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Abstract 

Background:  While numerous studies have assessed the effects of environmental (meteorological variables and air 
pollutants) and socioeconomic variables on the spread of the COVID-19 pandemic, many of them, however, have 
significant methodological limitations and errors that could call their results into question. Our main objective in this 
paper is to assess the methodological limitations in studies that evaluated the effects of environmental and socioeco-
nomic variables on the spread of COVID-19.

Main body:  We carried out a systematic review by conducting searches in the online databases PubMed, Web of 
Science and Scopus up to December 31, 2020. We first excluded those studies that did not deal with SAR-CoV-2 or 
COVID-19, preprints, comments, opinion or purely narrative papers, reviews and systematic literature reviews. Among 
the eligible full-text articles, we then excluded articles that were purely descriptive and those that did not include 
any type of regression model. We evaluated the risk of bias in six domains: confounding bias, control for population, 
control of spatial and/or temporal dependence, control of non-linearities, measurement errors and statistical model. 
Of the 5631 abstracts initially identified, we were left with 132 studies on which to carry out the qualitative synthesis. 
Of the 132 eligible studies, we evaluated 63.64% of the studies as high risk of bias, 19.70% as moderate risk of bias and 
16.67% as low risk of bias.

Conclusions:  All the studies we have reviewed, to a greater or lesser extent, have methodological limitations. These 
limitations prevent conclusions being drawn concerning the effects environmental (meteorological and air pollut-
ants) and socioeconomic variables have had on COVID-19 outcomes. However, we dare to argue that the effects of 
these variables, if they exist, would be indirect, based on their relationship with social contact.

Keywords:  COVID-19, Environmental (meteorological and air pollutants) variables, Socioeconomic variables, Social 
contacts
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Background
Numerous studies have assessed the effects of environ-
mental and socioeconomic variables on the spread of the 
COVID-19 pandemic. Most of them have addressed the 
influence meteorological variables have, although there 
are also quite a few that have considered the effects of 
air pollutants and socioeconomic variables. Those which 
assessed the effects of meteorological variables were 
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the first to appear, specifically between the last week of 
March and the first week of April 2020. In other words, 
very close to COVID-19 being officially declared a global 
pandemic (11 March 2020) [1]. Later, there were those 
which evaluated the effects of air pollutants, the first of 
which appeared between the end of April and the first 
week of May 2020. Finally, the last ones to appear were 
those related to socioeconomic variables; the first of 
which was mid-May 2020.

The studies differ in their outcomes (new and cumula-
tive cases, mortality, reproductive number, etc.), study 
populations (the world, countries, regions, cities), con-
founders as well as in the way of controlling for them, and 
in the modelling strategies adopted. However, with the 
exception of socioeconomic variables, several system-
atic reviews attempting to synthesize the evidence have 
already been published.

For instance, with regard to meteorological variables, 
Mecenas et  al. carried out a bibliographic search until 
the end of March 2020 [2]. In reviewing 17 studies (most 
of them preprints), they found that warm wet climates 
seemed to reduce the spread of COVID-19. However, 
the role of temperature and humidity on the spread of 
the virus was very moderate, since these variables alone 
could not explain most of the variability in the disease’s 
transmission. Smit et  al., in a systematic review carried 
out in July 2020 (that is, of studies that used data from 
the first wave), critically evaluated 42 articles published 
in scientific journals and 80 preprints [3]. They con-
cluded that the evidence suggested that either there was 
no modulating effect of the summer weather conditions 
(i.e., high temperature and low humidity reduce the 
transmission rate of the virus) or, along the same lines as 
Mecenas et al., if it did exist, it was weak. Smit et al. also 
found similar results for other meteorological variables, 
such as ultraviolet radiation and wind speed [3]. McCly-
mont and Hu discussed 23 articles with moderate or high 
ratings (out a total of 86 eligible peer-reviewed articles) 
published until October 1 (also contemplating only the 
first wave) [4], and found that temperature and humid-
ity were associated with COVID-19 incidence. However, 
while the decrease in temperature was associated with 
increases in incidence, in the variations in humidity the 
results were mixed (positive and negative associations 
were found). They also found that wind speed and rainfall 
results were not consistent across studies [4].

In relation to air pollutants, Copat et al. carried out a 
systematic review of 15 studies (13 articles and 2 pre-
prints) published between April 2020 and July 6th, 
2020 [5]. They found a consistent association between 
some air pollutants (fine particles, PM2.5 with a diam-
eter of 2.5 microns (μm) or less, and nitrogen dioxide, 
NO2, and with a less extent coarse particles, PM10, with 

a diameter of 10 μm or less) and a higher incidence and 
mortality from COVID-19. They pointed out, however, 
that there were important limitations for any direct 
comparison of the results and that more studies were 
needed to strengthen scientific evidence. Malecki et  al. 
carried out a systematic review of 19 studies, published 
through to October 31, 2020, that assessed the associa-
tion of particulate matter (i.e., PM10 and PM2.5) pollution 
and the spread of SARS-CoV-2 [6]. They pointed out that 
although there were suggestions that particulate mat-
ter (PM) played a role in the spread of SARS-CoV-2, PM 
concentration alone cannot be effective in spreading the 
COVID-19 disease, and that other meteorological and 
environmental variables were also involved.

Until today (June 2021), no peer-reviewed systematic 
reviews have been published concerning the influence 
socioeconomic variables have on the spread of the pan-
demic. However, let us advance some of our results here 
by noting that in ecological studies the results were not 
conclusive. In some, especially those carried out in the 
United States, the areas with greater economic depriva-
tion had a higher incidence and also a higher mortality. 
That said, in others no association was found, or depriva-
tion was even found to be a protective factor. What was 
consistently observed was the fact that the higher the 
population density was, the greater incidence and mor-
tality were. In individual studies, however, individuals 
with lower incomes or from more disadvantaged groups 
were at greater risk of hospitalization and death.

Nevertheless, all the reviews state that many of the 
studies have significant methodological limitations and 
errors that could bring their results into question. Our 
main objective here is to assess the methodological limi-
tations in the studies that evaluated the effects environ-
mental and socioeconomic variables have had on the 
spread of COVID-19. Furthermore, we discuss the results 
of those studies that were, in fact, able to control those 
very limitations.

Methods
Systematic review
The protocol for this review is registered in the Prospec-
tive Register of Systematic Reviews (PROSPERO 2020 
CRD42020201540). In the review process, we followed 
the preferred reporting items for systematic reviews 
and meta-analysis (PRISMA) protocols [7]. The litera-
ture search, study selection, data extraction, and quality 
assessment were performed by each of us independently. 
In case of any discrepancy between us, we all reached an 
agreement on the final decision.

By combining the keyword ‘COVID-19’ with the key-
words ‘temperature’, ‘(meteorological variables)’, ‘(air pol-
lutants)’, ‘(environmental variables)’, and ‘(socioeconomic 
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variables)’, through the Boolean connector ‘AND’ we con-
ducted a search in the online databases PubMed, Web of 
Science and Scopus, up to December 31, 2020. We did 
not impose any language restrictions, nor did we contact 
any author for additional information.

All the articles retrieved underwent an initial title and 
abstract screening, where any duplicates were discarded, 
followed by a full-text screening for eligible abstracts. We 
made a first exclusion of those studies that did not deal 
with SARS-CoV-2 or COVID-19, preprints (non-peer-
reviewed articles), comments, opinion or purely narrative 
papers, reviews and systematic literature reviews (Fig. 1). 
Among the eligible full-text articles, we made a second 
exclusion of those articles that were purely descriptive 
(including only plots or maps, etc.) and those that did 
not include any type of regression model (those that only 
included the analysis of correlations, for example).

We extracted the following data from the articles 
included in the qualitative analysis: first author, study 
population, study period, outcome, explanatory variables, 
covariates, the statistical method (including the model 
specification and the methods to control the confound-
ing), and the study findings.

Methodological limitations
The usual assessment tools for observational studies 
were not entirely suitable for assessing the risk of bias of 
the studies we reviewed. We preferred to adapt the tool 
proposed by Parmar et al. [8] who, in turn, adapted the 
Newcastle–Ottawa scale [9] and the RTI item bank [10]. 
Specifically, we used six domains: two from Parmar et al. 
[8]—confounding bias and measurement errors in the 
outcome and/or in the exposure variables; one based on 
the dimension ‘unobserved confounding’ in Saez et  al. 

Fig. 1  Flow-chart of the study selection process
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[11]—control of the spatial and/or the temporal depend-
ence; and three that we added ex novo in this paper—
control for the population, statistical model, and control 
of non-linearities.

In each study, each of the six domains were rated as: 
1—low risk of bias, 2—moderate risk of bias, or 3—high 
risk of bias) (Table 1). For the overall rating of each study, 
we evaluated it as ’strong’ (low risk of bias) if, at most, 
one of the six domains was rated as high risk of bias (i.e., 
a rating of 3), ’moderate’ (moderate risk of bias) if up to 
two domains were rated as weak, or ’weak’ (high risk of 
bias) if three or more domains were rated as high risk of 
bias. For the rating of both the domains and the studies, 
we rely on Parmar et al. [8].

Three of the six dimensions corresponded to the speci-
fication error known as omission of relevant variables: 
confounding bias, control of the population and control 
of the spatial and/or of the temporal dependence. This 

specification error leads to biased and inconsistent esti-
mators (that is, the estimators biased even asymptotically, 
i.e., when the number of observations is very high) and, 
in addition, the variances of the estimators are also mis-
leading [12]. In any case, the inference of those studies 
that do not control for this error is highly compromised.

Confounding bias
None of the studies included all possible confounders, 
especially if the studies were ecological (as most of them 
were). However, as regards the spread of COVID-19, 
there is a confounder that, at a minimum, must be con-
trolled for, namely, social contact.

The main route of transmission for COVID-19 is 
through the direct or indirect contact with an infected 
subject via the small droplets that occur when they cough 
or sneeze [13]. Thus, this contact must be controlled for 
in the models, even if indirectly. The control, although 

Table 1  Bias assessment tool

Bias domain Question to Consider Indicator Score
(1: Low Risk of Bias; 2: Medium Risk; 3: 
High risk)

Confounding bias Did the study analysis adjust potential 
confounders appropriately?

Confounders adjusted 1: Many confounders and unobserved 
confounding

2: Some confounders (in particular 
mobility or socioeconomic variables) or 
unobserved confounders

3: None or cannot tell

Control of the population Did the study control for population? Population, age structure of the 
population

1: Control and/or including population 
density

2: Control only by including population 
density

3: No control

Control of the spatial 
and/or temporal depend-
ence

Did the study control the spatial and/or 
temporal extra variability?

Spatial and temporal dependence 1: Control

2: Partial control (control of only one 
dependence, for example)

3: No control

Control of non-linearities Did the study control for non-linear-
ities?

Non-linearities (parametric or non-
parametric)

1: Control

3: No control

Measurement errors What was the heterogeneity of indica-
tors used in the study?

Measurement errors in the explana-
tory variables (exposure variables and 
covariates)

1: Control

2: Partial control (including lags, for 
example)

3: No control

Statistical model Did the study use appropriate statisti-
cal model?

Statistical model 1: Models for count data response vari-
ables

2: Control of heteroscedasticity and rates 
as response variables

3: Models with normally distributed 
errors and count data response variable; 
or no control of heteroscedasticity and 
rates as response variables

Overall Study Rating Strong (low risk of bias): one domain, at most, was rated as 3

Moderate: up to 2 domains were rated as 3

Weak (high risk of bias): ≥ 3 domains were rated as 3
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partial, can be carried out through mobility or, much more 
indirectly, through socioeconomic variables. In general, 
greater mobility implies greater levels of contact. Likewise, 
areas with high population densities are known to have 
greater social contact. Furthermore, some occupations 
present a greater risk, particularly those that were less able 
to switch to teleworking and, therefore, require greater 
mobility and the resulting higher level of social contact.

Unobserved confounding (i.e., residual confounding) 
including, for example, random effects that capture het-
erogeneity, should also be controlled for. In other words, 
unobserved variables specific to the unit of analysis (area 
or individual) that could influence the risk of, in this case, 
the spread of the COVID-19.

We scored this domain with a 3 if the confounding was 
not controlled for by any method, with a 2 if the observed 
confounding was controlled for with a moderate num-
ber of confounders (up to two maximum), in particular 
mobility or socioeconomic variables, or with a 1 if the 
observed confounding was controlled for with a large 
number of confounders (more than two) and/or unob-
served confounding was also controlled for.

Control of the population
Perhaps the main relevant variable that should not be 
omitted by any study is that of population at risk, either 
in the study area (in ecological studies) or in the area 
in which the subject resides (in individual studies). It 
is evident that both incidence and mortality, as well as 
other outcomes (hospitalizations, ICU admissions, etc.), 
depend both on the population of the area under study 
and on the age structure of that population.

Population control can be carried out in various ways: 
using rates, including the population or the expected 
value of the outcome in each area under study in the 
model as an offset, or controlling, as covariates, the size 
of the population or its structure (for example, percent-
age of population aged 65 years or more).

A control of the population can also be achieved by 
including population density (i.e., the number of people 
per unit of area, usually per square kilometre) as a covari-
ate. However, it is possible that, in this case, control 
would only be partial. On one hand, an area with a higher 
population density does not always have more population 
than another, but it depends, logically, on its surface. On 
the other hand, population density could be capturing 
other socioeconomic variables.

This domain was scored with a 3 if the population was not 
controlled for by any method, a 2 if the population was con-
trolled for by only including population density as a covari-
ate, or a 1 if the population was controlled for, in addition to 
including the population density by other additional method.

Control of the spatial and/or of the temporal dependence
Several studies analyze, as outcome, cumulative cases and 
cumulative deaths. Many others, however, use a temporal 
design. This is a design, where both the outcome and its 
possible explanatory variables, as well as the covariates, 
are measured in the form of time series. Time series are 
observed with a certain periodicity, usually regular (for 
example, daily) over a given period of time.

In this case there is temporal dependency. The outcome 
observations are not independent but are related, so their 
future behavior is predictable. In general, this depend-
ence can be long or short term. A long-term dependency, 
or trend, could be defined as a movement or tendency 
in the data. As is known, in the case of COVID-19 there 
have been between two and four waves, depending on 
the country. That is, long-term swings have occurred. 
Periods in which the outcome values are persistently 
high, followed by others in which the values have been 
low. Short-term dependency, also called serial autocor-
relation, refers to the relationship of the values of an out-
come on, for example, a given day with the values of the 
previous days, especially with those of the preceding day.

Most studies use a spatial or spatio-temporal design. In 
other words, they observe the outcome in different geo-
graphical areas, and sometimes over time. When a spa-
tial design is available, it is important to distinguish two 
sources of variation. In the first place, the most important 
source is usually the so-called ’spatial dependence’ and is 
a consequence of the correlation of the spatial unit with 
neighboring spatial units, generally those that are geo-
graphically contiguous. In this way, the risks (for exam-
ple, of transmission) of contiguous or nearby areas are 
more similar than the risks of spatially distant areas. Part 
of this dependency is not really a structural dependency 
but is mainly due to the existence of uncontrolled vari-
ables, that is, not included in the analysis. Meanwhile, the 
second source, the existence of spatially independent and 
unrelated variation called ‘spatial heterogeneity’, must 
be assumed. This is a consequence of the existence of 
unobserved variables without spatial structure that could 
influence risk [14].

The temporal and the spatial dependence must be con-
trolled for, because, otherwise, in the best of cases, the 
variances of the estimators will be misleading (when the 
outcome is a continuous variable, normally distributed, 
and least squares methods are used for the inference) and 
in most cases, not only will the variances be biased, but 
the estimators will also be biased (when the outcome is 
not a continuous variable, not normally distributed, and 
least squares methods cannot be used) [12].

In some studies, the control of temporal or spatial 
dependence is not applicable. Thus, in studies with a time 
series design but in which a very short period of time is 
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analyzed, it does not make sense to control for temporal 
dependence. Likewise, in those studies with a spatial (or 
spatio-temporal) design but that analyze very spatially 
distant territories (for example, several countries in the 
world) it does not make sense to control for the spatial 
dependence.

We scored this domain with a 3 when neither temporal 
nor spatial dependency was controlled and should have 
been; a 2 when the control was partial, controlling only 
one dependency and not controlling the other; and a 1 
when they were controlled.

Control of non‑linearities
Along with the omission of relevant variables, the error in 
the functional form constitutes the most important spec-
ification error. The relationships between environmental 
variables and COVID-19 outcomes are not usually lin-
ear. Thus, for example, in Fig. 2, we show the smoothed 
curves for the relationship between the daily temperature 
and the daily levels of nitrogen dioxide (NO2) and the 
daily number of cases for Spain in the period between 
January 1, 2020 and April 14, 2021. Specifically, we draw 
the estimated curves in a generalized additive model in 
which we use smoothing splines with a quasi-likelihood 
Poisson link, i.e., taking into account over-dispersion.

As can be seen, in none of the cases was the relation-
ship linear. These non-linearities must be controlled in 
the models, because, otherwise, as when relevant vari-
ables are omitted, the estimators will be inconsistent and 
their variances misleading.

We scored this dimension with a 3 if non-linearities 
were not controlled for (again, when applicable) or a 1 if 
they had been controlled.

Measurement errors
Measurement errors (also known as misclassification) 
can occur in both the response variable and in the expo-
sure variables.

The definition of the response variable can vary in 
space and time, even within the same country, leading to 
differential misclassification. In Spain, for example, the 
Catalan government, on the one hand, defined a death 
from COVID-19 as being a positive result on some test 
(PCR or fast test) or symptoms presented at some point 
which a health professional subsequently classified as a 
possible case, but the individual did not have a diagnos-
tic test with a positive result [15], whereas on the other 
hand, the Spanish government, defined a death from 
COVID-19 as being someone who presented a positive 
PCR result [16], thus providing significantly lower fig-
ures. This misclassification continued until May 21, 2020, 
when the Government of Spain adopted the same defini-
tion as the Government of Catalonia [17].

However, the measurement errors in the response vari-
able are not attributable to the investigators, although 
they should certainly discuss them if appropriate. Fur-
thermore, fortunately, when measurement errors occur 
in the dependent variable, the estimators remain consist-
ent, although they are not efficient [12], that is, not very 
precise, thus leading to wider confidence intervals than if 
there had been no measurement errors.

There is, however, an important problem if measure-
ment errors occur in the explanatory variables (exposure 
or covariates). If the explanatory variables are measured 
with error, the estimators will be inconsistent [12].

Even in studies at the individual level, the exposure 
variables and, obviously, the contextual variables (for 

Fig. 2  Smoothed curves for the relationships between daily temperature and daily levels of nitrogen dioxide and the number of daily cases of 
COVID-19. Spain, January 1, 2020 to April 14, 2021. The data were obtained from: [16] . Environmental data [81, 82]
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example, the socioeconomic ones) are not observed at 
the individual level, but are aggregated at the level of 
the area under study. Nevertheless, not all residents in 
the area under study are actually exposed to the same 
mean values of the explanatory variables, which leads to 
a measurement error. If the misclassification is non-dif-
ferential (over time and over space within the area under 
study) and, furthermore, if the between-area variabil-
ity of the variable measured with error is much greater 
than the within-area variability of such variable, that is, 
that the area under study is not very heterogeneous (for 
example, because it is a small area), then the effect of the 
measurement error on the estimator consistency may be 
negligible [18]. This is what happens in the case of con-
textual socioeconomic variables as long as the area under 
study is not very large.

In the exposure variables (both air pollutants and 
meteorological variables), however, there is differential 
misclassification, because the exposure exhibits spatial 
variation across the area under study. If the spatial struc-
ture (i.e., spatial dependence) of the data is ignored, the 
estimators will be biased and inconsistent [19]. Many 
studies use the measurements observed in the area under 
study to estimate, by means of point estimators, exposure 
levels for that entire area. The estimators most widely 
used are the arithmetic mean of the values of the expo-
sure, observed in several monitoring or meteorological 
stations in the area, and sometimes the inverse-distance 
weighted average of these values.

This measurement error in the exposure variables 
must be controlled for, either explicitly incorporating the 
spatial dependence, in the ecological studies, or by cor-
recting the misalignment between the locations of the 
observation points of the exposure variables and that 
locations of the individuals, in the studies at the individ-
ual level.

In studies with an ecological spatial design, the ’modifi-
able areal unit problem’ (MAUP) occurs [20]. The MAUP 
is a consequence either because areas of different sizes 
are added (scale effect) and/or because of the way the 
area is divided (zoning effect) [21]. In either case, it is a 
potential source of bias. For example, Wang and Di found 
that the association between nitrogen dioxide (NO2) and 
COVID-19 deaths varies when the data is aggregated 
at different levels: a risk factor when the area is smaller 
(aggregation of districts and cities) and a protective fac-
tor at the province level [22]. Similarly, we also found a 
positive association between NO2 and deaths as a con-
sequence of COVID-19 at the level of a county-like area 
[17] and no association at a lower level of aggregation 
[23].

When using a temporal design, the ‘modifiable tempo-
ral unit problem’ (MTUP) [24] also occurs, whereby the 

results depend on the way data are temporally aggregated 
[21]. Furthermore, in this type of design, temporal mis-
alignment can occur. In other words, the relationship 
between exposure and the occurrence of COVID-19 
outcome is not contemporary, but rather is distributed 
over time as a consequence of the incubation period of 
COVID-19 and due to the diagnostic delays of the out-
come. This temporal misalignment must be controlled by 
including lags, for example.

We scored this dimension with a 3 if measurement 
errors in the exposure variables are not controlled at all, 
a 2 if they are only partially controlled (not including 
lags, for example) or the areas under study are very large 
(countries, for example) and a 1 if they have been con-
trolled for.

Statistical model
Many of the studies, even though the response variable is 
a count data, used regression models with normally dis-
tributed errors (linear regression models, generalized lin-
ear and additive models with Gaussian link, etc.). Using 
this type of models leads to biased results, unless the 
number of counts is very large. However, this was not the 
case in most studies.

Some studies did not model the counts but rather the 
rates, dividing the dependent variable by the size of the 
population. However, since the numerator, being a count 
data, is actually distributed following a Poisson distribu-
tion, the variance is proportional to the mean, so it is not 
constant, leading to heteroscedasticity (i.e., overdisper-
sion). This must be controlled for, otherwise, the vari-
ances of the estimators are misleading.

To illustrate the effects on the results of erroneously 
using a regression model with normally distributed 
errors, we used the data in Filippini et  al. [25]. Their 
objective was to investigate the link between the trans-
mission of SARS-CoV-2 infection and long-term expo-
sure to NO2 in the provinces of three regions of Northern 
Italy (Lombardia, Venetto and Emilia Romagna), between 
March 8 and April 5, 2020 (n = 84). Using their data, we 
first estimated a linear regression model including, as 
a dependent variable, the number of new daily SARS-
CoV-2 positive cases (count data variable). We found 
that long-term NO2 levels to which the inhabitants of the 
provinces of the Italian regions studied had been exposed 
to be positively associated with the total number of cases 
that occurred in the period considered. Specifically, for 
every 1  μg/m3 increase in the NO2 levels, the number 
of cases increased by 18.478 for the entire period (95% 
confidence interval, 95% CI 10.285–27.210). However, 
the residuals of the model were not normally distributed 
(Fig.  3). We then modelled the rates (cases per 100,000 
inhabitants) using a linear regression model, although we 
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did not control for heteroscedasticity. For every 1 μg/m3 
increase in NO2, the number of cases increased by 1.207 
cases per 100,000 inhabitants (95% CI 0.050–2.364). 
However, the residuals presented a clear heteroscedastic-
ity behavior (the scatter plot of the residuals against the 
adjusted values did not present a constant dispersion, 
i.e., variance), and furthermore, they were not normally 
distributed (Fig.  3). When we estimated a generalized 
Poisson model, in which we took into account the over-
dispersion, and in which we included the population size 
as an offset, we could not reject the null hypothesis that 
the parameter associated with the long-term exposure of 
NO2 was equal to zero (95% CI: − 0.004, 0.001).

We scored this dimension with a 3 when the outcome 
was a count data and regression models with normally 
distributed error were used. We also scored a 3 when 
rates were modelled but heteroscedasticity was not 

controlled for. Meanwhile, we scored a 2 if rates were 
modelled and heteroscedasticity was controlled, and a 
1 if models for count data response variables were used 
(Poisson regression, negative binomial regression, etc.).

Results
Systematic review
Figure 1 shows a flowchart of the review process. Of the 
5631 abstracts initially identified, and after excluding 
duplicates, we were left with 3238 studies. From these 
we excluded 3063 studies that did not refer to SARS-
CoV-2 or COVID-19, preprints, comments, those purely 
narrative studies, editorials and reviews and systematic 
reviews, thus leaving us with 175 eligible studies. As we 
said, we excluded 43 studies that were purely descrip-
tive and those that did not include any type of regression 
model (Additional file  1: Table  S1). In the end we were 

Fig. 3  Residual analysis of the linear regression models relating the transmission of SARS-CoV-2 infection and long-term exposure to NO2 in the 
provinces of three regions of Northern Italy (Lombardia, Venetto and Emilia Romagna), between March 8 and April 5, 2020. a Response variable: 
new daily SARS-CoV-2 positive cases. b Response variable: new daily SARS-CoV-2 positive cases per 100,000 habs. The data were obtained from: [25]
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left with 132 studies with which to carry out the qualita-
tive synthesis (Additional file 1: Tables S2 and S3).

Of the 132 studies, 92 referred to meteorological vari-
ables, 40 to socioeconomic variables and 34 to air pol-
lutants. Seventy-one of the studies referred only to 
meteorological variables, 21 only to socioeconomic vari-
ables and 16 only to air pollutants. Of the 92 studies that 
referred to meteorological variables, 16 also considered 
air pollutants, 14 meteorological variables and socioeco-
nomic variables. Four of the studies referring to air pol-
lutants also referred to socioeconomic variables but not 
to meteorological variables. Nine referred to meteorolog-
ical variables and socioeconomic variables but not to air 
pollutants. Finally, five studies considered meteorologi-
cal variables, air pollutants and socioeconomic variables 
(Additional file 1: Figure S1).

Of the 132 studies finally selected, 124 used an ecologi-
cal design and nine an individual design. Most ecologi-
cal studies considered different regions (states, regions, 
provinces, counties, cities, etc.) within the same coun-
try as study populations (71 studies). This is followed by 
those that considered countries or cities in the world (34 
studies) and, finally, those that considered individual cit-
ies or smaller areas (19 studies). Seven of the eight stud-
ies with an individual design, analyzed the influence of 
socioeconomic variables, while only two considered soci-
oeconomic variables and air pollutants.

Most of the studies (129 out of 132) analyzed data 
referring up to August 1, 2020 (i.e., only considering the 
first wave). In fact, only three consider the first two waves 
of the pandemic.

Methodological limitations
Table  2 shows the evaluation of the studies included in 
the qualitative synthesis. Of the 132 eligible studies, we 
evaluated 63.64% (84 of 132) as weak (high risk of bias), 
19.70% (26 of 132) as moderate (moderate risk of bias) 
and 16.67% (22 of 132) as strong (low risk of bias). Only 
four studies did not have any dimension scored with a 3 
(high risk of bias) [17, 26–28].

In decreasing order of the studies that considered 
socioeconomic variables, 62.50% (25 of 40 studies) were 
evaluated as moderate (15 studies, 37.50%) or strong 
(10, 25.00%). Of the 34 which considered air pollutants, 
41.18% (14 studies) were evaluated as moderate (9 stud-
ies, 26.47%) or strong (5 studies, 14.71%). Finally, of the 
92 studies that considered meteorological variables, 
25.00% (23 studies) were evaluated as moderate (11 stud-
ies, 11.96%) or strong (12 studies, 13.04%).

However, in the case of studies that consider socio-
economic variables, it should be noted that the high risk 
of bias could be underestimated. As is known, socio-
economic variables are contextual variables measured 

at an ecological level in a geographic area and invariant 
over time. Their influence on COVID-19, if any, is highly 
unlikely to be non-linear. Consequently, in many cases 
this dimension was not evaluated.

The dimension in which we evaluated more studies 
with a high risk of bias was that of measurement errors 
(90 of 132 studies, 68.19%), followed by the control of the 
spatial and temporal dependence dimension (80 studies, 
60.61%) and of the statistical model (77 studies, 58.33%) 
and control of non-linearities (73 studies, 55.30%) dimen-
sions. The dimensions with fewer studies with a high risk 
of bias were confounding bias (47 studies, 35.61%) and 
control of the population (53 studies, 40.15%).

Findings from studies assessed as moderate or strong
In relation to the studies that considered meteorologi-
cal variables, the ones that we evaluated as moderate or 
strong [28–48] have not consistently found an attenu-
ating effect of meteorological variables. That is, they 
have not found that high temperature and low humidity 
were associated with lower incidence or mortality from 
COVID-19. In seven of 22 studies, temperature was 
either positively associated or not statistically associated 
with incidence [27, 30, 34, 35, 44], transmission (repro-
ductive number) [46] and mortality [28] (four out of 11 
studies were assessed as strong and another three out 
of 11 studies assessed as moderate). Among the studies 
that found an attenuating effect, five (three evaluated 
as strong [31, 38, 40] and one as moderate [41]) did not 
include lags and, therefore, assumed that the effect of 
the meteorological variables was contemporaneous. The 
studies that did include lags were evaluated with high 
risk of bias in some dimension. In particular, control of 
non-linearities [32, 39, 42, 45, 48], confounding bias [37, 
43, 48], and measurement errors [37, 42, 47], followed by 
control of population [29, 36] and control of spatial and/
or temporal dependence [33, 39]. Interestingly, Xie et al. 
[27], whose units of analysis were 122 Chinese cities, (a 
study that we evaluated as strong and did not have any 
dimension evaluated as high risk), points out that there 
is no evidence supporting that case counts of COVID-19 
could decline when the weather becomes warmer.

There was very little evidence in relation to other 
meteorological variables such as wind speed (only two 
strong [33, 49] and one moderate [34] study analyzed it 
and found a negative association between wind speed 
and incidence); cloud percentage [29] or solar radiation 
[42] (both evaluated as moderate and with contradictory 
results: higher percentage of cloud was associated with 
higher incidence, while no association was found with 
solar radiation); or precipitation (considered in only one 
strong study that found a significant negative association 
with incidence [31]).
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Table 2  Evaluation of bias for the studies in the systematic review

Manuscript Confounding 
bias

Control of the 
population

Control of the spatial and/or 
temporal dependence

Control 
of non-
linearities

Measurement 
errors

Statistical 
model

Overall rating

Aabed 3 2 3 1 3 1 3
Adekunle 3 3 1 1 2 3 3
Adhikari 2 3 2 3 2 1 2

Ahmadi 1 2 3 3 3 3 3
Azar 1 2 3 NA 2 1 1
Azuma 1 1 2 3 3 3 3
Behnood 3 2 3 1 3 3 3
Briz-Redón 1 1 1 1 3 3 2

Byass 3 1 3 3 3 1 3
Carleton 3 1 2 1 3 3 3
Chadeau-
Hyam

1 3 2 3 2 1 2

Chakrabarty 3 3 3 1 3 1 3
Chakraborty 1 1 3 2 3 1 2

Chaudhry 1 2 3 NA 3 1 2

Chien 1 1 1 1 3 1 1
Coccia a 3 2 3 3 3 3 3
Coccia b 1 2 3 3 2 3 3
Coker 1 1 2 3 1 1 1
Das a 3 1 3 NA 3 1 3
Das b 1 3 3 NA 3 1 3
Demongeot 3 3 3 3 3 3 3
DiMaggio 1 1 1 NA 2 1 1
Dogan 3 3 3 3 2 3 3
Drefahl 1 3 3 NA 2 1 2

Falcão Sobral 2 2 3 3 3 3 3
Fattorini 3 3 3 3 3 3 3
Fazzini 3 3 3 3 3 3 3
Fiasca 3 2 3 3 3 3 3
Filippini 1 1 3 1 3 3 3
Fu 2 2 2 3 2 1 2

Guasp 2 2 3 3 3 3 3
Guo C 1 1 3 1 2 1 1
Guo XJ 3 3 3 3 3 3 3
Gupta 3 3 NA 3 3 3 3
Han 1 3 1 3 2 3 3
He 3 3 1 1 3 1 3
Hoang a 2 3 3 1 3 3 3
Hoang b 2 3 3 1 1 3 3
Hutter 2 2 3 3 3 1 3
Iqbal MM 3 3 NA 3 3 3 3
Iqbal N 2 3 3 1 3 3 3
Isaia 1 1 3 3 3 3 3
Islam ART​ 3 3 3 1 2 1 3
Islam N 2 1 3 2 3 1 2

Jamshidi 1 2 3 3 3 3 3
Jiang 3 3 3 3 3 1 3
Jüni 1 2 NA 3 2 2 1
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Table 2  (continued)

Manuscript Confounding 
bias

Control of the 
population

Control of the spatial and/or 
temporal dependence

Control 
of non-
linearities

Measurement 
errors

Statistical 
model

Overall rating

Kaiser 1 2 NA NA 3 3 2

Khan 3 1 3 1 3 3 3
Kodera 3 2 3 3 3 3 3
Kubota 1 1 2 3 3 3 3
Lamb 1 2 2 NA 3 3 2

Lau 2 3 3 NA 2 3 3
Lhada 2 3 3 3 3 3 3
Li AY 1 2 3 3 3 3 3
Li H 3 3 3 3 3 3 3
Li X 2 3 3 NA 2 3 3
Liang 1 1 1 3 2 1 1
Lin 2 2 3 3 3 3 3
Liu 2 3 2 1 2 1 1
López-Feld-
man

1 1 3 3 2 1 2

Luo 1 1 3 1 3 2 2

Ma 3 1 2 1 3 1 2

Madhav 1 1 3 NA 2 1 1
Malki 3 3 3 1 3 3 3
Mandal 3 1 NA 3 3 3 3
Marciel de 
Souza

3 1 1 NA 3 1 2

Martorell-
Marugan

3 1 3 3 3 3 3

Medeiros-
Figuereido

1 2 3 3 3 3 3

Meo 1 3 NA 3 3 3 3
Meraj 3 3 3 3 3 3 3
Meyer 1 1 1 3 2 1 1
Muñoz-Cacho 3 2 3 3 3 3 3
Notari 3 3 1 1 3 3 3
Ozyigit 1 3 3 3 3 3 3
Paez 2 2 2 3 3 3 3
Pan 3 3 3 3 3 3 3
Pequeno 1 2 3 3 2 1 2

Perone 1 1 3 3 3 3 3
Pirouz 2 3 3 3 2 3 3
Plümper 2 2 2 NA 2 3 1
Poirier 2 3 3 3 3 3 3
Pozzer NA 2 NA 1 1 1 1
Pramanik a 3 3 3 1 3 3 3
Pramanik b 3 3 3 1 3 3 3
Prata 2 1 1 1 3 1 1
Price-Hay-
wood

1 2 3 NA 2 1 1

Qi 2 1 3 1 3 1 2

Rafael 3 2 3 NA 2 3 3
Rahman 1 1 3 3 3 3 3
Rashed 3 3 3 3 3 3 3
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Table 2  (continued)

Manuscript Confounding 
bias

Control of the 
population

Control of the spatial and/or 
temporal dependence

Control 
of non-
linearities

Measurement 
errors

Statistical 
model

Overall rating

Rehman 1 1 3 3 3 1 3
Richmond 1 1 3 NA 2 3 2

Rodríguez-
Villamizar

1 1 2 3 3 1 2

Rozenfeld 1 3 3 NA 2 1 2

Rubin 1 3 3 1 2 1 2

Runkle 1 2 2 3 3 1 2

Saez 1 1 1 1 2 1 1
Sajadi 1 3 NA 3 3 3 3
Sánchez-
Lorenzo

3 3 NA 3 3 3 3

Sannigrahi 1 2 3 NA 2 3 2

Sarkodie 1 3 1 3 2 3 3
Scarpone 1 1 1 1 2 3 1
Sehra 1 1 3 3 3 1 3
Shahzad F 3 3 3 3 3 3 3
Shahzad K 3 3 3 3 3 3 3
Shao 2 3 NA 3 3 1 3
Shi 3 1 2 1 2 1 1
Stieb 1 1 2 3 3 1 2

Su 1 3 NA 3 3 3 3
Sun 1 1 1 3 3 3 3
Tagaki a 2 1 3 3 3 3 3
Tagaki b 3 3 3 3 3 3 3
To 3 1 2 3 3 3 3
Tobías 2 1 2 3 2 1 1
Tzampoglou 1 1 3 3 3 3 3
Ujiie 1 1 3 3 3 1 3
Wang Q 1 1 2 1 3 1 1
Wang Y 3 3 3 1 3 3 3
Ward a 3 1 3 1 3 1 3
Ward b 3 1 3 1 3 1 3
Wu X 1 1 2 1 2 1 1
Wu Y 2 2 NA 1 3 3 2

Xie J 2 1 2 1 2 1 1
Xie Z 1 3 1 3 3 3 3
Xu 3 1 2 3 2 1 2

Yao a 1 3 3 3 3 2 3
Yao b 1 3 3 3 2 3 3
You 1 2 1 NA 3 3 2

Zakeri 1 2 3 NA 2 1 1
Zhang 2 3 3 1 3 3 3
Zhu L 3 3 2 1 2 3 3
Zhu Y 3 3 NA 3 3 2 3
Dimensions Overall

 Number of 3 s 47 53 80 73 90 77 85

 Number of 2 s 26 32 23 2 40 4 26

 Number of 1 s 60 48 30 58 3 52 22

Bold: Strong (rate 1); Italic: Moderate (rate 2); Bolditalic: Weak (rate 3)



Page 13 of 18Barceló and Saez ﻿Environ Sci Eur          (2021) 33:108 	

Greater consistency was found in the association 
between greater exposure to levels of air pollution, espe-
cially long-term exposure, and an increase in COVID-19 
outcomes, both in ecological [17, 28, 29, 44, 48–51, 54–
56] and individual studies [52, 53]. The areas that were 
most exposed to air pollution were those with the high-
est incidence (new daily cases, new positive tests, and 
cumulative cases) [17, 29, 44, 48, 49, 53, 54] and the high-
est mortality [17, 28, 29, 49–52, 55, 56] from COVID-
19. This result occurs, above all, for fine particles, PM2.5 
[28, 44, 50–56], but also for ozone, O3 [29, 49, 50], coarse 
particles, PM10 [17, 50], nitrogen dioxide, NO2 [17, 50], 
benzene [55] and for an air quality index [48]. In Saez 
et al. [17] (which we evaluated as strong) as in Adhikari 
et al. [29] and Rodríguez-Villamizar et al. [56] (these last 
two evaluated as moderate), some of the pollutants were 
not found to be associated with mortality (PM10 in Saez 
et al., O3 in Adhikari et al., PM2.5 in Rodríguez-Villamizar 
et al.).

In relation to studies that considered socioeconomic 
variables, as we said, we must distinguish between the 
findings of ecological [17, 28, 54–66] and individual stud-
ies [53, 67–72]. In the ecological studies, there was no 
consistent association between socioeconomic contex-
tual variables and COVID-19 outcomes. In just over half 
of the studies, the socioeconomic variables were risk fac-
tors and in the rest they were either protective factors or 
no statistically significant association was found. Even in 
some studies, such as Saez et al. [17] or Wu X et al. [28] 
(both of which we evaluated as strong and did not have 
any dimension evaluated with high risk of bias), appar-
ently contradictory results were found. Thus, in Saez 
et al. [17], whose unit of analysis were small areas (coun-
ties and health zones, some made up of census tracts, 
others by municipalities) in Catalonia, Spain, the higher 
the percentage of poor housing in the small area and the 
more economically deprived the area was, the greater the 
risk of a positive result and death. Conversely, the higher 
the unemployment rate and the percentage of foreigners 
in the small area, the lower the risk of a positive result 
and death. In Wu et al. [28], whose units of analysis were 
US counties, while percent of the adult population with 
less than high school education and percent of Black 
residents, both in the county, were found to be positively 
associated with the number of deaths in the county, the 
median household income, the percentage of owner-
occupied housing and, marginally, the median house 
value were also found positively associated. Meanwhile, 
others, such as the percentage of people in the county 
in poverty, were not found to be statistically significant 
associated.

More consistency has been found in relation to popu-
lation density. In the areas with a higher population 

density, there was a higher incidence, a higher number of 
positives, a higher transmission (measured by the repro-
ductive number) and a higher number of deaths than in 
others less densely populated areas. In Wu et  al. [28], 
however, the higher the population density, the lower the 
risk of mortality (although statistical significance only 
occurs in the fourth quintile).

Of the seven individual studies that we evaluated as 
moderate or strong, five found an association between 
both individual socioeconomic status (income, non-white 
ethnicity—especially Blacks-, lower educational attain-
ment, being an immigrant from a low- or middle-income 
country) and contextual (income of the area, where the 
subject resided, residing in a neighborhood with financial 
insecurity) and various COVID-19 outcomes (positive 
tests, hospital admissions and deaths). We did, however, 
find one exception. In Price-Haywood et al. (a study that 
we evaluated as strong), whose study population was the 
Ochsner Health facility in New Orleans, Louisiana, USA, 
Black race was not associated with higher in-hospital 
mortality than white race, after adjustment for differ-
ences in sociodemographic and clinical characteristics on 
admission [70].

Discussion
Our results, both with regard to the methodological 
limitations that we found in the review and the results 
of the studies that control them, were similar to those 
of other reviews. Regarding the methodological limi-
tations, we will refer, in order of publication, to two 
reviews (not systematic): one that considered air pol-
lutants [73] and the other meteorological variables [74]. 
Villeneuve and Goldberg review six studies on COVID-
19 (only two were peer-reviewed) and two on SARS, 
published up to May 2020 [74]. Hunter Kerr et  al. 
review 43 studies (23 of them peer-reviewed), pub-
lished in 2020 [74]. Both reviews found, as we did, that 
all studies have methodological limitations in one way 
or another. Almost all the methodological limitations 
that we have pointed out here were also considered 
in these two reviews. There are, however, some differ-
ences. Hunter Kerr et  al. did not consider choosing a 
statistical model with normally distributed errors [74] 
as a limitation. Villeneuve and Goldberg, for their part, 
did not consider the error of the functional form (i.e., 
control of non-linearities), at least directly, inasmuch 
as they do so indirectly by pointing out, as a limitation, 
the inadequate evaluation of effect modification [73]. 
In contrast, Villeneuve and Goldberg point out, as the 
most important error, possible cross-level bias in eco-
logical studies.
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Regarding the influence of environmental variables 
(meteorological and air pollutants) in COVID-19 out-
comes, the findings of the studies evaluated as moderate 
or strong in our review, coincided with the findings of the 
other reviews (both systematic and non-systematic).

We cannot conclude that there was an attenuating 
effect of weather conditions on the spread of the COVID-
19 pandemic. In addition to the fact that, as mentioned, 
we did not find a systematic behaviour in the reviewed 
studies, so the attenuation shown by some of them could 
actually be a consequence of an inadequate adjustment. 
Thus, on the one hand, the study period of all the stud-
ies reviewed by the systematic reviews of Mecenas et al. 
[2], Smit et al. [3] and McClymont and Hu [4] as well as 
by the Hunter Kerr et  al.’s review [74], corresponded to 
the first wave. The same occurs with most of the studies 
in our review (all except three). However, with a single 
exception [45], none of the studies controlled for non-
pharmaceutical interventions either as containment or 
suppression strategies undertaken in that period. Thus, 
in this case, the reduction in the spread of the pandemic 
as temperature increased and humidity decreased, could 
have been confounded by the effects of lockdowns and 
other restrictions. Although Tobías and Molina [45] 
controlled for the effects of lockdown (and also those of 
seasonality as a consequence of weekends), they did not 
adjust for other confounders. Consequently, and perhaps 
for this reason, they found a significant effect only in the 
contemporary association (the same day) between an 
increase in temperature and a reduction in the incidence 
rate. We believe that, if they exist, the effect of meteoro-
logical variables on the spread of COVID-19 would be 
indirect. In the spring–summer of 2020, better weather 
conditions (higher temperature, lower relative humidity, 
lower wind speed, etc.) and a relaxation of restrictions, 
led to greater mobility and, therefore, greater social con-
tact that, in turn, led to an increase in transmission and, 
consequently, in incidence. This was what happened, for 
example, in Spain during the second wave (which began 
in August 2020) [23].

The results of all reviews, including ours, suggest that 
there is an association between exposure to air pollutants 
(particularly in the long term but also in the short term) 
and COVID-19 outcomes. In fact, two hypotheses have 
been suggested that would explain this association. First, 
some studies have proposed that air particulate matter 
can operate as a virus carrier, promoting the spread of 
the SARS-CoV-2 [74–76]. It should be noted, however, 
that these studies were either not eligible as they used 
only correlation analysis to test their hypothesis [75] or 
they were eligible but were assessed as a high risk of bias 
[76].

A second hypothesis has been proposed which sug-
gests there could be potential biological mechanisms that 
may explain the association between air pollutants and 
respiratory viral infections. According to this, the effects 
of exposure to air pollutants would occur not so much 
on transmission or incidence but on the worsening of 
the disease (hospitalization, ICU admissions, mortality). 
Exposure exacerbates the severity of COVID-19 infec-
tion symptoms and worsens the prognosis of COVID-19 
patients [73]. In this sense, Wu X et  al. [28] argue that 
long-term exposure to PM2.5 could cause alveolar angi-
otensin-converting enzyme 2 (ACE-2) receptor overex-
pression and impairs host defences [77]. This could cause 
a more severe form of COVID-19 in ACE-2—depleted 
lungs, increasing the likelihood of poor outcomes, 
including death [78]. We, however, believe that air pol-
lutants have actually been surrogates of other variables, 
such as the mobility of residents and several socioeco-
nomic conditions (high population density, poor hous-
ing, use of public transport, occupations in which it is not 
possible to telecommute, etc.) that facilitate social con-
tact [17]. In fact, Dey and Dominici, in a very recent edi-
torial commenting on the study by Wu et al. [28], and of 
which Dominici is a co-author, point out that the health 
risks of some racial subgroups are spiraling as they have 
higher levels of exposure to air pollutants, hence being 
more susceptible to mortality from COVID-19 [79]. We 
do not deny that exposure to air pollutants had an inde-
pendent effect on, above all, the worsening of the disease 
among those diagnosed with COVID-19. However, we 
are convinced that this effect cannot be observed using 
an ecological design.

As we noted, we have found a consistency in the effects 
of socioeconomic variables on COVID-19 outcomes only 
in individual studies and in indicators also at the indi-
vidual level (ethnicity—particularly being Black—educa-
tion, etc.). We believe that the effect, if it exists, would 
be indirect. Poorer socioeconomic conditions would 
be associated, on the one hand, with greater social con-
tact, which would affect the transmission of the virus 
and the incidence of COVID-19 and, on the other, with 
a greater number of comorbidities and greater difficul-
ties in accessing health care which would affect a poorer 
prognosis of the disease. Furthermore, poorer socio-eco-
nomic conditions could be related both to a differential 
exposure to air pollution and to a differential susceptibil-
ity to its effects (i.e., modification of the effect) [80].

In short, a large part of the methodological problems 
that we have encountered and, therefore, of the uncer-
tainty in the findings, are the consequence of using an 
ecological design. In this sense, we could not agree more 
with Hunter Kerr et  al. [74], who recommend, as an 
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epidemiological design, a longitudinal study with individ-
ual-level data, in which those diagnosed with COVID-19 
would be followed through time.

Our study may have three limitations. First, some stud-
ies published during 2020 may have escaped us. That said, 
this is unlikely, since, as of January 2021, we have been 
regularly reviewing PubMed and periodically reviewing 
the other databases. Nevertheless, it is not impossible 
that a study may have eluded us. Second, both the infor-
mation extraction and the quality control we carried out 
could have some subjectivity. We have tried to minimize 
this as much as possible.

Finally, as we noted, the rating of both the domains and 
the studies are based on Parmar et al. [8], with the only 
difference being that in Parmar et  al., an overall rating 
of strong was given if none of its domains was rated as 
weak. In our case, this assignment seemed too restric-
tive. In fact, applying this criterion would imply that only 
one of the studies could be rated as strong. In our case, 
we observed some biases that were not contemplated in 
Parmar et al., such as the lack of control of the popula-
tion and of the spatial and/or temporal dependence, the 
non-control of non-linearity and the inappropriate use of 
statistical models. In our case, the probability that at least 
one of these biases occurred was very high. In any case, 
we admit that there could be some degree of arbitrariness 
in the assignment of the overall rating to one category or 
another.

Conclusions
All the studies we reviewed have methodological limi-
tations to a greater or lesser extent. Even those that we 
have evaluated as strong (16.67% of the studies reviewed) 
and, among them, those in which we did not evaluate 
any dimension as having a high risk of bias (4 studies), 
have the limitation of using an ecological epidemiologi-
cal design or, in any case, either of measuring the expo-
sure in an ecological way (exposure misclassification). 
These limitations prevent conclusions about the effects 
of environmental (meteorological and air pollutants) 
and socioeconomic variables on COVID-19 outcomes 
being drawn. However, we dare to argue that the effects 
of these variables, if they exist, would be indirect, based 
on their relationship with social contact. In any case, the 
estimation of these independent effects requires the use 
of an individual design and the control of the methodo-
logical limitations explained in this work. Among them, 
an estimate of individual exposure free of biases (non-dif-
ferential misclassification, non-existence of spatial–tem-
poral misalignment, etc.).
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