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Abstract 

Background:  The residual chemical pollutants in drinking water may cause adverse effects on human health. Chemi-
cal compounds potentially affecting human health have been widely explored, while the multiphasic evaluation of 
chemical compounds by process control and human health risk is still rarely reported. In the present study, we used 
multiphasic criteria to assess the health risk including effluent concentration, accumulation index, purification index 
for the removal efficiency during the drinking water treatment processes, carcinogen classification based on the Inter-
national Agency for Research on Cancer standards, non-carcinogenic health hazards and carcinogenic risk.

Results:  Among the monitored chemicals, 47 and 44 chemical compounds were detected in raw water and treated 
water, respectively. The generation and removal of chemical compounds implied that the migration and transforma-
tion of chemicals during the purification processes affected the effluent concentration, posing a direct potential 
health risk. Of these compounds, 41 contaminants’ profiles were screened as priority chemical compounds (PCCs).

Conclusions:  The top eight PCCs with high carcinogenic risk were highlighted. Some effective steps, such as protect-
ing the raw water sources, improving the removal performance and reducing the disinfection by-products during the 
purification process by introducing advanced treatment technologies, were suggested to maintain drinking water 
security. Collectively, our findings provided novel scientific supports for the sustainable management of drinking 
water to promote human health.

Keywords:  Drinking water security, Multiphasic assessment, Carcinogenic health hazard, Rank assignment method, 
Source water protection, Sustainable management
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Background
Drinking water security (DWS) has become a critical 
international issue since approximately 80% of diseases 
result from contaminated drinking water as reported by 
the World Health Organization (WHO) [1, 2]. The water 
containing chemical compounds poses serious threats to 

water environment sustainability, ecosystem health, and 
DWS [3–5]. The priority chemical compounds (PCCs), 
characterized by wide distribution and high toxicity, are 
refractory with long residue times [6, 7]. PCCs can enter 
biological organisms and tissues through exposure and 
food chain accumulation, and then affect the normal 
physiological functions of the organism through bio-
chemical or physicochemical effects, threatening human 
health [8–10].

With the advancement of monitoring technology 
and toxicological studies on the chemicals, emerging 
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contaminants in the drinking water, such as heavy met-
als, volatile organic compounds (VOCs), polychlorinated 
biphenyls (PCBs), organophosphorus pesticides (OPPs), 
and organochlorine pesticides (OCPs), are being con-
cerned [11, 12]. Consequently, it becomes a worldwide 
problem for the management of the government sector 
in the screening of PCCs. A majority of chemical sub-
stances with relatively low concentrations in fine fresh 
surface water can be removed via the purification process 
in drinking water treatment plants (DWTPs), while some 
chemicals can be generated through the degradation, bio-
synthesis and accumulation during the water purification 
processes owing to the limitations of water purification 
technologies in the utilities of DWTPs [13]. For exam-
ple, some of these chemicals can be re-released due to 
membrane pollution in the treatment processes [14]. In 
particular, the final step, which involves the disinfection 
procedure for protecting drinking water against exter-
nal contamination and regrowth of bacteria, can gener-
ate approximately 600–700 chemical by-products [15]. 
Process control of purification procedures (i.e., floccula-
tion, coagulation, sedimentation, adoption, filtration, dis-
infection or oxidation processes) from raw water source 
to treated drinking water provides technical support for 
the management of DWTPs [16, 17]. Therefore, moni-
toring the concentrations of chemical compounds in 
source water and identifying the removal effect of drink-
ing water purification processes (that is the dynamics of 
chemical compounds from raw water source to treated 
drinking water) are two important factors in the assess-
ment of drinking water.

However, the above-mentioned contaminants in the 
drinking water generally pose a potential risk for human 
health for a long-term drinking exposure. Besides, few 
studies have been conducted to assess above-mentioned 
two aspects in the screening of optimal control pollut-
ants [18–20]. With the growing demand for safe drink-
ing water, it is imperative to screen multiphasic criteria 
characterized by process control and health risk based 
on the on-site investigation, which will provide a critical 
perspective for the screening of PCCs, strengthening the 
process control during the drinking water treatment and 
improving the sustainable management of DWS [21, 22]. 
Such evaluation would also fill the gaps between human 
health and public utilities through the management of 
drinking water.

In the present study, 283 water samples of raw water 
and treated water from 146 DWTPs were collected to 
identify the effects of drinking water purification pro-
cesses, and 76 chemical compounds were monitored to 
assess and screen PCCs by process control and health 
risk. This work aimed to (1) analyze the occurrence and 
concentration distribution of chemical compounds in the 

influent and effluent from 146 DWTPs; (2) emphasize 
the removal and generation processes during the purifi-
cation procedure; (3) assess the health risk of chemical 
compounds in the influent and effluent using the haz-
ard index (HI) and carcinogenic risk (CR); and (4) select 
PCCs by using the rank assignment method for the sus-
tainable management of DWS.

Materials and methods
Distributions of DWTPs
In the present study, 140 water samples from the influ-
ent (raw water) and 143 water samples from the efflu-
ent (treated water for drinking) were collected from 
146 DWTPs located in 24 cities in the seven major 
river basins of China, including the Songhuajiang River, 
Liao River, Huai River, Yellow River, Hai River, Yang-
tze River, and Pearl River. The water supply capacity for 
each DWTP was more than 1000 tons/day water and the 
service population is more than 10,000 persons. More 
detailed information is provided in Additional file  1: 
Table S1. Figure 1 shows the geographic information for 
sampling sites covering 24 cities and 146 DWTPs.

All collected water samples were stored in a port-
able cooler with dry ice and immediately transported to 
the laboratory for analysis. A total of 76 chemical com-
pounds, including heavy metals, VOCs, PCBs, OPPs, and 
OCPs, were monitored and analyzed.

The presence of heavy metals was determined using 
atomic absorption spectroscopy. Other compounds 
were determined via spectrophotometry, headspace gas 
chromatography (HS GC), solid-phase extraction gas 
chromatography (SPE GC), high-performance liquid 
chromatography (HPLC), and ultra-performance liq-
uid chromatography (UPLC). Details on the compounds 
and analytic methods were provided in Additional file 1: 
Table S2.

Multiphasic evaluation analysis
Given the urgent requirements of environmental sus-
tainability, safe drinking water, and human health, the 
concentrations of the chemical compounds, classifica-
tion of carcinogens based on the International Agency 
for Research on Cancer (IARC) standards, accumulation 
index (AI), carcinogenic risks (CR), and hazard index (HI) 
were selected as the multiphasic evaluation variables 
(Fig.  2). The water treatment processes at the DWTPs 
were found to produce by-products, and health risk was 
generally a result of the exposure concentration of the 
treated water. Therefore, a novel and simple rank assign-
ment method was established based on on-site investiga-
tions of concentration, technological developments and 
health risk.
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This method was established to avoid human impacts 
when screening PCCs (Table 1). The concentration rank 
was assigned according to the pollutants concentra-
tions. In general, when Ci was greater than the standard 

concentration [23], the pollutant was considered to be 
safe. The carcinogenic rank was assigned according to 
the IARC classification [24, 25]. The HI and CR ranks 
were assigned through sequential data analysis. When 

Fig. 1  Distribution of the 24 sampling cities, covering the 146 drinking water treatment plants investigated in this study
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Fig. 2  The flowchart of rank assignment system for the screening of chemical compounds
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HI < 1.00, the pollutant was considered to pose no sig-
nificant risk of non-carcinogenic effects [26]. When 
CR < 10−6, the carcinogenic risk of the pollutant was 
acceptable and considered a low risk to human health, 
whereas the carcinogenic risk was unacceptable when 
CR > 10−4 [27]. Particularly, when the SF values of pol-
lutants could not be obtained, the rank assignment was 
conducted based on the IARC classification. Missing 
data were recorded as moderate or low, dependent on 
the specific characteristics of the chemical compounds 
(as the IARC guidelines). This multiphasic screening 
method also avoided significant human error caused by 
the selection of weight coefficients in the weight assign-
ment method. The intuitive and simple evaluation analy-
sis reflected the possible problems on human health risk 
in the processes from raw water protection to the treated 
drinking water, providing multiphasic management sug-
gestions for DWS.

Data statistics
The detection rate (DR), excess rate (ER), removal effi-
ciency (RE), AI, and purification index (PI) were calcu-
lated as follows:

where n, ne, and N are the number of samples detected, 
the number of samples exceeding the standard concen-
tration, and the total number of water samples collected, 

(1)DR =

n

N
× 100%,

(2)ER =

ne

N
× 100%,

(3)RE =

(Ci − Co)

Ci
× 100%,

(4)AI =
na

NRE
× 100%,

(5)PI =
np

NRE
× 100%,

respectively; Ci and Co are the chemical compound con-
centrations in the influent and effluent (mg/L), respec-
tively; na is the number of sample pairs where RE < 0; np is 
the number of sample pairs where RE ≥ 0; and NRE is the 
number of sample pairs where the RE value was available.

Health risk assessment
The health risk of drinking water is directly related to oral 
ingestion. The method developed by the USEPA was used 
in this study to assess the health risk associated with the 
ingestion of various chemical compounds [13, 28]. The 
chronic daily intake (CDI, mg/kg day) via the ingestion of 
pollutants in drinking water is typically used for health 
risk assessment, which was calculated as follows:

where Co is the pollutant concentration in the effluent 
(mg/L), DIR is the daily ingestion rate of drinking water 
(L/day), which typically has a value of 2 L/day, EF is the 
exposure frequency (day/year), which is typically equal to 
365 days/year, ED is the exposure duration (year), which 
is set as 30  years for non-carcinogens and 70  years for 
carcinogens, BW is the body weight (kg), with a standard 
value of 70.0 kg, and AT is the average exposure period 
(days), with typical values of 30 × 365  days for non-car-
cinogens and 70 × 365 days for carcinogens. The CR and 
HI of the pollutants were calculated as follows:

where RfD is the reference dose for toxic pollutants (mg/
kg day) and SF is the pollutant slope factor (kg day/mg). 
Both the RfD and SF were collected from the websites of 
the US Integrated Risk Information System (IRIS) and 
USEPA.

(6)CDI =
Co × DIR× EF × ED

BW × AT
,

(7)HI =
CDI

RfD
,

(8)CR = CDI × SF ,

Table 1  Rank assignment method used for screening the chemical compounds

No Low Moderate High

Concentration Ci ≤ 0.1Cs 0.1Cs < Ci ≤ 0.5Cs 0.5Cs < Ci ≤ Cs Ci > Cs

Accumulation index AI ≤ 0 0 < AI ≤ 25% 25% < AI ≤ 50% AI > 50%

Purification index 3 2B 2A 1

Hazard index HI ≤ 0.01 0.01 < HI ≤ 0.1 0.1 < HI ≤ 1 HI > 1

Carcinogenic risk CR ≤ 10−6 10−6 < CR ≤ 10−5 10−5 < CR ≤ 10−4 CR > 10−4



Page 5 of 13Liu et al. Environmental Sciences Europe            (2022) 34:7 	

Results and discussion
Distribution of chemical compounds
Among the 76 target chemical compounds, 47 chemi-
cal compounds in the influent and 44 chemicals in 
the effluent were detected (Fig.  3). Specifically, only 
two pesticides, heptachlor epoxide and atrazine, were 
detected with low concentrations of 0.00224  µg/L and 
0.038 ~ 0.374  µg/L in the influent, respectively, indicat-
ing that pesticides were minor pollutants in drinking 
water sources. The observed pesticide concentrations 
were lower compared with previous report [29]. Tetra-
ethyl lead and methylmercury, two well-known metal-
organic compounds, characterized by high risk, were 
undetectable.

Table  2 lists the compounds detected in the water 
samples. The DR values of 10 chemical compounds in 
the influent were more than 50%, including Ba (99.3%), 
dibutyl phthalate (92.1%), dioctyl phthalate (91.4%), 
polychlorinated biphenyls (81.4%), di(2-ethylhexyl) adi-
pate (59.3%), trichlorobenzene (57.9%), dichlorometh-
ane (55.0%), dichloromethane (53.6%), microcystin-LR 
(50.7%), and 1,2-dichloroethane (50.7%). The results sug-
gested that these pollutants were widely distributed, 
which were consistent with their global distributions [18, 
30, 31]. More detailed informations were provided in 
Additional file 1: Tables S3 and S4.

The concentrations of chemical compounds in the 
influent differed from those in the effluent (Fig.  3). The 
concentration of eight chemical compounds (Sb, B, Ni, 
Ba, acrylamide, dibutyl phthalate, microcystin-LR, and 

formaldehyde) in the influent exceeded the standard val-
ues [17], while the concentrations of seven chemicals (Sb, 
Ni, Ba, acrylamide, dibutyl phthalate, trichloroacetalde-
hyde and trichloromethane) in the effluent were higher 
compared with the standard values.

DWTPs with exceedingly high concentrations of Ba 
were located at Binzhou City, Dongying City, and Zibo 
City in the Yellow River basin owing to the high back-
ground values of the compounds in the local soil [32]. 
DWTPs, where the Ni concentrations exceeded the 
standard value, were located in the Hai River basin, 
owing to the high background values of Ni compounds 
in the local soil as well as the excessive compound dis-
charge from local chemical enterprises [33]. Liang et al. 
[34] have shown that the maximum concentrations of Sb, 
Ni and Ba in the Jiulongjiang River in Southeast China 
are 9.67  µg/L, 10.05 ug/L and 231.42  µg/L, respectively, 
while Wu et al. [35] have shown that the maximum con-
centration of Sb, Ni and Ba from rural areas of China 
are 0.653  µg/L, 15.2  µg/L and 384  µg/L, respectively. 
All of these values are lower compared with our results 
(12.5 µg/L, 212 µg/L and 1060.7 µg/L, respectively). These 
differences resulted from various factors, such as differ-
ent compound background values, local variations of dis-
charge, and removal performance of different treatment 
processes, as well as the degradation rate of chemical 
compounds during the water plant treatment processes 
[18, 36–38]. Additional file  1: Table  S5 provided more 
detailed information.
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Fig. 3  The concentration of chemical compounds in the influent and effluent
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High concentrations of dibutyl phthalate and acryla-
mide appeared in the Yangtze River basin, which was 
mainly attributed to the accumulation of chemical com-
pounds during the water treatment processes in DWTPs 
[39–41]. Microplastics act as vectors for contaminants 
including dibutyl phthalate and acrylamide, which are 
difficult to remove in the DWTPs [42]. The same result 
has been reported by Koelmans et  al. [43] that higher 
concentrations in the effluent probably reflect the reten-
tion of microplastics. High concentrations of trichloro-
acetaldehyde and trichloromethane in the effluent were 
generally caused by the chlorine disinfection procedure, 
with the excess rates of 3.50% and 2.10%, respectively. 
The above-mentioned chemicals indicated that the treat-
ment processes affected the concentrations of chemical 
compounds in the effluent, posing a direct risk to human 
health for long-term drinking exposure [44].

Removal and generation of chemical compounds
The treatment processes play a pivotal role in water puri-
fication since they influence the chemical compounds 
composition via chemical removal and generation. 
Removal and generation of various chemicals via dif-
ferent processes were characterized by AI and PI values 
(Fig.  4). The AI values were closely linked to the gen-
eration and accumulation of chemicals, and the PI val-
ues were associated with the removal characteristics of 
chemicals in the purification treatment process.

The results showed that metal compounds (Ba, Sb, 
Be, Ti, and V) were easily removed in the DWTPs. Ion 
exchange technology and adsorption are commonly used 
for the intensive purification of drinking water, thus cati-
onic metal compounds are easily removed during the 
treatment processes [26]. Certain organic compounds, 
including acrolein, atrazine, benzene, formaldehyde, 
microcystin-LR, polychlorinated biphenyls, toluene, 
xylene, and 2,4,6-trinitrophenol are also easily removed 
in the purification processes. These substances are eas-
ily transformed, degraded, or removed by different 
processes, including adsorption, microbial action, dis-
infection, and the use of ozone and associated oxidation 
processes [19, 20, 45, 46].

Nevertheless, certain volatile halohydrocar-
bons, including 1,2-dichloroethane, carbon 
tetrachloride, trichloromethane, and some benzene-
containing compounds including 1,2-dichlorobenzene, 
2,4-dinitrotoluene, nitrobenzene, trichlorobenzene, 
dibutyl phthalate, and dioctyl phthalate were difficult to 
remove via the treatment processes. Especially, chlorine-
containing compounds may be generated or produced 
due to chlorine disinfection during the treatment process 
[47–49]. Benzene-containing compounds usually pre-
sent good stability with refractory biological properties. 

Table 2  Detected chemical compounds in the influent and 
effluent

Influent Effluent

Detection 
number

DR (%) Detection 
number

DR (%)

Barium 139 99.3 140 97.9

Dibutyl phthalate 129 92.1 138 96.5

Dioctyl phthalate 128 91.4 131 91.6

Polychlorinated biphenyls 114 81.4 108 75.5

Di(2-ethylhexyl)adipate 83 59.3 100 69.9

Trichlorobenzene 81 57.9 82 57.3

Dichloromethane 77 55 79 55.2

Trichloromethane 75 53.6 128 89.5

Microcystin-LR 71 50.7 21 14.7

1, 2-Dichloroethane 71 50.7 70 49

Hexachlorobenzene 66 47.1 69 48.3

Boron 65 46.4 64 44.8

Toluene 56 40 52 36.4

Tetrachlorobenzene 47 33.6 51 35.7

Trichloroacetaldehyde 46 32.9 95 66.4

Benzene 45 32.1 41 28.7

Vanadium 44 31.4 31 21.7

1, 2-Dichlorobenzene 44 31.4 48 33.6

Xylene 40 28.6 35 24.5

Acrolein 31 22.1 28 19.6

Formaldehyde 30 21.4 15 10.5

Atrazine 29 20.7 24 16.8

Antimony 26 18.6 24 16.8

Ethylbenzene 24 17.1 26 18.2

Nickel 23 16.4 20 14

Trichloroethylene 19 13.6 21 14.7

Beryllium 14 10 14 9.8

2,4-Dinitrotoluene 13 9.3 21 14.7

Dinitrobenzene 12 8.6 12 8.4

Titanium 11 7.9 2 1.4

Styrene 10 7.1 6 4.2

Acrylonitrile 10 7.1 10 7

Chlorobenzene 9 6.4 9 6.3

Acrylamide 9 6.4 14 9.8

Vinyl chloride 8 5.7 8 5.6

Carbon tetrachloride 8 5.7 16 11.2

Benzo(a)pyrene 8 5.7 9 6.3

Nitrobenzene 7 5 16 11.2

1, 4-Dichlorobenzene 7 5 7 4.9

Isopropylbenzene 6 4.3 4 2.8

Cobalt 5 3.6 4 2.8

Molybdenum 4 2.9 3 2.1

Tetrachloroethylene 4 2.9 1 0.7

Heptachlor epoxide 1 0.7 nd nd

Chloroprene 1 0.7 nd nd

1,2-Dichloroethylene 1 0.7 1 0.7

2,4,6-Trinitrophenol 1 0.7 nd nd

nd means no detection
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Certain nitro-containing compounds are also difficult to 
be removed with adsorption or oxidation processes via 
the purification process [50, 51]. Trichloroacetaldehyde, 
(di(2-ethylhexyl)adipate), Ni, B, acrylamide, and acry-
lonitrile were also accumulated in the effluent. Free radi-
cal substitution reactions easily occur during chlorine 
or ozone disinfection, which can explain the higher con-
centrations of trichloroacetaldehyde, trichloromethane, 
and acrylamide in the effluent [52, 53]. Acrylamide hurts 
human reproductive organs and neurological systems 
and it is classified as a 2A carcinogen by the IARC [39, 
54]. Acrylamide was concentrated in the effluent because 
(1) the coagulation flocculant (polyacrylamide) com-
monly used in the treatment process contained acryla-
mide and acrylonitrile; and (2) acrylamide could also be 
produced from acrylonitrile with oxidation processes.

Compared with the other compounds, dibutyl phtha-
late, dioctyl phthalate, and di(2-ethylhexyl)adipate are 
stable and less polar, which render the removal of those 
pollutants. The DBPs, usually associated with cancer, 
pose a serious threat to human health through long-term 
drinking exposure [55, 56]. The results illustrated that 
the concentration changes of chemical compounds in the 
effluent were linked with their occurrence in the influent. 
These chemical by-products could be generated through 
synthesis, transformation, and degradation owing to bio-
chemical or chemical reactions that occurred during the 
purification and disinfection processes [57, 58].

Risk assessment of chemical compounds
The occurrence and concentration of the respective com-
pounds reflected the environmental impact of the raw 
water. However, the concentrations of the chemical com-
pounds in the raw water changed during the treatment 
processes, which altered the concentrations of com-
pounds in the effluent. Figure 5 illustrates that the HI and 
CR values of detected 47 chemical compounds. The RFD 
and SF values used to calculate HI and CR values were 
also presented in Additional file 1: Table S6.

When HI > 1.00, non-carcinogenic effects were 
more likely to occur, while HI < 1.00 indicated no sig-
nificant risk of non-carcinogenic effects on human 
health for lifetime exposure. The HI values of acrolein, 
microcystin-LR, antimony and titanium ranged from 
5.7 × 10–4–2.6, 2.5 × 10–4–63.5, 3.6 × 10–2–1.6 and 
0.5–4.8, respectively, suggesting that a higher HI value 
increased the occurrence of non-carcinogenic effects 
[26]. The highest HI values of microcystin-LR occurred 
in the source water, which  illustrated that the concen-
tration of microcystin-LR in the source water should 
attach much attention. As previously reported, acrolein 
can cause cellular gene mutation, reduce cell repair-
ability, and harm the retina [59]. Long-time drinking 
exposure to microcystin-LR can impair the functions 
of colorectal and liver tissues [60, 61]. An upper limit 
concentration of microcystin-LR (1 µg/L) in the drink-
ing water is recommended by WHO [62]. In Ain Zada, 
the concentrations of microcystin-LR were found in the 
dam range from 19.6 µg/L in raw water to 6.3 µg/L in 
drinking water [63]. Wang et  al. [64] have shown that 

Fig. 4  The AI, and PI of chemical compounds in the influent and effluent
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the mean microcystin content in lake water is 11.8 µg/L 
and the maximum concentration reaches as high as 
35.8 µg/L during the blooms of cyanobacteria in Taihu 
Lake, China. A major concentration of microcystin-LR 

(2.1  µg/L) in raw water in this study was about seven 
times higher compared with that in the Amazon River 
basin (2.1  µg/L) [65]. The maximum microcystin-
LR concentration in the treated water is 0.1  µg/L in 
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Oliveira’s survey. The preferable removal performance 
of microcystin-LR is obtained in the DWTPs in the 
Amazon River basin, which is consistent with this 
study. Of note, the maximum 0.011  µg/L of microcys-
tin-LR in the treated water was found in this study. 
Due to great removal performance for microcystin-
LR in the DWTPs, the potantial hazard was effectively 
controlled.  Antimony is one of the most concerning 
global toxic metals, with a maximum concentration of 
22.9 µg/L in the influent and 12.5 µg/L in the effluent.

The health risk of these compounds was assessed using 
the IARC carcinogenicity classification. The IARC carci-
nogenicity classification for respective compounds was 
presented in Additional file 1: Table S6. Chloral, styrene, 
and tetrachlorobenzene have been classified in Group 2A 
by the IARC, indicating that they are likely carcinogenic 
to humans. Boron, 1,2-dichlorobenzene, xylene, toluene, 
and acrolein are listed in Group 3, showing that they are 
not carcinogenic to humans.

To explore the carcinogenicity for chemicals, the 
evaluation of CR values in Fig.  5 provided more infor-
mation. The CR values of 16 chemical compounds were 
not calculated due to missing SF values. Considering the 
acceptable range of non-carcinogenic risk (10–4–10–6) 
defined by the USEPA, the CR values of 23 chemical 
compounds were lower than 10−4 in the effluent, dem-
onstrating that the carcinogenic risk of these compounds 
was acceptable and the human health risk was very low 
over a lifetime of exposure. In contrast, eight chemical 
compounds exhibited high CR values, particularly Ba 
(2.4 × 10–4 − 6.0 × 10–2), Mo (1.9 × 10–4–2.4 × 10–4) and 
Ni (2.3 × 10–4–7.5 × 10–3). Metal compounds can easily 
bioaccumulate in the human body, which should be the 
subject of further investigations. Barium exhibited a rela-
tively low cancer risk. However, it demonstrated one of 
the highest potential carcinogenic risk for human health 
in this study due to its high concentration, followed by 
Mo and Ni, beryllium, formaldehyde, trichloroethylene, 
vinyl chloride, benzene, and PCBs. These chemicals are 
classified as Group 1 carcinogens by the IARC, which 
are carcinogenic to human health even at low concentra-
tions on the order of ng/L, as reported by Li et al. [66]. 
Although these chemical compounds were at low con-
centrations, high toxicity of chemical compounds can 
still pose risk to human health. For example, formalde-
hyde has been proven to be related to leukemia and is 
widely considered as one of the main factors affecting the 
human hematopoietic system. The increasing number of 
private cars, as well as building and decorative materials, 
has intensified formaldehyde discharge, which threatens 
the ecosystem and water resource cycle [67, 68]. There-
fore, the carcinogenic risk factor was affected by both 

the concentration and carcinogenicity of the chemical 
compounds.

Multiphasic evaluation of PCCs
Figure  6 displayed a profile map of the chemical com-
pounds in the influent and effluent. The screening of 
PCCs was first dependent on the rank of CR values, 
then the classification of IARC and HI values. Given 
the importance of carcinogenic risk on human health, 
the classification of IARC was secondly highlighted 
when the SF values of chemicals were not found. Based 
on the above-mentioned criterion, 41 chemical com-
pounds, except for 1,2-dichlorobenzene, toluene, xylene, 

Fig. 6  Heat map of the priority chemical compounds. Green dot of 
“No” was no carcinogenic risk. Blank in the CR column was no valid 
values, which was due to the missing values of SF. The sequence of 
criteria in the rank assignment method was carcinogenic risk, then 
followed by classification of carcinogenic risk based on IARC with 
no SF. If the pollutant concentration was in high level, resulting in 
potential hazard, HI was the priority, followed by concentration level 
and AI 
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heptachlor epoxide, 2,4,6-trinitrophenol, and chloro-
prene were considered as PCCs. The top eight chemical 
compounds (Sb, Ba, Mo, Ni, acrylamide, 1,2-dichloroeth-
ane, trichloromethane, and acrylonitrile) demonstrated 
a high carcinogenic risk connected to long-term drink-
ing exposure. Tetrachloroethylene, 1,2-dichloroethylene, 
hexachlorobenzene, 1,4-dichlorobenzene, trichloroben-
zene, 2,4-dinitrotoluene, benzo(a)pyrene and di(2-ethyl-
hexyl)adipate demonstrated no carcinogenic risk in this 
study. The HI values of formaldehyde and acrolein were 
high, indicating that they were a potential health hazard 
and should be monitored closely. Removing 1,2-dichlo-
robenzene via treatment processes is challenging, and 
this compound can even be generated during the chlo-
rine disinfection process through free radical reactions 
[13, 58].

Comprehensive assessments, including the evalua-
tion of treatment processes through AI values, should be 
accounted for the screening of prior pollutants, which 
can promote the drinking water supply sector to attach 
importance to purification technologies. Non-carcino-
genic B is harmful to human health at a high concentra-
tion, even if it is only detected in trace amounts in the 
human body. Barium, B, and V are not included in the 
PCCs list of both the United States and China [69]. How-
ever, these substances were detected at relatively high 
carcinogenic risk or potential hazard, indicating that they 
should be monitored. Given the scientific management of 
chemical compounds and the development of environ-
mental sustainability, we introduced the concentrations 
of substances to the evaluation method. Dibutyl phtha-
late and di(2-ethylhexyl) phthalate are two common plas-
ticizers for microplastics that have attracted negligible 
attention in previous studies. These substances and their 
metabolites have been proven to influence the endocrine 
system of the human body [70–72]. Due to its high AI 
values, the safety of microplastics will become the future 
focus and attract much attention.

Management suggestions for PCCs
The above-mentioned results implied that the multipha-
sic assessment of chemicals by process control and health 
risk was comprehensive for the screening PCCs. The 
standard values of some chemical compounds should 
be re-modified, such as Mo and 1,2-dichloroethane. CR 
values suggested that even an acceptable concentration 
was lower than the standard values in the effluent, which 
still threatened human health. To meet the DWS, modi-
fying the standard values is one of the most important 
measures. Effective steps were suggested to keep a safe 
drinking concentration of pollutants in the effluent, such 
as protecting the raw water from pollution, introducing 
new advanced treatment technologies, and strengthening 

the removal performance of the drinking water treat-
ment processes. Among these motions, protecting raw 
water from pollution is an indicative premise of the water 
environment and ecosystem health. The specific measure 
including the division of water source protection zones, 
is primary for the management of DWS in the govern-
ment sector.

The dynamics of PCCs with the above-mentioned 
treatment processes implied that processes in the treat-
ment of drinking water could be of great significance for 
process control and sustainable management. Thus, reli-
able and effective techniques used to increase DWS could 
facilitate the optimization of the purification process in 
DWTPs. Improving the removal performance during the 
purification process and reducing the generation of DBPs 
by introducing new advanced treatment technologies are 
suggested to be explored in future research for intensify-
ing DWS and the sustainability of human health.

Last but not least, emerging pollutants (i.e., antibiot-
ics, endocrine-disrupting chemicals and microplastics) 
should also be taken into consideration in the screening 
of PCCs. Occurrence (concentration), the performance 
on process control, health exposure and carcinogenic risk 
via an exhaustive evaluation for screening the PCCs is 
necessary for strengthening the optimization of process 
control and management of DWS. Moreover, with the 
continuous development of monitoring technology and 
the requirement of public health, more attention should 
be paid to the emerging pollutants and synchronous eval-
uation systems.

Conclusions
In the present study, we developed a novel multiphasic 
evaluation by simple rank assignment analysis, which 
could be used for selecting PCCs by process control and 
health risk in drinking water. The effluent concentrations, 
removal performance, non-carcinogenic health hazard, 
classification of carcinogens and carcinogenic risk were 
selected as multi-process indicators. Among the 76 mon-
itored chemicals, 47 and 44 chemical compounds were 
detected in the influent and effluent, respectively. The 
difference between raw and treated water implied that 
many chemical compounds could be removed during the 
treatment processes. By-products were generated dur-
ing purification and disinfection processes through syn-
thesis, transformation, and degradation due to chemical 
reactions or biochemical reactions. The assessment result 
illustrated that the top eight PCCs with high carcino-
genic risk were highlighted. Among the detected chemi-
cal compounds, the profiles of 41 contaminants could be 
scientifically applied to select PCCs targets. However, 
some emerging contaminants (i.e., antibiotics, micro-
plastics, and endocrine-disrupting chemicals) have not 
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been evaluated in this study. More on-site investigations 
on the emerging pollutants should be carried out in the 
future for the human health and management of DWS.

Finally, some effective measures should be imple-
mented to ensure drinking concentrations of chemical 
pollutants in the effluent safety, such as protecting the 
raw water from contamination, enhancing removal per-
formance and reducing by-products by introducing new 
advanced treatment technologies during the purifica-
tion process. Collectively, the multiphasic assessments 
of PCCs provided a novel method and scientific support 
of process control to strengthen the sustainable manage-
ment of source water and DWS.
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