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Abstract 

Avian reproduction studies for regulatory risk assessment are undergoing review by regulatory authorities, often lead-
ing to requests for statistical re-analysis of older studies using newer methods, sometimes with older study data that 
do not support these newer methods. We propose detailed statistical protocols with updated statistical methodol-
ogy for use with both new and older studies and recommend improvements in experimental study design to set up 
future studies for robust statistical analyses. There is increased regulatory and industry attention to the potential use of 
benchmark dose (BMD) methodology to derive the endpoint to be used in avian reproduction studies for regulatory 
risk assessment. We present benefits and limitations of this BMD approach for older studies being re-evaluated and 
for new studies designed for with BMD analysis anticipated. Model averaging is recommended as preferable to model 
selection for BMD analysis. Even for a new study following the modified experimental design analyses, with BMD 
methodology will only be possible for a restricted set of response variables. The judicious use of historical control data, 
identification of outlier data points, increased use of distributions more consistent with the nature of the data col-
lected as opposed to forcing normality-based methods, and trend-based hypothesis tests are shown to be effective 
for many studies, but limitations on their applicability are also recognized and explained. Updated statistical method-
ologies are illustrated with case studies conducted under existing regulatory guidelines that have been submitted for 
product registrations. Through the adoption of alternative avian reproduction study design elements combined with 
the suggested revised statistical methodologies the conduct, analyses, and utility of avian reproduction studies for 
avian risk assessments can be improved.
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Introduction
Avian reproduction studies for regulatory risk assess-
ment are done under Organization for Economic Coop-
eration and Development (OECD) Test Guideline 206 or 
United States Environmental Protection Agency (USEPA) 
Guideline OCSPP 850.2300. Both guidelines were issued 
when risk assessment was based on hypothesis testing to 
derive a No Observed Effects Concentration (NOEC). 
Statistical guidance in these guidelines is minimally 

defined. Over time, both the USEPA and the European 
Food Safety Authority (EFSA) have issued guidance doc-
uments to supplement these original guidelines. Recent 
guidance [6–8] has promoted the use of regression or 
benchmark dose methods to derive estimates of effects 
concentrations, usually 10 and 20% effects concentration 
referred to as EC10 and EC20 or BMD10 and BMD20. 
When these statistical methods are followed, risk assess-
ments can be based on the indicated estimate or on a 
lower confidence bound of that estimate.

Studies done under the indicated guidelines can have 
as few as three test concentrations plus a negative con-
trol. Regression models that can be fit to such data are 
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severely restricted by the small number of treatment 
groups (tested concentrations). Another complicating 
factor is that as many as 8 response variables are meas-
ured (and 15 are calculated) in such experiments. These 
responses include incidence data, such as survival, count 
data such as number of eggs laid, eggs hatched or eggs 
cracked, and continuous data such as hatchling body 
weight, eggshell thickness, and body weight gain (for 
adults and hatchlings). The variances of these biologi-
cal measures vary greatly. For measures with the low-
est variances, very small difference between control 
and exposure groups can be statistically significant. For 
other biological measures, relatively large random dif-
ferences between replicated groups are not unusual, 
and it may be difficult to distinguish real effects from 
background statistical “noise”. The statistical distribu-
tions characteristic of the different types of biological 
measures also vary greatly and require careful selection 
of distribution-appropriate models and statistical tests. 
Erratic concentration–response patterns, where there 
is little apparent relationship to concentration such as a 
saw-toothed appearance, add to the challenges to statis-
tical interpretation. It should also be acknowledged that 
there is limited scientific basis to guide the risk asses-
sor in choosing the size of effect for which benchmark 
doses should be estimated or which should be depend-
ably detectable by studies designed to support hypoth-
esis testing (e.g., determining NOECs). A rare exception 
to this is a conclusion that only an 18% decrease [7] or 
22% [14] in eggshell thickness is biologically important in 
terms of population level concerns. As a result, arbitrary 
decisions have been made, such as requiring an estimate 
of a concentration causing a 10% effect or simply basing 
a risk assessment on whether the response in some treat-
ment group is statistically significantly different from the 
control independent of whether the observed difference 
has biological relevance or population implications. In 
the absence of a scientific basis for the size effect of con-
cern, historical control data can and should be used to 
help distinguish between real effects and mere statistical 
artifacts.

Objectives
The objective of this study is to indicate ways to improve 
the analysis and endpoint selection of avian reproduc-
tion studies. This is done partly through improved sta-
tistical analysis, the use of historical control data and 
the biological interpretation of the findings. Particu-
lar attention is given to regression or benchmark dose 
methodology where the experimental design should 
be modified and the relative merits of point estimates 
(BMD10) and lower confidence bounds (BMDL10) 
and the size effect that can be estimated reliably are 

discussed. However, as will be demonstrated in what 
follows, not all regulatory required responses from the 
current or any practical alternative experimental design 
are suitable for BMD methodology. Statistical meth-
odology is recommended that is both more consistent 
with the nature of the data and is more consistent sta-
tistically to determine NOEC values as well. The intent 
is to make the best use of the data collected as well as 
to improve the experimental designs that generate the 
data. This can be done with little or no increase in the 
number of animals used in testing.

Experimental design
The current test guideline was designed for NOEC 
determination and requires at least three test concen-
trations plus a negative control. The spacing of test 
concentrations is geometric with the highest test con-
centration approximately one-half of the LC10 deter-
mined by a prior dietary study (OECD TG 205), if such 
a study is available and delivers an LC10, but not to 
exceed 1000  ppm. This makes the test concentrations 
equally spaced on a logarithmic scale. There should be 
at least 12 replicates, each consisting of two or three 
birds with sex and number depending on the species 
tested. However, most studies are done with 16 to 18 
replicates.

For NOEC determination, the power of the statisti-
cal test for each response is a function of the variance 
of that response, the replication, and the specific test 
used. A crude but useful approximation to the power 
can be obtained using the minimum detectible differ-
ence, MDD, often expressed as the minimum detectible 
percent change from control, MDD%, defined in equa-
tion (Eq. 1):

where T = t(1−α,df ) + t(1−β ,df ) , α and β are the false posi-
tive and false negative probabilities, CV is the coefficient 
of variation in the control expressed as a percent, n0 and 
n1 are the number of replicates in the control and each 
treatment group, respectively. Good discussion of MDD% 
is given in Duquesne [5]. For the table provided in this 
section, α and β are taken to be 0.05 and 0.2, respectively, 
corresponding to a power of 80% to detect an effect of 
the size MDD%. Staveley et al. [24] developed a method 
to estimate the minimum size effect (MSE%) that can be 
estimated reliably from typical regression models. That 
method was adapted here to show that MSE% is a multi-
ple of MDD% as indicated by the following equation:

(1)MDD% = CV ∗ T
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where T* is student’s 2-sided t-statistic t(1−α/2,df ) , hz is 
the leverage associated with a given treatment group. The 
Supplement contains more details on Eq.  (2), including 
an example calculation of the leverage hz. (In the Supple-
ment, the definitions of T andT* are reversed.) The cited 
reference presented evidence for non-target terrestrial 
plant studies (NTTP) done under OECD test guidelines 
208 and 227 based on many such studies using the same 
statistical models as recommended here. In the NTTP 
study, the MSE% varied between 0.46 and 1.99 times 
MDD%. For avian studies, only a very few studies have 
been done with a different experimental design which 
includes 4 or 5 test concentrations and higher replica-
tion. Determining the multiplier of MDD% in equation 
(Eq. 2) that is applicable to avian studies will be further 
developed in a subsequent paper. For present purposes, 
a simulation study was done that indicates the proper-
ties of EC10 or BMD10 estimates and their lower confi-
dence bounds. These simulation results are based on data 
simulated to have the observed levels of CV found in the 
avian historical control described below and experimen-
tal designs with 5 treatment groups plus control.

(2)MSE% = MDD%
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Using avian historical control data described in "His-
torical controls" section, it was shown that MDD% var-
ied from 1 to 4% for percent eggs not cracked per eggs 
laid to 18–38% for eggs per hen, depending on the test-
ing lab and species. A short summary table for selected 
responses is given in Table 1. It will be clear from Table 1 
that for a few responses, it will be possible to detect 
effects or 5%, but often 10% or even 20% effects cannot 
be detected reliably. Similarly, Table 2 shows that reliable 
estimation of BMD10 is often unattainable. Table 2 only 
shows the point estimate. The properties of the lower 
confidence bound even more problematic. Based on 
these results, there is considerable challenge to the idea 
of replacing the NOEC by the BMD10.

As Eqs.  1 and 2 indicate, increased replication will 
reduce the size effect that can be detected or estimated, 
but practical designs will still not permit reliable BMD10 
estimates for some responses. Even doubling the rep-
lication would reduce MDD% by only 30%. Whether 
a similar reduction in MSE% would also be obtained 
is an issue being addressed in a simulation study to be 
reported later. Analysis of the historical control databases 
suggests it might be possible that MDD% and MSE% 
could be reduced somewhat through refined laboratory 
techniques but not enough to detect 10% effects for all 
responses. For BMD estimation, increasing the num-
ber of test concentrations to 4, or preferably 5, would 

Table 1  MDD% for mallard and quail

pn = nth quantile of distribution of MDD% for indicated responses, n = 50, 75, 90

Calculations assume 18 cages of 2 birds each in every treatment group and within-study CVs from historical control data from two frequently used testing labs

MDD% Response Abbrv

Mallard Quail

p50 p75 p90 p50 p75 p90

18 23 35 Eggs laid per hen EL 24 28 38

1 3 3 Eggs not cracked/number eggs laid ENC_EL 2 3 4

8 16 24 Live embryos/number eggs set LE_ES 8 16 25

2 4 9 Live embryos/number viable embryos LE_VE 1 2 3

18 22 25 Number hatched/number eggs set NH_ES 13 18 25

10 15 20 Number hatched/number live embryos NH_LE 5 9 13

18 22 25 14-day survivors/number eggs set HS_ES 14 19 26

2 2 3 14-day survivors/number hatched HS_NH 4 7 10

26 29 35 Number of 14-day survivors per hen HS 30 34 39

6 7 7 Hatchling body wt (g) HATWT​ 5 6 7

6 7 8 14 Day survivor BW (g) SURVWT 7 8 8

4 5 6 Eggshell thickness (mm) THICK 5 6 6

8 9 12 Adult food consumption (g/bird/d) FOOD 8 8 9

94 203 293 Adult male body weight gain (g) WTGAINM 81 101 155

45 51 58 Adult female body weight gain (g) WTGAINF 35 42 79

25 29 35 Number of hatchlings per hen (#/hen) NH 29 34 38
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improve the ability to provide statistically sound BMD 
estimates for key responses through fitting models that 
better capture the shape of the concentration–response 
curve, but again practical designed will not permit 
BMD10 estimates for all responses. With 18 cages of 2 
birds per cage and 4 treatment groups (control + 3 test 
concentrations), the current design requires 144 birds. 
An experimental design with 5 test concentrations plus 
a control, 12 cages per treatment, and 2 birds per cage 
would require the same number of birds, provide greater 
ability to calculate a BMD than possible under cur-
rent designs and would reduce the power to determine 
a NOEC by only 12.5% when regression modeling fails 
for one or more responses. The proposed experimen-
tal design is estimated to increase the cost of a study by 
11–12%. This experimental design was used in the simu-
lation study described next.

Simulation study to explore ECx/BMDx estimation for avian 
studies with modified design
The database of available avian studies is not large 
enough to develop a distribution of MSE% as was done 
in Staveley et  al. [24]. Instead, concentration–response 

data were simulated to follow one of three general shapes 
with a range of simulated CV (5 to 40) based on Table 1 
for each shape. The simulations were set up for a continu-
ous response. Previous simulation studies done by the 
lead author, some of which are given in Green et al. [11], 
suggest generalized nonlinear mixed models (GNLMMs) 
for conditionally binomial or Poisson responses will have 
comparable point estimates. Negative lower confidence 
bounds on such estimates, if calculated by exact methods 
rather than approximated using normality-based approx-
imations, are not possible for GNLMMs. Instead lower 
confidence bounds for the point estimates will tend to 
be extremely close to zero where a simulated continuous 
curve will give negative lower bounds.

The shapes of the concentration–response curves are 
characterized by the maximum effect simulated at the 
highest tested concentration and a shape parameter 
labeled ECPB, which varies from 1 to 10 in the simula-
tions. ECPB  =  1 defines a concentration–response that 
decreases immediately from the control, while ECPB  =  5 
corresponds to a moderately delayed decrease or shal-
lower concentration–response curve, and ECPB  =  10 
corresponds to a more delayed decrease or shallower 

Table 2  Distribution of EC10 point estimates for shape ECPB  =  1

EC10: Mean=mean EC10 estimate from simulated data; EC10: Med=median EC10 estimate from simulated data; Percentiles: =percentile of EC10 estimates from 
simulated data, N=10, 25, 75, 90; YMAX=maximum % of control mean response at highest concentration in simulated data; CV=coefficient of variation simulated 
(%); %Fit=Percent of simulated datasets for which at least one model converged and had a positive lower confidence bound for EC10 estimate; P90/P10=ratio of the 
indicated percentiles of the distribution of EC10 estimates. Larger values indicate more spread in the point estimates; ECPB=shape parameter controlling the shape of 
the simulated curve

EC10 Percentiles YMAX CV ECPB %Fit P90/P10

Mean Med 10 25 75 90

26 26 22 23 28 30 60 5 1 100 1.4

26 25 18 21 30 34 60 10 1 100 1.8

25 24 13 17 32 38 60 20 1 87 2.9

24 23 10 14 32 41 60 30 1 50 4.1

63 21 7 12 33 46 60 40 1 26 6.6

37 37 31 33 41 43 70 5 1 100 1.4

36 35 26 30 42 47 70 10 1 100 1.8

34 33 17 23 44 55 70 20 1 73 3.2

36 30 11 18 45 60 70 30 1 40 5.4

68 27 7 14 45 61 70 40 1 18 9.0

55 55 46 50 60 64 80 5 1 100 1.4

53 53 38 44 62 70 80 10 1 99 1.8

68 48 22 33 64 77 80 20 1 57 3.5

70 39 12 23 60 81 80 30 1 24 6.7

56 35 5 16 58 89 80 40 1 8 17.6

100 96 83 89 106 122 90 5 1 97 1.5

150 92 63 77 118 207 90 10 1 77 3.3

246 77 30 50 131 341 90 20 1 48 11.3

162 60 8 27 94 219 90 30 1 35 28.4

139 48 0 15 84 251 90 40 1 24 5410.5
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concentration–response curve. All three shapes are 
observed in avian studies. Shallow concentration–
response relationships are not uncommon in avian 
studies and that can make BMD estimates unattainable 
regardless of what the MDD% and MSE% figures indi-
cate. As stated above, any percent change from control 
can be estimated once a regression model is fit. What 
Eq. 2 provides is the size effect for which a reliable esti-
mate can be expected. A reliable estimate is one from a 
model that meets a set of criteria for model stability and 
for which the confidence interval is not overly wide. For 
the simulation study, the only criteria imposed were that 
a model result was used only if the model fitting algo-
rithm converged and produced a lower 95% confidence 
bound greater than zero. All point estimates and confi-
dence bounds reported are model average results, not 
from individual models. Further details, including figures 
of the indicated concentration–response shapes and cri-
teria for goodness of fit, are provided in the supplemen-
tary material.

Tables  2 and 3 summarize EC10 point estimates and 
95% lower confidence bounds. Table  2 indicates that 
if there is a 20% or greater observed effect at the high-
est tested concentration and the CV is 10 or less, then 
the EC10 point estimate is usually a reliable indicator of 

the size effect in the population being simulated. When 
there is only a 10% effect observed in the highest tested 
concentration and CV > 5, the quality of the EC10 point 
estimate is seriously degraded. Table  3 shows that the 
lower confidence bounds are much more variable. For 
8 of the 15 simulated conditions for shape ECPB  =  1, 
over 50% of the EC10 estimates have negative lower con-
fidence bounds, making ECXLB of little or no value for 
risk assessment. The shape parameters ECPB  =  5 and 10 
show worse results for risk assessment. Those results are 
given in the supplement. The simulation study shows that 
the BMD approach will be useful for avian studies only 
for limited responses unless an experimental design with 
greatly increased numbers of birds is used.

Brief summary of ways to improve avian reproduction 
hazard identification

•	 Careful test selection, diagnostics, attention to outli-
ers, alternative distributions (GLMM) can provide 
improved NOEC determination.

•	 Historical control data can be very helpful in distin-
guishing between real effects and spurious statistical 
significance.

Table 3  Distribution of EC10 lower bound (ECL10) estimates for shape ECPB  =  1

ECL10: Mean = mean ECL10 estimate from simulated data; ECL10: Med = median ECL10 estimate from simulated data; Percentiles: = percentile of ECL10 estimates 
from simulated data, N = 10, 25, 75, 90; YMAX = maximum % of control mean response at highest concentration in simulated data; CV = coefficient of variation 
simulated (%); ECPB = shape parameter controlling the shape of the simulated curve; a negative mean or median ECL10 or another percentile indicate ECL10 estimate 
of little value for risk assessment. When ECL10<0 then the EC10 estimate is statistically indistinguishable from zero

ECL10 Percentiles

Mean Med 10 25 75 90 YMAX CV ECPB

20 20 17 18 22 24 60 5 1

15 15 9 12 18 21 60 10 1

7 7 −1 2 11 16 60 20 1

0 0 −9 −4 5 10 60 30 1

−7 −4 −21 −9 1 5 60 40 1

29 29 23 26 32 35 70 5 1

21 21 11 17 26 31 70 10 1

7 9 −6 −1 14 22 70 20 1

−33 −3 −22 −11 5 10 70 30 1

−29 −9 −47 −18 −2 3 70 40 1

42 42 34 38 47 50 80 5 1

29 30 11 22 37 45 80 10 1

−29 6 −29 −11 15 23 80 20 1

−73 −10 −94 −31 0 8 80 30 1

−115 −16 −132 −46 −5 0 80 40 1

54 68 36 58 77 83 90 5 1

−87 28 −155 −10 45 58 90 10 1

−285 −29 −574 −129 −3 14 90 20 1

−269 −41 −664 −123 −11 0 90 30 1
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•	 Better models, generally meaning the use of alterna-
tive distributions in familiar normality-based regres-
sion models (putting them formally in the category of 
generalized nonlinear mixed models or GNLMMs) 
can improve ECx estimation when regression mod-
eling is possible as well as making them more consist-
ent with the nature of the data.

•	 MAXSD can provide a substitute for difficult to fit 
regression or improve rationale for NOEC approach. 
This is a technique for establishing an upper bound 
on the test concentration at which the percent effect 
is statistically significantly less than 10% (or another 
percentage effect chosen by the user).

•	 Model averaging takes model uncertainty into 
account and reduces effect of poorly fitting models.

Methodology
To achieve the objectives laid out in the introduction, the 
main tools were (1) an historical control data base (HCD) 
of such studies and a way of incorporating HCD in risk 
assessment; (2) an illustrative set of avian reproduction 
studies that were compiled by the Terrestrial Vertebrates 
ad hoc Team (TVahT) of the European Crop Protection 
Association; (3) illustrations of some statistical meth-
ods for the various types of responses required in avian 
reproduction studies, including both older methods and 
newer approaches with a focus on exploring the bench-
mark dose (BMD) methodology. These tools serve as a 
partial motivation for the statistical protocols recom-
mended for future avian reproduction studies that over-
come some of the limitations of methods that have been 
used for many years. The resulting protocols are given 
in Sect. 3, Recommended Statistical Protocols, serve the 
function of a Results section.

Responses from the case studies were analyzed statis-
tically using both standard and novel statistical methods 
and models. These analyses contributed to the develop-
ment of detailed statistical protocols that cover the range 
of responses in avian studies. Detailed protocols are pre-
sented following summaries of the selected case studies 
that illustrate the concerns that commonly arise and that 
helped motivate the protocols. More detailed analyses of 
these and additional case studies are presented in Addi-
tional file 1.

Among the newer methods described are generalized 
linear mixed models (GLMMs) for NOEC determina-
tion and generalized nonlinear models (GNLMMs) for 
BMDx estimation. On a conceptual level, the difference 
between GLMM and the classical ANOVA methodology 
for NOEC determination is simply the use of alternative 
distributions to describe biological responses that do not 
fit the usual normality paradigm. Similarly, the GNLMMs 

used for BMDx estimation are the standard nonlinear 
models that have been used for decades to model many 
ecotoxicology responses. These models are described in 
many publications, including OECD [16], Green et  al. 
[11], Ritz et al. [25], Hothorn [18], and Shapiro [19]. Soft-
ware to implement GLMMs and GNLMMs is readily 
available, for example, in Ritz and Strebig [26], Slob [21], 
Shao [20], BMDS [1], and [13].

Historical controls
The importance of historical control data (HCD) as an 
aid in distinguishing between real effects and statistical 
artifacts has been described above. Historical control 
data for avian reproduction studies done under OECD 
TG 206 or OCSPP 850.2300 has been made available 
from Eurofins (years 1976–2016 for quail and 1978–2016 
for mallard) and by Smithers (Years 2001–2020 for quail, 
2004–2019 for mallard). The HCD consists of a single 
mean value for each recorded response and, in most 
cases, a within-study standard deviation for the response. 
In some instances, a response of interest is a simple 
algebraic function of reported values. In those cases, no 
within-study standard deviation was available.

Case studies done by one of these labs were evaluated 
in part using the historical control data from the same 
lab. For use in evaluating an avian reproduction study 
done under the indicated guidelines, European Commis-
sion [9] recommended a 5-year period centered on the 
data of the current study with a minimum of 20 studies 
during that period. One challenge with this recommen-
dation is that in the current market, it is estimated that 
globally at most six new studies will be done each year so 
that a single testing facility is unlikely to have 20 studies 
in a 5-year period. In displays of HCD, it is useful to put 
bounds indicating where most of the data reside. There is 
no hard rule about how to define these bounds. Through-
out this manuscript, dashed lines are used to indicate the 
middle 95% of the HCD. That is, the upper bound is the 
97.5% quantile of the HCD in whatever time interval is 
shown and the lower bound is the 2.5% quantile.

The main use of historical control data recommended 
for risk assessment is to demonstrate whether statisti-
cally significant trends or changes from the control mean 
response are the result of unusual concurrent controls or 
mild trends lying entirely within the HCD range or the 
result of true effects of the test substance that push treat-
ments means beyond the range of historical control data.

Following the case study summary, statistical protocols 
are presented as charts with related discussion. Detailed 
descriptions of all tests and models are presented in the 
Supplementary material.
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Models used for BMDx estimation
Since the case studies rely in part on fitting regression 
models, the list of models used for that purpose is pro-
vided here. Specific formulas for these models are given 
in the Supplementary material. In this manuscript, when 
one of the listed models is fit using one of the alternative 
distributions described, it is a GNLMM and whenever 
a reference is made to fitting a GNLMM, one of these 
models is being used.

For continuous responses, such as thickness and 
weight, the models recommended in OECD [16] and [17] 
are the Bruce–Versteeg, 3-parameter log-logistic, a set of 
four exponential models labeled OE2 (simple exponen-
tial, OE3 (simple exponential with a shape parameter), 
OE4 (simple exponential with a “floor” or lower bound on 
the response), and OE5 (simple exponential with a shape 
parameter and floor), and the Brain–Cousens hormetic 
model. All of these models can be fit using alternative 
distributions such as binomial, Poisson, or conditionally 
binomial, and can include adjustments for overdisper-
sion or variance homogeneity or weights to accommo-
date increasing or decreasing patterns of concentration 
dependent variance.

For quantal data, the probit model can be fit using 
some normal approximations or using a binomial error 
distribution with the same modifications listed above.

Case studies
Each case study begins with a brief introduction of what 
it purports to show. Following that are analysis and dis-
cussion that describe what was done and justify the 
introduction. The analyses introduce in context most of 
the newer methods that are given in the protocols pre-
sented below. In these case studies, the term quail always 
means northern bobwhite quail.

Case study 1
Case study 1 illustrates how historical control data can 
help identify an extreme concurrent control result that 
can yield misleading significance in a statistical test. 
It also illustrates the importance of outlier identifica-
tion. Table 4 shows the mean response (as a percent) in 

all treatment groups with all observations included. The 
mean response, quail eggs not cracked per eggs laid, is 
notably lower in all treatment groups than in the control. 
Also relevant is that the concentration–response is not 
monotone.

Figure 1 shows the study data in relation to the histori-
cal control data from the same lab. The 95% confidence 
bounds on the HCD are given by (LB, UB)  =  (95,99), so 
the mean response at conc  =  100 ppm > UB. The Tukey 
outlier test [32] found 1 outlier in the 100 ppm treatment 
group. With that observation omitted, the mean response 
in that group was 96.73% which is well above LB. The 
control mean response, 99.38, is above the upper 95% CB 
of the HCD.

Statistical significance was assessed in several ways. A 
standard way to analyze such percentage data is to apply 
Dunnett’s test to arc-sine square-root transformed pro-
portions [10]. A scientifically preferable analysis would 
be to analyze the number of not-cracked eggs as binomi-
ally distributed conditioned on the number of eggs laid, 
followed by Dunnett’s test in a generalized linear mixed 
model (GLMM). There was evidence of overdispersion in 
the study data, but all attempts to accommodate it in the 
model failed. Overdispersion has a similar meaning for 

Table 4  Case study 1

Quail percent eggs not cracked per eggs laid (PCL)

Count = number of replicates (breeding pairs), mean, median, and standard 
deviation are simple unweighted summary statistics; Conc = ppm

Group Conc Count Mean Median Std

1 0 16 99.37 100.00 1.45

2 25 16 96.87 98.00 3.88

3 50 16 97.75 100.00 3.34

4 100 16 94.69 98.00 9.21

Fig. 1  Case study 1. Quail eggs not cracked per eggs laid. The 
response was percent eggs not cracked per eggs laid (PNCL). In the 
box plot of study data, the bottom and top of the boxes are the 25th 
and 75th percentiles of the indicated treatment group, the horizontal 
line between the top and bottom is the median, the mean is an 
open circle, whiskers extend from top or bottom to most extreme 
non-outliers, with outliers indicated as Xs beyond the whiskers. 
Individual historical control data mean responses are indicated by 
black asterisks. HCD data from 2003 to 2005 are displayed to the 
left of the 2006 study data, while HCD data from 2006 to 2009 are 
displayed to the right. The dashed lines are the 97.5th and 2.5th 
quantiles of the distribution of HCD in the time interval shown
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quantal data as variance heterogeneity has for continuous 
data. Failure to take account of either can affect a NOEC 
determination or ECx estimation. The Jonckheere–Terp-
stra (JT) trend-based test would also be appropriate 
except for the non-monotonicity observed in both the 
complete and outlier-omitted data. The increases found 
by either Dunnett test at 25 ppm and 100 ppm were more 
a function of the low control than of real effects. A subse-
quent study done at the request of a regulatory reviewer 
appears to substantiate this. The mean responses in 
these two lower treatment groups were within the his-
torical control range and the only reason the high treat-
ment mean response was above the historical control 
range was due to a single hen where 36% (8 of 22) of eggs 
laid were cracked. Only three hens in the entire study 
laid fewer eggs than were laid by this hen. The biologi-
cal importance of this single observation or the resulting 
high proportion of cracked eggs is not clear.

Case study 2
Case study 2 illustrates how a clear trend in the concen-
tration–response requires care to distinguish statistical 
from biological significance. The test and model selection 
present challenges as well. The response analyzed was 
14-day hatchling survivors/eggs set (H14DS_ES). Sum-
mary data are given in Table  5, where clear downward 
trends in the mean and in the median are evident.

An effort was made to apply standard statistical meth-
ods that require the data be normally distributed with 
homogeneous variances. The data collected did not meet 
that requirement and no transform of the response data 
were found that met those requirements. Consequently, 
a different analysis was done. The non-parametric JT 
test found all treatment mean responses significantly less 
than the control mean response. As Fig. 2 shows, only the 
mean response at 35 ppm is outside the HCD range and 
that at 4 ppm is in the middle of that range. The Tukey 
outlier test identified 2 low outliers (1 each at 10 and 
35  ppm). With those omitted, even the mean response 
at 35  ppm is within the HCD range. Setting the NOEC 
at 10 ppm, where there was a 20% decrease in the mean 
(16% decrease in the median) is justifiable in terms of 

the HCD. In terms of biological significance, setting the 
NOEC at 4 ppm where there was only an 8% decrease is 
justified if one takes a 10% effect, the target of BMD10 
estimation, as the cutoff for biological relevance. No 
acceptable regression model was found, as is common in 
studies with only 3 treatment groups in addition to the 
control.

Case study 3
Case study 3 illustrates that informal statistical reason-
ing can be misleading. As with other examples, the use 
of HCD and outlier detection help to clarify the analy-
sis. Summary data are given in Table  6. In regulatory 
review the NOEC was set at 10 ppm on the grounds that 
a ≥ 10%? decrease was observed at the two higher treat-
ment groups. By comparing the treatment means and 
medians, a skewness was deduced in the two highest 
treatment groups. Moreover, the standard deviations in 
the two highest treatment groups were much higher than 
in the control and low treatment. The data were found 
inconsistent with normality and variance homogeneity so 

Table 5  Case study 2

Quail proportion 14-day hatchling survivors/eggs set (H14DS_ES)

Count = number of replicates (breeding pairs), mean, median, and standard 
deviation are simple unweighted summary statistics; Conc = ppm

Group Conc Count Mean Median Std

1 0 15 85.29 88.46 8.70

2 4 14 82.04 82.43 9.01

3 10 13 72.02 83.02 25.86

4 35 15 74.30 86.54 27.87

Fig. 2  Case study 2. Quail 14 day survivors per eggs set. Only the 
mean response at 35 ppm was below the HCD and that resulted from 
a single outlier

Table 6  Case study 3

Eggs hatched per eggs set (HATCH_ES)

Count = number of replicates (breeding pairs), mean, median, and standard 
deviation are simple unweighted summary statistics; Conc = ppm

Group Conc Count Mean Median Std

1 0 15 85.29 88.46 8.70

2 4 14 82.04 82.43 9.01

3 10 13 72.02 83.02 25.86

4 35 15 74.30 86.54 27.87
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a non-parametric analysis was indicated. There were only 
6% and 1% decreases in the two treatment medians.

The response was Eggs Hatched per Eggs Set (HATCH_
ES). The non-parametric Dunn and Jonckheere–Terpstra 
tests found no treatment group significantly different 
from the control. Even though the full data did not justify 
a parametric analysis, the Dunnett and Williams’ tests 
were done anyway and reached the same conclusion, 
namely that no treatment differed significantly from the 
control. Figure 3 shows four low outliers, two in each of 
the two highest treatment groups. That figure also shows 
that all treatment means were within the HCD.

With the 4 outliers omitted, the means and medians 
were consistent and the data were found to be normally 
distributed with homogeneous variances. The Dunnett, 
Williams, and JT tests still found no significant effect at 
any dose. A NOEC  =  35 ppm is fully justified.

Case study 4
Case study 4 illustrates a low-variability response (egg-
shell thickness) in which there is a sharp drop from 
relatively high control mean to a somewhat flat and non-
monotone concentration–response where all treatment 
means are significantly lower than the control, but the 
actual percent change from the control is small and bio-
logically unimportant. This example also illustrates an 
alternative to regression for estimating a 10% effects level 
when no acceptable regression model can be found. The 
data are summarized in Table 7.

The data were found inconsistent with normality so 
non-parametric tests were used. All treatment group 
means were found significantly lower than the control 
mean by the JT and Dunn tests. The Tukey outlier test 
identified 3 outliers, one in the control and two in the 
highest treatment group. These can be observed in Fig. 4. 
When those were omitted, the data were found normally 
distributed and homogeneous and Williams and Dunnett 
tests reached the same conclusion.

Despite the statistical significance of the decreases in 
all treatment groups, it should be noted that the maxi-
mum observed decrease was only 6%, which is unlikely 

Fig. 3  Case study 3. Eggs hatched per eggs set (HATCH_ES), HCD 
data from 1993 to 1995 are displayed to the left of the concurrent 
study, while data from 1996 to 1999 are on the right. Two low outliers 
are evident at 10 and two more at 35 ppm. All treatment means and 
medians are within the HCD

Table 7  Case study 4

Eggshell thickness (ESThick)

Count = number of replicates (breeding pairs), mean, median, and standard 
deviation are simple unweighted summary statistics; Conc = ppm

Group Conc Count Mean Median Std

1 0 16 0.23 0.23 0.01

2 25 16 0.21 0.21 0.01

3 50 16 0.22 0.22 0.01

4 100 16 0.22 0.22 0.02

Fig. 4  Case study 4. Eggshell thickness (ESThick). HCD data from 
1993 to 1995 are displayed to the left of the concurrent study, while 
data from 1996 to 1999 are on the right. One high outlier is evident 
in the control and two low outliers are evident at 100 ppm. The mean 
response at 25 ppm is below the HCD lower confidence bound. The 
control mean response is near the HCD upper bound and mean 
responses in the two highest treatments are near the HCD lower 
bound. The median responses in all treatment groups were below 
the HCD lower bound. There is no question about the statistical 
significance of the decreased thickness in the three treatment 
groups. Nor is there any question about whether the mean or median 
responses are below the HCD lower bound. The question is whether 
such small differences are biologically important. EFSA guidance 
indicates not
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to be biologically important. A decrease of less than 18% 
[7] or 22% [14] in eggshell thickness, is not biologically 
important in terms of population effect. This is a rare 
instance when a specific size effect of biological impor-
tance is documented in the scientific literature for avian 
studies. It would be beneficial to hazard identification 
and risk assessment to have such information on more 
key responses. Note, however, the mean response at 
25 mg/L is below HCD lower bound and the other treat-
ment means are close to the HCD lower bound and the 
control mean is near the HCD upper bound.

No acceptable regression model was found for this non-
monotone concentration–response. However, MAXSD, 
the maximum safe dose analysis [4, 27–31] found sig-
nificantly less than 10% effect in every treatment group, 
making MAXSD  =  100. This means EC10LB > 100 ppm. 
Thus, if 10% is considered to be the minimum biologi-
cally meaningful effect, the MAXSD is a more relevant 
measure of hazard than a simple NOEC and is a substi-
tute for EC10 when no suitable regression model can be 
fit. A discussion of the MAXSD method is given in the 
Supplementary material as are more details for the appli-
cation of this method to the current case study.

Case study 5
Case study 5 illustrates regression modeling that can be 
done when the data justify it. The emphasis is on model 
averaging. Two regression approaches were followed and 
a recommendation is made. The two approaches were 
to model the proportion of 14-day survivors per eggs 
hatched treated as continuous and to model 14-day sur-
vivors as binomially distributed conditioned on number 
hatched. The second approach is scientifically sounder 
since it treats the data as it was collected and this 
approach has better statistical properties. The data are 
summarized in Table 8.

Figure  5 indicates a control mean response near the 
HCD upper confidence bound and the two lowest treat-
ment means and medians not much different. The two 

highest treatment means are clearly lower, but still near 
or above the HCD lower confidence bound. ‘

To determine the NOEC, the Dunnett, Williams, and 
Jonckheere–Terpstra tests were applied to the propor-
tions. All tests found the NOEC  =  85 ppm, where a 2% 
decrease was observed. Only the Dunnett test could be 
applied in a GLMM model for the count of survivors 
conditioned on the number of hatchlings and the same 
NOEC was found. Figure  6 shows the Bruce–Versteeg 
(BVP) model fit to proportions, as this provides the 
simplest graphical representation. All regression mod-
els for proportions or counts were fit to untransformed 
proportions or counts assuming normally distributed, 
homogeneous responses or conditioned on the number 
of hatchlings using generalized nonlinear mixed models 
(GNLMM). This allowed direct comparisons of the two 
approaches. Mathematical descriptions of these models 
and model weighting schemes are given in the Supple-
mentary material.

Tables  9 and 10 summarize the two modeling 
approaches. Table  9 summarizes approach 1 (models 
for proportions), where EC10 estimates are found rea-
sonably tight, varying from 235 to 287. However, lower 
confidence bound (LCB) estimates vary widely from 9 
to 166. Model averaging estimates: EC10avg  =  258 and 
EC10LBavg  =  76.7.

Table  10 summarizes approach 2 (GNLMM mod-
els for conditional counts). The BVP model parameters 
appear reasonable, but the estimated responses at posi-
tive test concentrations are in poor agreement with the 
observed data. This is evidently what caused the large 
value of AICc. The model average gives 0 weight to 
that model. Model averaging estimates were EC10avg  

Table 8  Case study 5

Percent 14-day survivors per hatchling (P14DH)

Count = number of replicates (breeding pairs), mean, median, and standard 
deviation are simple unweighted summary statistics; Conc = ppm

Group Conc Count Mean Median Std

1 0 14 94.60 94.87 4.90

2 28 16 89.73 93.10 10.42

3 85 11 92.28 95.12 6.63

4 255 15 83.34 85.19 12.15

5 510 13 77.69 76.60 12.42

Fig. 5  Percent survivors at 14 days per hatchling (P14DH). HCD data 
from 1994 to 1995 are displayed to the left of the concurrent study, 
while data from 1997 to 2000 are on the right
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Fig. 6  Bruce–Versteeg model fit to replicate proportions (PRP14DH). No transform was applied to the proportions since that makes estimating 
a 10% change (with confidence bounds) in the untransformed data quite challenging. This is one reason for preferring a GNLMM model which 
requires no transform

Table 9  Case study 5

Regression models for proportions

LL3 = 3-parameter log-logistic, OE4 = exponential model with a floor, OE2 = simple exponential model, BVP = Bruce–Versteeg probit-type model, OE3 = exponential 
model with shape parameter, PARM = model parameter, AICc = Akiake information criterion with small sample correction, Wgt = Akaike weight, Estimate, LCB, UCB = 
point estimate, lower and upper 95% confidence bounds

Model PARM Estimate LCB UCB AICc Wgt

LL3 Y0 0.94 0.89 0.99 −313.49 0.12

EC10 237.10 12.71 461.50

b 0.81 0.02 1.60

OE4 Y0 0.93 0.89 0.97 −315.69 0.35

C 0.69 −0.12 1.51

EC10 250.50 35.32 465.60

OE2 Y0 0.93 0.90 0.96 −315.52 0.32

EC10 286.60 166.50 406.60

BVP EC10 244.10 99.10 601.20 −313.31 0.11

gamma 2.31 0.12 4.49

y0 0.93 0.89 0.98

OE3 Y0 0.94 0.89 0.99 −313.51 0.12

EC10 235.30 9.06 461.60

D 0.76 0.02 1.50
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=  277, EC10LBavg  =  183. A tighter lower bound reflects 
less uncertainty in this estimate compared to that of 
Approach 1.

Recommended statistical protocols
The case studies described above and in the supplemen-
tary material together with many combined years of expe-
rience with avian reproduction studies of the co-authors 
and the evolving regulatory requirements and statisti-
cal knowledge have led to a detailed statistical protocol 
which covers all types of responses currently required in 
regulatory test guidelines for avian reproduction stud-
ies. Statistical analysis should begin with careful consid-
eration of the data for each response to be analyzed. A 
basic step is determining the appropriate distribution for 
a response. This begins by assessing whether the data are 
best realized as (a) a continuous response, such as egg 
shell thickness, that might come from a normal distri-
bution, or (b) a proportion such as number of eggs not 
cracked per eggs laid, which could be treated as nor-
mally distributed after a normalizing, variance stabilizing 
transform (usually an arc-sine square-root transform), or 
(c) a count response, such as total number of not cracked 
eggs, or (d) a conditionally binomial response, such as 
number of not cracked eggs conditioned on the number 
eggs laid. A list of commonly reported responses with 
their distributions is given in Additional file 1.

The most appropriate statistical methodology should 
be determined in order best to distinguish between real 

effects and mere artifacts of statistical probability by 
more properly reflecting the nature of the data and exper-
imental design. To the extent possible, statistical analysis 
should be consistent with visual assessment of data. Only 
in limited situations, such as assessment of normality and 
variance homogeneity, and only then with expert judg-
ment, a visual assessment may be sufficient without for-
mal testing. Where visual assessment and formal tests are 
in conflict, the cause should be explored.

The ideal statistical methodology is a regression 
approach to estimate an appropriate percent effect of bio-
logical importance and its associated measure of uncer-
tainty. This ideal is hampered by the small number of 
treatment groups in typical avian reproduction guideline 
studies.

The statistical tests listed in the case studies and in the 
decision flow diagrams are intended to be implemented 
as described in the cited references, especially Green 
et al. [11]. Not all software packages that offer these tests 
implement them in equivalent fashion. For example, the 
R package mcp has a procedure that may appear to be 
Williams’ test. In fact, Williams’ test as described in Wil-
liams [35] and Green et al. [11] and recommended here 
and in some OECD guidelines is quite different from the 
test in the mcp package. The StatCHARRMS R package 
provides a good, but not perfect, approximation to Wil-
liams’ test as developed by Williams. A similar precau-
tion is needed for regression models. For example, the 
software ToxRat does a preliminary transformation of 
the data prior to fitting regression models that, if not 

Table 10  Case study 5

GNLMM regression models for counts conditioned on hatchlings

LL3B = 3-parameter log-logistic GNLMM, OE4B = exponential model with a floor GNLMM, OE2B = simple exponential model GNLMM, BVPB = Bruce–Versteeg probit-
type model GNLMM, OE3B = exponential model with shape parameter GNLMM, PARM = model parameter, AICc = Akaike information criterion with small sample 
correction, Wgt = Akaike weight, Estimate, LCB, UCB = point estimate, lower and upper 95% confidence bounds

Model PARM Estimate LCB UCB AICc Wgt

LL3B P0 0.94 0.92 0.96 −34.7 0.161

EC10 281 181.43 380.57 0.161

b 1.2 0.51 1.89

OE4B P0 0.94 0.92 0.96 −34.9 0.178

C 0.25 −6.20 6.70

EC10 272 132.69 411.31 0.178

OE2B P0 0.94 0.92 0.96 −37.1 0.535

EC10 274 199.43 348.57 0.535

OE3B P0 0.94 0.92 0.96 −34.2 0.126

EC10 289 186.09 391.91 0.126

D 1.2 0.48 1.92

BVPB P0 0.94 0.93 0.947 5412 0.000

B0 −4.28 −4.93 −3.63

B1 0.54 0.43 0.65

EC10 261.86 228.16 295.56 0.000
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disabled by the user, distorts the concentration–response 

Fig. 7  Statistical decision chart for regression modeling/BMDx estimation. If a regression model fitting converges, then either model selection or 
model averaging (recommended) is applied. If the model fitting does not converge, the model is discarded without further use. Whether outliers 
are explored before or after transformations atempted is unimportant. Either or a combination of both may resolve problematic analysis issues

Fig. 8  Statistical decision chart for NOEC determination. Monotonicity can be assessed visually or using the quadratic or cap rule
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relationship, and can result in seriously misleading BMD/
ECx estimates. It is not a purpose of this manuscript to 
critique software packages that might be used to carry 
out the recommended protocols but some recommenda-
tions are provided below. In addition, the website associ-
ated with Green et al. [11] does offer programming code 
in SAS and R to carry out the tests and regression models 
discussed.

Figure 7 gives a decision chart that captures the high-
lights of the regression modeling steps. Figure  8 pro-
vides the same for a NOEC determination. Detailed 
NOEC decision charts are given in the Supplement for 
each type of response (e.g., quantal, continuous, condi-
tionally binomial, count).

Note that when the response is transformed, the 
meaning of x in BMDx is changed and care is needed 
to specify the x after transform to correspond to x 
on orginal scale. With regard to the effect of outliers, 
both regression and pure error outliers can contribute 
to model instability or lack of fit. Plotting of data with 
model overlay is highly recommended. Heterogeneity / 
overdispersion can be handled by weighting or allowing 
different variances in different treatment groups.

Transform here includes the addition of model terms 
or weighting to adjust for overdispersion/heterogeneity.

Transforms, as used in the chart, include for all dis-
tributions indicated the possibility of adding a grouping 
or subject random variable that allows the within-treat-
ment variance to differ across treatment groups. An 
alternative for non-continuous responses is to specify a 
negative binomial distribution.

For count data to be treated as continuous as an 
alternative in the chart, a square-root transform is usu-
ally needed to approximate a normal distribution. For 
quantal or conditionally quantal data to be treated as 
continuous, this usually requires analysis of repli-
cate proportions and requires an arc-sine square-root 
transform to normalize the response and stabilize the 
variance.

For a continuous response following a monotone con-
centration–response, the step-down Jonckheere–Terp-
stra test can be used regardless of whether the variances 
are homogeneous. The power properties of that test are 
generally similar to those of Williams’ test.

In Fig. 8 the Conover test can be configured as a non-
parametric alternative to the Dunn test, but the Dunn 
test is recommended in numerous OECD test guidelines 
and guidance documents (e.g., [16, 17] and its power 
properties are documented more completely (e.g., [11] 
and in documents supporting OECD test guidelines).

If there are outliers, only a small number should be 
omitted for re-analysis for outlier effect. Otherwise, the 
outlier-omitted data may no longer truly represent the 

data collected. All data should be re-analyzed after out-
liers are omitted. If the NOEC or BMDx changes, then 
care should be taken interpreting results.

If a transform removed non-normality or variance 
heterogeneity/overdispersion, then the results of the 
transformed data are generally preferred. A check of 
distribution fit for GLMM models is assessed through 
studentized residuals and a non-significant normality 
test for these residuals means the data fit the modeled 
distribution.

Steps in the recommended statistical protocol. 
Additional details are given in the Supplement.

1.	 Assess the distribution

	 Once the conceptually appropriate distribution is 
determined, it is important to assess the fit of that 
distribution (e.g., normality), variance homogeneity 
or overdispersion. Dunnett and Williams tests and 
various regression models assume normally distrib-
uted data with homogeneous variances. Both are 
assessed through residuals from an ANOVA model. 
Normality of the residuals can be assessed using the 
Shapiro–Wilk or Anderson–Darling test. In the case 
of GLMMs, studentized residuals are used to assess 
agreement of the data to the modeled distribution. 
Variance homogeneity for a normally distributed 
response can be assessed using Levene’s test. For 
incidence and count data, overdispersion (also called 
extra-binomial variance) can be assessed using Tar-
one’s C(α) test or a method based on GLMMs.

2.	 Determine the presence, meaning, and impact of 
outlier

	 Careful consideration of outliers is advised since out-
liers can sometimes show that a statistically signifi-
cant effect is the result of a small number of obser-
vations or the lack of statistical significance may be 
the result of high variability caused by one or more 
outliers. It should be emphasized that outliers are 
statistically detected unusual observations, not “bad” 
observations to be discarded. The primary purpose 
of outlier detection is to determine to what extend 
a small number of unusual observations influences 
the statistical tests and models. These observations 
may also be important indicators that merit further 
investigation. The Tukey outlier rule is recommended 
for continuous responses and for studentized residu-
als from GLMMs and GNLMMs. But formal outlier 
rules need to be supplemented by consideration of 
other data anomalies. For example, 0 fertile eggs out 
of 1 egg laid is very different from 0 fertile eggs out 
of 36 eggs laid. A weighted analysis or treatment of a 
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response such as fertile eggs as binomially distributed 
conditioned on the number of eggs laid is a poten-
tial way of dealing with some outlier issues. Deci-
sion trees for NOEC determination given in Figure 8 
and in Additional file 1 indicate when consideration 
of outliers is applied. It should be noted that if the 
NOEC or BMDx changes after outliers are removed 
or a normalizing, variance stabilizing transform is 
found, then scientific judgment is needed to resolve 
the difference.

3.	 Assess concentration–response monotonicity
	 Monotonicity in the concentration–response should 

be assessed to determines whether a trend test (e.g., 
Williams, Jonckheere–Terpstra, Cochran–Armit-
age) should be used. Use of a trend test where it is 
not justified can obscure a real effect or indicate an 
effect that is not justified. Failure to use a trend test 
where it is justified ignores relevant biology and can 
miss an important effect or lead to confusion when a 
low dose response is found statistically significant but 
higher dose responses are not.

	 In general, if a chemical affects a biological response, 
the effect increases with increasing concentrations 
of the chemical. That is, one expects a monotonic 
concentration–response. This is not a strict require-
ment, but serious deviations from monotonicity rule 
out the use of trend tests and should prompt careful 
exploration of the data. Much additional discussion 
of trend tests and ways to assess monotonicity are 
given in Green et al [11] and Springer and du Hoff-
mann [23]. For normally distributed data with homo-
geneous variances, Williams’ test is recommended, 
but with cautions. This test uses a pool-the-adja-
cent-violators (PAVA) algorithm to smooth the data 
by forcing monotonicity. If the data deviates greatly 
from monotonicity, there can be too much smooth-
ing which distorts the interpretation of the data. 
Green et  al [11] contains further discussion of this, 
as does OECD TG 248 [15]. As a rough guide, if three 
or more mean responses from positive test concen-
trations are merged by the PAVA algorithm, then the 
data may not be suitable for Williams’ test. A test for 
monotonicity is given in the Supplementary material.

	 For continuous response data that do not meet the 
requirements of normality and variance homogene-
ity, the Jonckheere–Terpstra test is a non-parametric 
trend test that has similar power as Williams’ test to 
detect effects. Like Williams’ test this is a step-down 
trend test but unlike Williams, it does not use a 
smoothing algorithm and so does not have the same 
tendency as Williams’ test to mask departures from 
monotonicity. For quantal data, the Cochran–Armit-
age test is very useful step-down trend test. Where 

overdispersion is found, a robust version of that test 
using the Rao–Scott adjustments can be used. All 
these tests are discussed in detail in Green et al. [11], 
where additional references are also given. References 
deserving additional mention include OECD [16, 17].

	 The focus of the above discussion is on trend tests 
when the concentration–response is monotone. 
However, as indicated in the decision chart, the 
power properties of GLMMs with Dunnett’s test 
are competitive with, and in some ways, superior to, 
these trend tests and should be considered.

4.	 Use historical control data if available
	 Valverde et al. [35] investigated the utility of histori-

cal control data for interpreting avian reproduction 
studies, including power analyses to document the 
size effect that could be expected to be found statis-
tically significant. The work reported here continues 
and, to some degree, extends that work. If historical 
control data are available, such data could provide 
information on which observations indicate real 
effects, which observations are well within the his-
torical control range, and can alert the investigator 
to the presence of an unusual control that may skew 
statistical analysis. By examining the study data in the 
context of historical control data, some responses 
may be found not to require further statistical analy-
sis. Once statistical analysis is done to determine a 
NOEC or estimate an ECx value, the study data again 
can be compared to relevant historical control data 
to help interpretation for hazard identification and 
risk assessment.

	 The most appropriate HCD is from the same labo-
ratory that does the concurrent study and uses data 
within a time interval centered on the date of the 
concurrent study. Historical control data from other 
laboratories can be used if appropriate inter-labo-
ratory comparisons have been done. A span of 2–5 
years on each side of the date of the concurrent study 
is recommended. However, European Commis-
sion [10] recommended a 5-year span centered on 
the starting date of the study. The span will depend 
in part on the number of studies in the database. It 
would be best to have 20 or more studies from the 
HCD where possible, approximately equally split on 
both sides of the concurrent study date. Once the 
span of time to include in the HCD is determined, 
extreme observation should be discarded to avoid 
skewing the interpretation. It is suggested that a con-
current treatment mean response between the 5th 
and 95th percentiles of the HCD is not indicative of 
a real effect. These percentiles are dependent on the 
number of studies in the HCD and a reality check 
would include assessing the data using several time 
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spans, such as ± 2, ± 3, and ± 5 years in the HCD to 
make sure these percentiles are not overly influenced 
by the size or the time span of the HCD. Note also 
that 5% of 20 is 1, so the 5% and 95% bounds on a 
smaller HCD are of questionable relevance.

5.	 Transform responses to meet test requirements or 
use generalized (non-)linear mixed models

	 Transformation of responses must be order-preserv-
ing. For example, the Freeman-Tukey transform  of 
proportion data need not be order- preserving and 
its use can distort or even reverse some concentra-
tion–response relationships and produce mislead-
ing results. If regression models are used to estimate 
ECx, the meaning of an x% change in the trans-
formed response is unlikely to be equivalent to an x% 
change in the original, untransformed response.

	 For proportion responses such as viable eggs per eggs 
set, the traditional way to analyze is to treat these 
responses as continuous responses, often with a nor-
malizing, variance stabilizing transformation such 
as the arc-sine square-root transform. That remains 
a viable method, but another method can be more 
informative and is more consistent with the nature of 
the data. This is the use of a GLMM that treats the 
numerator, viable eggs in the illustration, as binomi-
ally distributed conditioned on the denominator, eggs 
set in the illustration. Count data, such as eggs laid, 
can likewise be analyzed by treating the data as con-
tinuous, usually following a square-root transform, or 
using a GLMM with a Poisson distribution. Where 
overdispersion is found, an adjustment is recom-
mended, such as using a negative binomial distribu-
tion or allowing variance to vary by treatment group. 
See Green et al. [11] for additional details and refer-
ences on all the statistical recommendations.

	 If a transform removed non-normality or variance 
heterogeneity/overdispersion, then the results of the 
transformed data are generally preferred for NOEC 
determination. A check of distribution fit for GLMM 
models is assessed through studentized residuals and 
a non-significant normality test for these residuals 
means the data fit the modeled distribution.

6.	 Use regression or BMD methodology where sup-
ported by data

	 Where sufficient treatment groups are avail-
able in a study and regression modeling is feasible, 
model selection criteria are important. Criteria are 
described in the Supplement. Simulation studies 
reported by Burnham and Anderson [2] among oth-
ers, demonstrate that if the same model selection 
procedure is followed in repeat studies using the 
same test concentrations and study design, then dif-
ferent models from the set of models used will be 

selected in different studies. To compensate for this 
model uncertainty, a model averaging technique 
described in item 7) can be implemented. It is also 
important to understand the limitations of regression 
modeling. Once a model is fit to a dataset, it is math-
ematically possible to estimate ECx for any positive 
value of x up to 100 for a decreasing model. Not all 
such estimates are statistically reliable. The dangers 
of extrapolation much beyond the range of tested 
positive concentrations are well understood.

	 Extrapolation beyond the observed range of test con-
centrations cannot be assessed merely in terms of 
the width of the confidence interval because confi-
dence interval calculations assume the model is cor-
rect. Outside the observed range there is no basis for 
assuming the model fit to the data range describes 
the unobserved range. There is nothing novel in that 
view. Problems with low and high dose extrapolation 
have been well reported in the scientific literature.

	 Also, a reliable estimate of ECx for x < 10 is often 
beyond the capability of the data. For example, 
obtaining a meaningful estimate of a 1% or 5% 
change in adult body weight or proportion of eggs 
laid that hatch or survive 14 days is rarely possible. 
The impracticality of such estimates is often indi-
cated by a wide confidence interval or a confidence 
interval extending below 0. More details on this are 
given in the Supplement under the heading of model 
fitting criteria.

7.	 Use Model Averaging where possible for BMDx cal-
culations

	 When a study is repeated under the same conditions, 
the data are different, results from statistical tests are 
often different, and different models are often fit to 
the same response. For NOECs, it is not uncommon 
for them to differ by an order of magnitude between 
such studies. This has been observed many times in 
developing test guidelines where inter-laboratory 
studies are conducted. Differences in ECx or BMDx 
of such magnitude are also found. The real relation-
ship between the concentrations of a test substance 
and measured responses to it is unknown. Models 
are our attempts to determine that relationship but 
under the best of circumstances, they can fall short. 
Model averaging is an attempt to take such model 
uncertainty into account. Confidence intervals for 
model parameters or predictions do not capture 
model uncertainty because they assume that the 
model is correct.

	 A consistent set of models appropriate for the type of 
data are defined. Such a set of models is described in 
"Models used for BMDx estimation" section. That set 
is intended to cover all the usual general shapes likely 
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to be encountered for several categories of responses. 
This set of models is fit to the data. Some model con-
vergence or goodness of fit criteria may rule out one 
or more. The other models then are used in an objec-
tive weighting scheme to arrive at what are called 
model average estimates of BMDx and BMDLx.

	 There are two main ways to approach model averag-
ing. Benchmark dose (BMD) methodology outlined 
in [6, 7]  indicated that the lowest point and interval 
estimates be used from all models in a set of standard 
models. This recommendation was updated in EFSA 
[8] to use a combination of bootstrap sampling and 
weighted averages. The discussions in [3, 33, 34] also 
contain valuable insight into model averaging.  The 
most common weighting scheme is based on a sin-
gle information criterion, such as AIC or BIC. Details 
are given in the Supplement. With either approach, 
care must be taken to identify the set of models to 
use, as clearly both model average and model selec-
tion are highly dependent on the models utilized. In 
addition, one should not rely solely on an automated 
procedure, such as Akaike weight, that down weights 
contributions from poorly fitting models or focuses 
on only one selection criterion.

8.	 Assess the need for special regression models
	 When there is a flat response in the treatment 

groups but all such groups differ significantly from 
the control, a “hockey-stick” model may be help-
ful in describing the data and providing ECx esti-
mates where more standard decreasing models fail. If 
hormesis is evident a hormetic model, such as Brain–
Cousens, should be considered. Such models usually 
require more test concentrations than commonly 
found in avian reproduction studies.

9.	 Consider an alternative to NOEC and BMD.
	 For BMD estimation, a small number of treatment 

groups can sometimes be overcome by a statistical 
methodology designed to test for a specified level 
of effect of biological or regulatory importance. For 
example, a maximum “safe dose” or MAXSD can be 
identified at and below which the effect of the test 
substance is significantly less than 10%. This method 
can also be applied when there are more treatment 
groups but no acceptable regression model can be 
found.

Software
While it is not the intent to give a survey of software 
available to carry out the recommended statistical tests to 
determine a NOEC or models to estimate ECx or BMDx, 
it still seems appropriate to provide brief descriptions of 
some software packages useful for the two approaches. 
For regression model fitting, including model averaging, 

there are at least three good choices. These are the R 
package drc [25, 26]; Proast [21, 22] which was devel-
oped specifically for regulatory risk assessment under 
the auspices of RIVM, BBMD [19, 20] which provides a 
Bayesian implementation. Also notable is the BMD soft-
ware developed by the United States EPA (https://​www.​
epa.​gov/​bmds) which is an Excel-based application. The 
current version (3.2) provides model averaging only for 
dichotomous responses, which limits its utility for avian 
reproduction studies. The first two cited packages use 
the Akaike information criteria to obtain weights for 
model averaging. The third and fourth cited packages use 
weights based on prior distributions but otherwise follow 
the same idea of estimating both BMDx and BMDLX on 
these weights. One should be aware that Bayesian model 
averaging can produce notably different results from the 
information criteria approach and the list of models used 
in averaging can also have a strong impact on results. 
The criteria (e.g., all convergent models from a fixed list 
or only those meeting some additional criteria) used 
to decide which model fits to include can also impact 
results.

For NOEC determination, CETIS [13], which was 
developed for the United States EPA, implements all 
the standard statistical tests recommended, but not the 
GLMM tests. The R package PMCMRPlus [18] provides 
all tests described for continuous responses, including 
non-parametric rank-based tests, but it does not include 
GLMM tests or tests for quantal data. SAS software has 
very useful procedures for GLMM models but these 
require programming. There are numerous R packages 
for GLMM but results from different packages compared 
to each other or to SAS will often not agree. A good 
resource for relevant GLMM models in R is Hothorn 
[12].

Biological relevance
Real improvement in hazard identification and risk 
assessment requires scientifically based criteria for what 
constitutes a hazard. According to [7], in determining a 
NOAEL there may not be a consideration of the effect or 
its biological relevance. Therefore, it is proposed to use 
responses that are based on a consideration of the bio-
logical and/or ecological relevance. Consequently, the 
biological relevance should be always considered for 
the final toxicological response selection as a higher tier 
refinement option.

For example, Case study 4 illustrated the importance 
of having an agreement on the size effect on eggshell 
thickness in evaluating a statistical finding. Despite the 
statistical significance of the decreases in all treatment 
groups, it should be noted that the maximum observed 
decrease was only 6%. This response is a rare instance 

https://www.epa.gov/bmds
https://www.epa.gov/bmds
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when scientific evidence is available for this purpose. 
According to [7] and Lincer [14] population effects in the 
wild tend to come about after thinning of 18% or more. 
Overall, the maximum observed decrease of 6% should 
not be considered biologically important and thus the 
final NOEL should be set to the maximum concentration 
tested (Table 7, Fig. 4).

The regulatory process would be much enhanced by 
developing data-based estimates of the sizes of effects on 
key biological measures that result in biologically mean-
ingful consequences such as population decline. As it is, 
largely arbitrary effect sizes, such as 10% change, or a 
statistically significant change, are assumed to represent 
the demarcation between acceptable and unacceptable 
effects, regardless of biological importance.

Conclusions
Current test guidelines and guidance emphasize purely 
statistical methodology for hazard identification. The 
focus of Test Guideline 206 is on whether a statistically 
significant change is observed in one or more test con-
centrations compared to the concurrent control. More 
recent EFSA guidance [8] emphasizes BMD10 or its 
lower 95% confidence bound. Other relevant information 
is often either ignored, such as historical control data, or 
not available, such as no biological basis for the size of 
effect important to be able detect or estimate (biologi-
cally significant effect level).

Evidence has been presented on ways to improve 
NOEC determination through improved statistical test 
selection, diagnostics, and the use of historical control 
data. In particular, generalized linear mixed models take 
the natural distribution of the response variables and 
the sources of random variability into account, leading 
to more appropriate corresponding statistical tests for 
several responses as does careful attention to identifying 
outliers. BMDx estimation can be improved using revised 
modeling techniques including generalized nonlinear 
mixed models, implementation of model selection crite-
ria and model averaging in addition to adopting improve-
ments to the experimental design. Historical control 
databases from years of avian reproduction studies dem-
onstrate that BMD estimates, especially BMD10, will not 
be possible for some study response variables, so that 
NOECs will continue to be required for use in risk assess-
ments. Explicit proposals for statistical tests, models and 
experimental designs are provided that require no more 
birds per study than currently required in TG 206 studies 
but nonetheless are more statistically sound and robust, 
for deriving the endpoints used for risk assessment.

A clear correlation has been found from the laboratory 
studies showing a decreased hatching and population 

decline was associated with 18 to 22% reduction in 
eggshell thickness. This illustrates the need for addi-
tional information to quantify the level of effect for key 
responses that indicate population level effects and dis-
tinguish such effects from mere statistical significance or 
a percentage change from control without associated bio-
logical significance.
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