs to food crops and 
other soil biota are an essential aspect of risk assessments 
due to their potentially adverse effects on crop yield and 
quality and trophic transfer to humans through the food 
chain. Most studies on the toxicity of MPs/NPs to plants 
were published in 2021, indicating that this is an emerg-
ing issue. However, the limited number of studies and 
uncertainty of results make it difficult to gain a better 
understanding of MP/NP effects of on terrestrial plant 
species and the underlying toxicity mechanisms.

Typical properties of a free-living nematode (Caeno-
rhabditis elegans) include translucent body, tiny size, easy 
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cultivation, and short generation cycle allows research-
ers to use nematodes as model organisms for toxicologi-
cal studies [84]. In addition, gene expression, enzymatic 
activities and histopathological effects have been widely 
used to evaluate toxic effect of MPs/NPs on nema-
todes [18, 19, 86, 128, 129, 141, 179]. The first study was 
reported in 2018, which assessed the toxicity of PA, PE, 
PP, PVC and PS MPs/NPs in C. elegans [83].

Few studies were found on MP/NP effects of on algae 
and limited studies reported on insect (2.44%), bacteria 
(2.03%), Echinodermata (1.63%), cnidaria (1.22%), and 
rotifer (1.22%). Various species of algae including Chla-
mydomonas reinhardtii [28, 77, 177], Euglena gracilis 
[174], Chlorella sp [111], Cladocopium goreaui [148], 
Karenia mikimotoi [185], Skeletonema costatum [190], 
Phaeodactylum tricornutum [145], and Chlorella vulgaris 
[77] are applied on experimental studies and enzymatic 
activities and gene expression are investigated. However, 
no studies have investigated histopathological effects of 
MPs/NPs on algae. Microalgae are common in all aquatic 
environments and occupy lower trophic levels [27]. 
Microalgae have advantages in environmental purifica-
tion (e.g., wastewater) and short growth cycles [145].

Studies have used insects including honeybees (Apis 
mellifera) [26, 164], Chironomus riparius [17, 110, 142], 
E. fetida as model organisms exposed to MPs/NPs, where 
enzymatic activities gene expression and histopatho-
logical effects were observed. Honeybees are important 
pollinators of crops, and their presence is critical for 
preservation of biodiversity within environments [60]. In 
addition, honeybees are potential sentinel monitors for 
evaluating environmental pollution, because of their sen-
sitivity they are affected by environmental contaminants 
(e.g., heavy metals) [8]. Liebezeit and Liebezeit [93] indi-
cated that honey was contaminated by MP fibers (40 µm 
to ~ 9  mm) and fragments (10–20  µm), which has gar-
nered attention from scientists as well as media.

Microorganisms including heterotrophs, autotrophs, 
and symbiotic organisms are attached and grow on 
marine plastics, which may act as vectors [130]. Many 
resistant bacteria have been detected on MPs in aquacul-
ture environments. Arcobacter and Colwellia in seafloor 
sediment can colonize on LDPE [53]. M. aeruginosa, a 
dominant species causes cyanobacterial blooms showed 
that the activity of superoxide dismutase (SOD) and 
catalase (CAT) were significantly affected with exposure 
to PVC, PS and PE MPs [188]. Studies on the effects of 
MPs/NPs on bacteria began in 2020 and various effects of 
enzyme and gene expression were observed [80, 96, 103, 
166, 188].

Recently, studies have reported hazards caused by MPs/
NPs to Cnidaria (1.64%) such as Tubastrea aurea [91], 
Symbiodinium tridacnidorum, Cladocopium sp [133], 

and Pocillopora damicornis [152] and rotifer (1.23%) such 
as Brachionus koreanus [63, 64], and Brachionus rotun-
diformis [187]. Corals showed stress response [152], or 
histopathological effect [91] when exposed to the MPs/
NPs environment. Little information is available on the 
impact of MPs/NPs on rotifers and coral species in coral 
reef ecosystems and underpinning mechanism. Rotifers 
play key roles to transfer material and energy into aquatic 
food chains. Also, they are reliable model organisms for 
MP/NP ecotoxicology studies due to their tiny size, short 
life cycle, genetic homogeneity, easy maintenance in lab-
oratory, high fertility, and filter feeding behavior [64].

Only single studies have been conducted on Echinoder-
mata [11], amphibians [78], and microbiota [173] organ-
ism groups. Sea urchins (Sterechinus neumayeri) are the 
most common echinoid in Antarctic shallow waters and 
play an important trophic role as predators and graz-
ers. The widespread distribution of S. neumayeri across 
the Southern Ocean, as well as its high trophic flexibil-
ity, suggest that this organism could be exposed to MPs/
NPs pollution, which could easily be taken up by S. neu-
mayeri individuals and cells [11]. Given the worldwide 
decline in amphibian species, the threat of MPs/NPs to 
these organisms remains largely unknown [78]. MPs were 
reported in the gastrointestinal tract of several anuran 
species (e.g., Pelophylax nigromaculatus, Rana limno-
chari, Microhyla ornata, and Bufo gargarizans), demon-
strating that amphibians can ingest MPs [59]. Tadpoles 
(Physalaemus cuvieri) subjected to PE MPs showed loco-
motor changes, anxiety-like behaviors, as well as anti-
predatory defensive response deficit after exposing to 
predators. Recently, Lajmanovich et al. [78] indicated that 
PE MPs (40–48  μm) significantly affected in enzymatic 
activities of S. squalirostris. No studies have investigated 
MPs/NPs impacts on gene expression and histopathology 
of tadpoles. Therefore, we proposed researchers to draw 
studies on the effects of MPs/NPs on these biochemical 
parameters. MPs have a significant impact on sedimen-
tary microbial ecosystems [173]. Thus, investigating the 
influence mechanisms of MPs/NPs on estuarine micro-
biota is important to improve our understanding the 
ecological risk of MP/NP pollution in estuarine environ-
ments and on marine microbial communities.

MP/NP polymer types
MP/NP polymer types commonly reported include PS 
(58.48%) and PE (15.92%), followed by PVC (7.27%), PET 
(3.81%), PP (3.11%), LDPE (3.11%), HDPE (3.11%), PA 
(1.73%), PHB (0.35%) (Fig. 2), and not specified (3.11%). 
PS was the most common MP/NP type and was reported 
in 169 studies. PS and PE polymers are known as one of 
the most widely used plastics and synthesized for a broad 
spectrum of applications, including food packaging, 
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personal care products, building insulation. PP and PVC 
are also widely synthesized for using in different appli-
cations [123]. For example, PP is used in food packag-
ing, sweet and snack wrappers, hinged caps, automotive 
parts, and PVC is used in window frames, profiles, floor 
and wall covering, and pipes [123]. In 2012, ~ 32.7 million 
metric tons of PS plastics was generated globally [95]. In 
Europe, PE comprised 25.31%, PP 19.4%, PVC 10%, and 
PS 6.2% of total production [123]. MPs/NPs polymers 
with a wide range of densities could also affect MPs/NPs 
behavior in the marine environment.

Styrene monomers in PS polymers is a carcinogen 
in nature and may pose a severe damage to the aquatic 
organism [149]. According to previous studies in the 
marine environment, PS, PE, PP, PVC, and PA are a fre-
quently detected form of MPs NPs in the marine and ter-
restrial environment [12, 31, 83, 149]. PS is lightweight, 
and therefore it is easily mobile and therefore spreads 
across in the marine environment. PE and PET have 
lower and higher densities than water, respectively, that 
lead to the distribution of these MPs between different 
compartments [156]. Some studies provided important 
information for the ecological risk assessment of PP and 
PVC MPs/NPs in different organisms [16, 25, 85].

Although benthic aquatic organisms are likely to 
encounter denser polymers, such as PET and PVC, it is 
primarily dense microfibres that have been documented 
in benthic invertebrates [29, 125]. In aquatic environ-
ments, microbial communities (the plastisphere) can 

attach to and form a biofilm around MPs [170]. MP 
ingestion is another mechanism that can alter transport 
of MPs in the water column. MP ingestion can impact 
transport of MPs via vertical migration and long-range 
transport, and the buoyancy of particles can be altered 
through encapsulation in fecal pellets [125]. Sediments 
and soils can act as an important sink for MPs follow-
ing weathering and transformation in the environment. 
Undisturbed sediments may even provide a useful tem-
poral MP pollution archive [125]. This study showed 
that despite the wide distribution of PP and PVC in 
the marine environment, studies on their toxicologi-
cal effects including enzymatic activity, gene expression, 
and histopathological effect on various organisms are 
limited. Given the particulate nature (nano/micro) of 
PP and PVC, it is crucial to investigate their hazardous 
effects in organisms. However, more studies are neces-
sary to investigate the impacts of MPs/NPs on enzymatic 
activity, gene expression, and histopathology on different 
organisms.

Reports published by PlasticsEurope, [123] showed 
around 7.9% polyurethane (PUR) was applied in build-
ing insulation, pillows and mattresses, insulating foams 
for fridges. However, studies on the toxicological effects 
of PUR on different organisms are scarce. For exam-
ple, combined effects of PUR foam MPs and polybro-
minated diphenyl-ether (PBDE) on the E. fetida, which 
showed accumulation of chemicals derived from MPs to 
E. fetida [40]. However, we have not found studies on the 

Fig. 2  Percentage of studies under the effects of MPs/NPs on enzymatic activity/gene expression/histopathology of organisms in 2016 to 2021. 
Different types of microplastics enumerated include PS, polystyrene; PE, polyethylene; PA, polyamide; PVC, polyvinylchloride; LDPE, low-density 
polyethylene; PET, polyethylene terephthalate; PHB, polyhydroxybutyrate; HDPE, high density polyethylene; PP, polypropylene
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risk toxicological effects of PUR MPs/NPs on enzymatic 
activity, gene expression, and histopathology of different 
organisms. Therefore, more studies are required to pro-
viding information for future investigation addressing the 
effects of PUR MPs/NPs on various terrestrial and marine 
organisms. MPs/NPs can enter humans via food webs 
and pose potential health threats [15, 82]. It is estimated 
that 52,000 MP particles enter the human body per year 
through diet and an additional 69,000 MPs from inhala-
tion [24]. Thus, the lungs and digestive systems are the 
first places of contact for MPs/NPs, and MPs/NPs pen-
etrate these barriers before inducing of toxicities [107]. 
Direct contact of MPs/NPs and various cell types showed 
subsequent cellular toxicity, which depends on cell types 
and MPs/NPs physicochemical features. Thus, studies on 
the toxicological effects of MPs/NPs on human cells are 
required.

Different shapes of MPs including fragments, pellets, 
fibers, foam, films are found in aquatic ecosystems, which 
had different capacities for adsorbing pollutants, which 
had an impact on different biomarker responses. The MP 
fragments had various surface features, such as sharp 
edges with fractures and degraded rough surfaces, dem-
onstrating their potential for internal abrasion, and may 
show morphological effects on fish gills. Sharp edges of 
PS MPs increase physical microinjuries of O. mykiss on 
the gill, gut, and skin [69]. Further studies are required to 
compare the toxicological effects of MPs shape on differ-
ent tissues of living organisms.

Toxicological effects of MPs/NPs (enzymatic activity, gene 
expression, and histopathological effect)
Studies on the effects of MPs/NPs on enzymatic activity, 
gene expression, and histopathological effect of various 
organisms increased in 2020 and 2021 (Fig. 3). Studies on 
the effects of MPs/NPs on enzymatic activity (60 studies 
in 2020 and 53 studies in 2021) were higher than enzy-
matic activity (41 studies in 2020 and 44 studies in 2021) 
and histopathological effect (19 studies in 2020 and 41 
studies in 2021) of organisms increased in 2020 and 2021.

Biomarkers are increasingly used as worldwide-recog-
nized tools to evaluate the possible biological effects in 
organisms exposed to environmental contaminants. Bio-
markers are also incorporated in environmental quality 
and environmental monitoring programs [10]. Biomark-
ers usually occur at the subcellular level of biological 
organization, and these subcellular responses to environ-
mental stressors could appear before other impacts, such 
as disease, mortality, or population alteration [3]. The use 
of enzymatic activity, gene expression, and histopatho-
logical biomarkers in toxicology is becoming increasingly 
important for pollution assessments [17, 58, 94, 115].

This approach is also useful for determining the mecha-
nisms by which environmental stressors induce complex 
molecular and cellular changes, as well as their interde-
pendence. Among many suggested ecotoxicological bio-
markers in the last decade, those biomarkers that show the 
imbalance between pro-oxidant and antioxidant status and 
lead to adverse effects such as DNA damage, gene expres-
sion, lipid peroxidation and enzyme inhibition as an earlier 
sign of environmental disturbance [10, 99]. Biomarkers of 
oxidative stress include alterations in antioxidant defenses 
and oxidative damage [99]. Genotoxic pollutants alter the 

Fig. 3  Number of studies on enzymatic activity, gene expression, and histopathological effects of MPs/NPs on different organism in 2016 to 2021
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genetic material of marine organisms, causing DNA dam-
age, genes and chromosomal changes. Assessment and 
validation of biological markers in sentinel species for 
biomarker application in environmental monitoring pro-
grams is critical under various field conditions. DNA dam-
age and changes in the expression of a gene encoding DNA 
repair mechanism prepare an important role for measur-
ing the impact of MPs/NPs on organisms [12].

Histopathology is a sensitive biomarker of xenobiotic-
induced sublethal stress. In both laboratory studies, 
histopathological changes have been widely used as bio-
markers in the evaluation of the health of fish exposed 
to contaminants [69]. Histopathological evaluation is 
widely considered as a potential tool for determining the 
extent of injury in organisms caused by acute and chronic 
effects of environmental stressors [155]. Histopathologi-
cal changes of specific organs show condition and time-
integrated endogenous and exogenous effects on the 
organism resulting from changes at lower levels of bio-
logical organization [155]. This study showed that studies 
on the effects of MPs/NPs on organisms are lower that 
studies on gene expression and enzymatic activity. Sol-
vents used in histopathological protocols may solve MPs/
NPs and effects on results. Considering the importance 
of histopathological alterations as a valuable biomarker 
of environmental stressors, more studies are required on 
the impacts of MPs/NPs on histopathological changes of 
various organisms.

Some biomarker responses including enzyme activ-
ity, gene expression, and histopathological damages are 
highlighted in Additional file 1: Table S1. Superoxide dis-
mutases (SOD), Catalase (CAT), glutathione peroxidase 
(GPx), acetylcholinesterase (AChE), glutathione s trans-
ferase (GSH), peroxidase (POD), and Cytochrome P450 
are commonly analyzed enzymes in toxicological stud-
ies. Deregulatory effects of MPs/NPs on hepatic genes, 
immune genes, stress response and detoxification genes, 
estrogenic (vtg1) or organic (cyp1a), genes encoding pro-
teins have been reported in different organisms as well. 
According to analyzed tissues for histopathological dam-
ages in studies inflammation, necrosis, hyperplasia, villi 
damage, epithelial damage, and MPS/NPs accumulation 
are reported. Studies showed different size of MPs/NPs, 
polymer types, and shapes have different response on 
organisms.

Impact of different plastic sizes
The number of studies related to the effects of individ-
ual MPs and both MPs/NPs on enzymatic activity, gene 
expression, and histopathological biomarkers in different 
organisms has increased from just three studies in 2016 
to 56 studies in 2021 (Fig. 4a). Around 59.04% and 11.75% 
of publications used plastic particles sizes of < 50 µm and 

50–100  µm, respectively (Fig.  4b). Few studies (0.60%) 
used MPs > 1600 µm.

MP/NP particle size plays an important role in the 
changes of biomarkers including enzymatic activity, gene 
expression, and histopathology in exposed organisms [1, 
33, 51]. Size-dependent accumulation of MPs/NPs has 
proven that smaller plastic particles could reach spe-
cific tissues such as gut, liver and larger plastic particles 
were only trapped in gills and the digestive tract of fish 
[12]. The small size of MPs/NPs facilitates internaliza-
tion by organisms and, thus, consequent accumulation 
in the food chain. Trophic transfer of MPs/NPs along the 
aquatic food chain and implications for human health are 
important.

Inflammation caused by 0.5  µm PS MPs in zebrafish 
gut were found to be more severe than that caused by 
50 µm PS MPs [68]. The size-dependent toxicity of MPs/
NPs has been widely reported in sea organisms. A study 
conducted by Kinjo et al. [73] showed that larger MPs of 
PS retained in the digestive tract of M. galloprovincialis 
are longer than smaller particles. In another study, histo-
logical changes were observed in the liver, intestine, and 
gill of goldfish (Carassius auratus) exposed to PS MPs 
and severe changes showed a size-dependent pattern of 
PS MPs [1].

Until recently, there were few studies on the transfer 
of MPs/NPs to humans and the potential health conse-
quences. Since humans are the final consumers in the 
food web, introduction of MPs/NPs into humans is possi-
ble, due to consumption of aquatic products that contain 
MPs/NPs. PS NPs enter in human gastric adenocarci-
noma cells through an energy-dependent mechanism. 
In addition, size and dose are the factors that affect the 
internalization of NPs in cells. Smaller NPs also signifi-
cantly change expression of genes involved in inflam-
mation [36]. Similarly, He et  al. [55] showed PS NPs 
with size of 50 nm can be rapidly internalized by human 
hepatocellular carcinoma (HepG2) cells. As a result, size-
dependent toxicity should be considered when assessing 
the toxicity of MPs/NPs in various organisms.

MPs/NPs as carriers for other contaminants
Around 90 studies were conducted to investigate com-
bined effects of contaminants and MPs/NPs on enzy-
matic activity, gene expression, and histopathological 
biomarkers in different organisms (Fig.  5). Most studies 
used chemical elements, PAH, PCB, pesticides, medi-
cation, hormone, triclosan, sewage, and antibiotic as 
contaminants combined with MPs/NPs. Studies on 
combined effects of chemical elements, PAH, and pesti-
cides with MPs/NPs are higher than other contaminants 
(Fig.  5). For example, only a single study has been con-
ducted on sewage and hormones (cite it here).
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Environmental MPs/NPs can be regarded as a com-
plex cocktail of contaminants. Plastic-combined with 
environmental chemicals are readily released in the 
gut of animals and may subsequently transfer along the 
aquatic food chain. Interaction of MPs/NPs with other 
contaminants could affect its uptake by organisms and 
their combined toxicity. Physico-chemical properties of 
water are regarded to change the biomarker response 
of organisms. Thus, the assessment of water qual-
ity of exposed water to MPs/NPs is suggested. Many 
parameters including weathering, salinity, pH, and dis-
solve organic matter influence the durability and affect 

interaction of MPs/NPs with other contaminants [72]. 
For example, higher histopathological damages in com-
bined PS MPs and chlorpyrifos showed were observed 
in O. mykiss, which show increase adverse effects of 
chlorpyrifos in fish [69]. In another study, induction 
of cytochrome P450 1A (cyp1a) was indicated when D. 
rerio were fed artemia incubated with a combined of 
MPs and benzo[a]pyrene (BaP) [9]. PE MPs grow cad-
mium uptake in lettuce by changing the soil microenvi-
ronment [163].

MPs/NPs are hydrophobic in nature and have a large 
surface area that allows adsorption of heavy metals on 

Fig. 4  a Number of studies according to micro, nano, and both micro- and nano-plastics and b size of plastic particles in research publications (%) 
with their enzymatic activity/gene expression/histopathological effects on different organisms in 2016 to 2021. NR not reported
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its surface, and play a role to accumulate the pollutants 
in the body. Several factors influence MPs behaviors, the 
amount of MPs deposited, retained, and transported, 
including human activity (e.g., inappropriate waste man-
agement), MPs characteristics (e.g., density, shape and 
size), environmental topography and condition. Size of 
MPs/NPs, their surface ionic charges, and age of particle 
affect adsorption capacity of metals. Studies have shown 
that MPs increase the accumulation and toxicity of cad-
mium and copper in liver, gut, gills of adult D. rerio [100, 
126]. Few studies also reported reduced bioavailability 
and toxicity of MPs/NPs combined with contaminants 
such as phenanthrene, and PAH [144, 159]. The binding 
affinity of MPs/NPs with other contaminants also has a 
significant effect on their bioavailability.

Future considerations
Due to the growing issue of plastic and MPs/NPs pollu-
tion, it is becoming critical to solve, and better under-
stand the fate and toxicity of these particles in the 
environment. In recent years, there has been a dramatic 
increase in MPs/NPs studies. While most studies have 
focused on reporting presence of MPs/NPs in the envi-
ronment and biota, few studies have examined their 
impacts on biomarkers of organisms including enzymatic 
activity, gene expression, and histopathology. Early expo-
sure studies used very high concentrations of virgin MPs/

NPs in laboratory-controlled experiments that were not 
considered environmentally relevant, resulting in a shift 
in recent years to environmentally relevant MPs/NPs 
concentrations [5, 14, 76, 151, 156]. In the natural envi-
ronment, MPs/NPs occur in different size combinations 
and concentrations. Thus, more studies, based on these 
environmentally relevant parameters, are required to bet-
ter understand their impacts on enzymatic activity, gene 
expression, and histopathology biomarkers on organisms. 
In response, recent research has begun to shift from indi-
vidual species to focus on multiple species, multi-gen-
erational studies [5, 18, 63, 178] (Haegerbaeumer et  al. 
2019).

The density of MPs/NPs polymers is also an important 
factor for their distribution in water, which affects their 
interaction with aquatic organisms. For example, PP and 
PE pose greater risks for organisms that live near the sur-
face because they float in water, whereas PS, PVC, and 
PET may impact benthic organisms more, because they 
sink. In the natural environment, plastics are exposed to 
degradation via weathering, whereas virgin MPs/NPs are 
used in most laboratory studies, which affect sorption 
of other contaminants, aggregations, and even organism 
toxicity. Both long-term and short-term studies using 
virgin and weathered MPs/NPs will be required to bet-
ter understand impacts of weathered and degraded plas-
tics in the environment. Recovery periods of MPs/NPs 

Fig. 5  Combined ecotoxicological effects of MPs/NPs with other contaminants on the enzymatic activity/gene expression/histopathological 
effects of different groups of organisms
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in laboratory studies should also be examined for future 
studies.

Conclusions
MPs/NPs contamination in the environment and in biota 
has been widely recognized as a rapidly emerging pollu-
tion problem. This review focussed on 256 studies on the 
effects of MPs/NPs on enzymatic activity, gene expres-
sion, and histopathology biomarkers on organisms from 
2016 to 2021. While studies on MPs/NPs toxicity in 
biota have also increased dramatically to better under-
stand these emerging contaminants, this review found 
that most studies (~ 70%) have focused on aquatic organ-
isms, and of these, only a few species have been studied. 
Although impacts of MPs/NPs of biomarkers on terres-
trial organisms are less well studied, some researchers 
consider impacts of MPs/NPs on terrestrial ecosystems 
may be more harmful to humans due to reliance on agri-
cultural systems for food. Therefore, this was identified as 
a major knowledge gap that requires further study. Other 
important knowledge gaps that need to be addressed are 
that most laboratory toxicology studies use limited size 
ranges, single polymer categories and virgin MPs/NPs 
concentrations which are much higher than found in 
the environment. Thus, measured impacts of enzymatic 
activity, gene expression, and histopathology biomark-
ers on organisms are often not environmentally relevant. 
MPs/NPs occur in different size combinations and con-
centrations in the natural environment. Thus more stud-
ies, based on these environmentally relevant parameters, 
are required to better understand toxic effects of MPs/
NPs on enzymatic activity, gene expression, and histo-
pathology biomarkers of both aquatic and terrestrial 
organisms.
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