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Abstract

Background: Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, informa-
tion on sublethal toxicological responses of aquatic organisms is limited. We examined influences of () antx-a (11—
3490 ug/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative
stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish)
and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic
exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using
isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control.

Results: Caffeine influences on fish behavior responses were similar to previous studies. Following exposure to (4)
antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species.
Though zebrafish behavioral responses profiles were not significantly affected by (&) antx-a at the environmen-
tally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the
145-1960 ug/L treatment levels. In addition, no significant changes in transcription of target genes were observed
in zebrafish; however, elavi3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in
fathead minnows.

Conclusion: We observed differential influences of (£) antx-a on swimming behavior and gene transcription in two
of the most common larval fish models employed for prospective and retrospective assessment of environmental
contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive
than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed
to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation
events within adverse outcome pathways, and subsequent individual and population risks for this emerging water
quality threat.
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Background
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produced. Site-specific cyanobacterial and other harm-
ful algal blooms in inland waters can cause more pro-
nounced impacts on environmental quality than many
conventional chemical contamination events [1]. Tox-
ins produced during cyanobacterial blooms vary widely
with numerous compounds classified by mechanism of
action and structure [2], along with other substances for
which environmental fate and toxicological profiles are
largely unknown. Reported responses following exposure
include neurotoxicity, hepatotoxicity, dermatotoxicity,
immunotoxicity and other adverse outcomes in diverse
organisms [3]. Cyanotoxins levels in aquatic systems are
elevated by higher cell density when blooms occur, but
toxins biosynthesis is influenced by genetic factors and
environmental conditions such as temperature [4, 5],
light [6, 7], and nutrient levels and stoichiometry [8—10].
Understanding aquatic conditions that lead to produc-
tion and release of toxins and subsequent consequences
is key to protecting ecosystems and public health, espe-
cially since bloom magnitude, frequency and duration
appear to be increasing with climate change [11-13].

Some of the most common neurotoxic cyanobacterial
toxins are anatoxins, which have been identified in over 30
countries during blooms of Aphanizomenon, Dolichosper-
mum (prev. Anabaena), Microcystis, Nostoc, Oscillatoria,
Planktothrix, Phormidum, Raphidiopsis and other pelagic
and benthic cyanobacterial genera [14]. The most frequently
reported form of anatoxin is anatoxin-a (antx-a), which can
accumulate in fish and other aquatic organisms [15-18].
Antx-a is a chiral, bicyclic amine that binds irreversibly to
nicotinic acetylcholine receptors with a higher affinity than
acetylcholine and is not hydrolyzed by acetylcholinest-
erase [19-22], though its mechanism of action is not fully
elucidated. Studies have implicated antx-a in the death of
fish, dogs, bats, livestock, and birds [23—26]. However, this
compound has received much less study than other cyano-
bacterial toxins such as microcystins and saxitoxins [2].
Robust toxicity studies of antx-a with aquatic organisms
are limited, with the majority of previous efforts failing to
analytically verify treatment levels or employ standardized
experimental designs [14]. Importantly, toxicity assays using
the racemic mixture, () antx-a, are widely reported in lit-
erature, although only one enantiomer, (+) antx-a, has been
described in aquatic systems [15], and is more potent in
frogs and rodent models [20, 27-29]. For example, LD, val-
ues for mice administered intravenously were observed to
be 386 pg/kg for (+) antx-a, compared to 913 pg/kg for (£)
antx-a, and no deaths were observed in mice up to 73 mg/kg
for (=) antx-a [27].

Sublethal toxicity of antx-a is poorly understood, par-
ticularly in aquatic organisms, which includes increasingly
common alternative vertebrate models for biomedical
applications [14]. Previous aquatic toxicology studies with
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antx-a have not consistently stated the purity of toxin
under investigation or which enantiomers were studied
and a number have examined organismal responses fol-
lowing exposure to cultures that may differentially produce
antx-a and other bioactive molecules [14]. For example,
exposure of pure () antx-a at 80-640 ug/L only reduced
standard length in carp, while exposure to extracts of Ana-
baena sp. (ANA 37) containing (+) antx-a at 83-666 pg/L
were highly toxic [30]. In zebrafish, 400 pg/L of an unde-
fined antx-a enantiomeric mixture temporarily altered
heart rate in a developmental stage-dependent fashion,
with heart rate decreasing 9% at 55 h and increasing 12%
at 80 h [31]. Further, when rainbow trout were exposed to
an unspecified enantiomeric mixture of antx-a, immediate
abnormal behavioral effects (irregular/erratic swimming,
jaw spasms, swimming near surface with mouth in air, dif-
ficulty maintaining equilibrium) were noted, followed by
fish recovery by 3 h [32]. Thus, an understanding of the
aquatic toxicology of antx-a has remained elusive.

In the present study, we investigated sublethal toxicity
of (+) antx-a influences in embryonic and larval zebrafish
and fathead minnow models. We explored whether and
the extent to which behavioral and gene transcriptional
endpoints are affected by (+) antx-a in these common
fish models, following exposure to experimental treat-
ment levels selected from centiles of a probabilistic expo-
sure distribution of antx-a in surface waters [14].

Methods

Fish culture

Tropical 5D wild-type zebrafish (Danio rerio) were main-
tained at Baylor University (Waco, Texas, USA) follow-
ing standard culturing conditions described previously
[33-35]. Zebrafish were housed in a Z-Mod recirculating
system (Marine Biotech Systems, Beverly, Massachusetts,
USA) at a density of<4 fish per liter. Temperature was
held at 28 +1°C, pH at 7.0£0.1, and salinity at 260 ppm
(Instant Ocean). Fish were fed twice daily with artemia
(Artemia sp. nauplii; Pentair AES, Apopka, Florida, USA)
and once daily with flake food (Pentair AES, Apopka,
Florida, USA) under a 16-h:8-h light:dark photoperiod.
Fathead minnow (Pimephales promelas) larvae were
acquired <48 h post-hatch (Environmental Consulting
and Testing, Superior WI, USA). Culture conditions were
maintained at 25° C+£1 °C and pH varied from 7.8 to 8.1.
All experimental procedures and fish-culturing protocols
followed Institutional Animal Care and Use Committee
protocols approved at Baylor University.

Experimental design

To ensure comparability of this study to other efforts,
standardized experimental methods from the Organi-
sation for Economic Co-operation and Development
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(OECD) guidelines for toxicity testing with zebrafish
[36] and US Environmental Protection Agency (EPA) for
fathead minnows [37] were modified for use in studying
specific behavioral [34, 35] and gene transcriptional end-
points [33]. Solutions of (4) antx-a (>98%; CAS 64285-
06-9; Abcam, Cambridge, UK) and caffeine (>95%; CAS
58-08-2; Sigma-Aldrich, St. Louis, Missouri, USA), which
was used as a behavioral positive control [35], were pre-
pared in reconstituted hard water (RHW) [38]. Since
antx-a is an ionizable weak base, solutions were titrated
to pH 7.5 for ionization state consistency among experi-
ments [37, 39]. Common water quality parameters (dis-
solved oxygen, temperature, conductivity, alkalinity, and
hardness) of the RHW used for all experiments were rou-
tinely measured during experimentation.

Zebrafish embryos were exposed at 4—6 h post-fertili-
zation (hpf) and placed in 100-mL glass beakers contain-
ing 52 mL of solution (4 replicate experimental units: 26
embryos in each, 2-mL solution per embryo) in an incu-
bator at 28 °C. Embryos were from the same batch and
the experiment was performed at the same time, except
for the 3000 pg/L treatment level, which was conducted
during a subsequent experiment. Fathead minnow lar-
vae <48 h post-hatch were placed in 500-mL glass beak-
ers containing 300 mL of exposure water (4 replicate
experimental units: 15 larvae in each, 20 mL per larvae)
at the same time in an incubator at 25 °C. Incubators
were maintained on backup power with the photoperiod
for both species 16-h:8-h light:dark. Nominal treatment
levels were determined based on environmental exposure
distributions with the highest concentration (1500 pg/L)
corresponding with the 97th centile of reservoir occur-
rence data [14]. Both species were exposed at nominal
concentrations of 10, 100, 500, 1000, and 1500 pg/L. In
a follow-up experiment using zebrafish, (&) antx-a was
increased to examine an additional 3000 pg/L treatment
level. The higher concentration experiment was com-
pleted after the lower treatment levels were analyzed to
inform future toxicology studies. Caffeine was selected
as a positive control due to activity as a cholinergic ago-
nist [40]. Caffeine treatments (412 pg/L for zebrafish,
56,380 ug/L in fathead minnow) were based on levels that
elicited a significant behavioral response in prior research
[35]. For 96 h of exposure, water changes occurred daily
for zebrafish and at 48 h for fathead minnows. Fish were
checked daily for mortality and developmental abnor-
malities, with dead fish removed from experimental
units. Following the experiment, 6 zebrafish larvae (4
replicates, ~ 100—102 hpf) from each treatment level were
placed individually into 48-well plates with 1 mL of expo-
sure water [35]. For fathead minnow, 4 larvae (3 behavio-
ral replicates, ~ 144 hph) were placed into 24-well plates
in 2 mL of exposure water due to their larger size [35].
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Only larvae with no clear developmental malformations
(bent spines, edemas, etc.) were employed for behavioral
assays [41]. Organisms allowed to acclimatize in the incu-
bator prior to being loaded in the behavioral system with
consistent acclimation times among the plates [38].

Photolocomotor behavioral analyses

Following previous methods [34, 35, 42], larval photolo-
comotor activity was recorded using automated tracking
software and associated platform (Zebrabox, ViewPoint,
Lyon, France). Behavioral analyses were initiated from
12:00 to 15:00 to decrease time of day-related changes
in behavior [42, 43]. The ViewPoint system was set in
tracking mode and behavioral recordings occurred over
50 min. Recording started with a 10-min dark acclima-
tion followed by a 40-min observation period consist-
ing of two altering 10-min light/dark cycles. Distance
swam, changes in number of movements (counts), and
duration of movements across three speed thresholds:
bursting (> 20 mm/s), cruising (5-20 mm/s), and freezing
(<5 mm/s) were recorded at 1-min intervals. To measure
larval swimming responses to a sudden change in light
condition, a photomotor response was observed follow-
ing methods previously used [44] with slight modifica-
tions [34]. Photomotor response for each photoperiod
transition (2 light and 2 dark periods) was calculated as
the change in mean distance traveled (in mm) between
the last minute of an initial photoperiod and the first
minute of the following period. Photomotor responses
were observed across each speed threshold (bursting,
cruising, and freezing) in addition to total distance.

Gene transcription

Total RNA and protein were simultaneously extracted
from 21 to 24 zebrafish larvae per beaker with 4 replicates
(n=4) and 13-15 fathead minnow larvae per beaker with
4 replicates (n=4) after the 96-h exposure period using
an AllPrep RNA/Protein Kit (Qiagen, Hilden, Germany)
following manufacturer’s instructions with minor modi-
fications. Fish from the behavioral experiment and the
remaining fish in the experimental units were used for
analysis. Specifically, following homogenization, samples
were incubated for 5 min at 37 °C with the extraction
proceeding according to instructions thereafter. While
extracted protein was kept at — 80 °C for future studies,
quality of total RNA was evaluated using a NanoDrop
One Microvolume UV-Vis Spectrophotometer (Thermo
Fisher Scientific, Waltham, Massachusetts, USA).
Total RNA with an A,gy050>1.8 was cDNA converted
with ~ 1000 ng for zebrafish and 500 ng for fathead min-
now for experiment 1 (0-1.5 mg) and ~ 500 ng converted
for experiment 2 (0-3 mg) for zebrafish using TagMan
Reverse Transcription Reagents (Invitrogen, Carlsbad,
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CA, USA). Primers sets were designed using the National
Center for Biotechnology Information (NCBI) primer
blast tool or taken from the literature (Additional file 1:
Table S1). The qualities of the PCR products were con-
firmed on a 2% agarose gel with SYBR safe staining
(Invitrogen).

Two-step RT-qPCR was done with Power SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA,
USA). The 20-pL reaction mix consisted of 10 uL of the
PCR master mix, 0.6 pL of each 10 uM PCR primer (IDT,
Coralville, IA, USA), 7.8 pL of nanopure water, and 1 pL
template cDNA (1:~20 ratio used). RT-qPCR was car-
ried out on a QuantStudio 6 Flex Real-Time PCR system
(Thermo Fisher Scientific). The thermal cycle profile was:
preincubation at 95 °C for 10 s and 60 °C for 1 min with
melting curve analysis. Transcript levels were normalized
to housekeeping genes using the 2742C, method [45].
Based on initial geNorm analysis of 3 potential house-
keeping genes (data not shown), elongation factor 1 alpha
(elfa) for zebrafish and 18s ribosomal RNA (18s rRNA)
for fathead minnows were used as housekeeping genes.

Analytical measures

Experimental treatment levels of (+) antx-a were analyti-
cally verified using a previously published isotope-dilu-
tion liquid chromatography tandem mass spectrometry
(LC-MS/MS) method [46]. Briefly, samples were col-
lected and diluted accordingly in 10:90 (v/v) nanopure
water:acetonitrile buffered with 5 mM ammonium for-
mate and 3.6 mM formic acid (pH 3.7). Diluted sam-
ple (990 uL) was added to a 2-mL autosampler vial and
spiked with 10 pL of antx-a-13C4 (1 pg/mL). Quantifica-
tion was completed using previously described method
parameters on a 1260 High-Performance Liquid Chro-
matography system equipped with a Poroshell HILIC-Z
column (2.1 x 150 mm, 2.7 pm, 120 A) and G6420 triple
quadrupole mass spectrometer (Agilent, Santa Clara,
CA) [46].

Statistical analyses

Statistical analyses for survival, behavior, and RT-
qPCR data were carried out in SPSS Statistics 27 (IBM,
Armonk, NY, USA). Data were examined for normal-
ity by Shapiro—Wilk’s test and for homogeneity by
Levene’s test. Behavioral analyses were performed for
each treatment with 6 zebrafish larvae (4 replicates),
and 4 fathead minnow larvae (3 replicates), which is
consistent with our previous work with these species
[34, 35, 42]. Survival of the negative control to the
exposure treatments was compared with a Fisher’s
exact test (¢ =0.05). Independent samples ¢ tests for
the caffeine positive control vs the negative control,
and one-way analysis of variance (ANOVA) tests for
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antx-a treatment levels and the negative control were
performed for the behavioral data (@ =0.10), and tran-
scription was analyzed using the 2722, method [45]
for the RT-qPCR data (a =0.05), after parametric test-
ing criteria was met. Dunnett’s post hoc tests were
performed to identify potential differences among
treatment levels. Non-parametric Kruskal-Wallis tests
and Mann-Whitney U tests were performed when
data did not pass ANOVA testing criteria even after
log transformation.

Results

Analytical verification of experimental treatment levels
Measured levels of () antx-a were 11, 118, 671, 1310,
1950, and 3490 pg/L for the zebrafish studies, and 12,
145, 682, 1450, and 1960 pg/L for the fathead minnow
experiment. Both were slightly higher than nominal con-
centrations (14.0-44.7%) with no (&) antx-a detected
in the controls. Due to differences between the analyti-
cally verified and nominal concentrations, only meas-
ured concentrations are used for subsequent results and
discussion.

Survival and developmental abnormalities

Mortality in negative control fish was<10% at 96 h and
no (%) antx-a or caffeine treatment had significantly dif-
ferent survivability using Fisher’s exact test («=0.05).
While there was low mortality for all treatment levels,
almost all zebrafish deaths occurred within 24 h, while
fathead minnow mortalities occurred mostly by 96 h.
There were few developmental abnormalities in both spe-
cies (~ 1%), which mainly consisted of bent spines.

Behavior of negative and positive controls

In the negative control, photolocomotor activity of larval
zebrafish and fathead minnows were similar to previous
reports from our laboratory [34, 35, 42, 47]. For exam-
ple, zebrafish increased movement in dark and decreased
movement in light conditions (Fig. 1a), and fathead min-
nows increased movement in light and decreased move-
ment in dark conditions (Fig. 1c). Activity of negative
control fish at each minute of the experiment indicated
that zebrafish (Fig. 1b) changed movement patterns at
each light cue and stayed at relatively steady plateaus of
movement during each period represented by gray (dark
activity) and white (light activity) blocks. Fathead min-
now activity (Fig. 1d) included more variable behavior
during each period with changes in movement pattern
occurring without a concurrent light cue. Caffeine expo-
sure of 412 pg/L to zebrafish and 56,380 pg/L to the fat-
head minnow significantly lowered (p <0.05) total count,
cruising distance, cruising count, and freezing distance
in zebrafish, and significantly (p<0.1) decreased bursting
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Fig. 1 Photomotor response and total locomotor behavior of unexposed zebrafish (a, b) and fathead minnows (¢, d). a and ¢ show photomotor
response measured as the change in mean (& SE) total distance traveled between the last minute of the prior photoperiod and the first minute of
the following period. b, d show mean (&£ SE) distance swam at each minute interval. Dark gray bars represent activity in the dark and the white bars
represent activity in the light. A total of 24 zebrafish (4 replicates each with 6 larvae) and 12 fathead minnows (3 replicates with 4 larvae) were used
for baseline behavioral observation

a b
150 150
[ Control B3 11ug/l B8 671ug/L R 1950 ug/L [ Control SN 12 yg/l. E== 682 yg/L. M 1960 pg/L
B Caffeine 48460 ug/L SN 118 pg/L B2 1310 yg/L N 3490 ug/L N Caffeine 56380 ug/L XX 145 pg/L B2 1450 pg/L
E 100 - E 100 o
3 B
2 T
© N
2 E 50
Q
2 8
2 8
a g o H
£ £
o & g
8 g -50
o (@]
-100 : . : - -100 - . : -
Light 1 Dark 1 Light 2 Dark 2 Light 1 Dark 1 Light 2 Dark 2
Fig.2 Photomotor response of zebrafish (a) and fathead minnow (b) exposed to caffeine or (£) anatoxin-a measured as the change in mean
(&£ SE) total distance traveled between the last minute of the prior photoperiod and the first minute of the following period. A total of 24 zebrafish
(4 replicates each with 6 larvae) and 12 fathead minnows (3 replicates with 4 larvae) were used for each treatment level

distance, count, and duration in dark conditions and total  did not elicit significant («=0.1) photomotor changes

count, cruising distance, count, and duration, and freez-  between the light/dark period transitions (Fig. 2a, b).
ing count of fathead minnows. In both species, caffeine
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Behavioral responses to (+) antx-a

While exposed zebrafish showed consistent increased
movement in transitions from light to dark and decreased
movement in transitions from dark to light at similar lev-
els to the negative control (Fig. 2a), fathead minnows had
a more variable photomotor response (Fig. 2b), particu-
larly in the transition to dark period 2. Zebrafish behav-
ioral response profiles (Fig. 3) indicated stimulatory
movement at the highest speed threshold (> 20 mm/s) for
bursting distance, count, and duration during dark con-
ditions, and for all endpoints in light conditions for the
11 through 1950 pg/L (+) antx-a treatment levels. These
responses, though not statistically significant (¢ =0.1),
were more pronounced in the light period. We further
examined a higher level of () antx-a at 3490 pg/L. Here
again, zebrafish behaved similarly to the lower concen-
trations in the dark conditions, with slight stimulation at
the 3 bursting endpoints. However, activity in the light
tended to be lower for all variables, which was opposite
of lower treatment levels though these responses were
also not statistically significant. In contrast, fathead min-
nows showed opposite locomotor behavioral profiles
from zebrafish. Bursting swim behavior was generally
refractory in both the dark and light following (+) antx-a
exposure. As displayed in Fig. 4, fathead minnow bursting
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count was significantly reduced by the higher treat-
ment levels, including 145 (p<0.05), 682 (p<0.1), 1450
(p<0.05), and 1960 (p<0.1) pg/L, with cruising duration
(p<0.05) lowered in the 145 pg/L treatment. Light behav-
ior showed a similar trend in refractory behavior for most
treatments, though the lowest treatment level (12 pg/L)
exhibited a slightly stimulatory locomotor response for
most endpoints.

Gene transcription responses (%) antx-a

In zebrafish, 412 ug/L caffeine significantly decreased
(p <0.05) the transcription of two genes related to central
nervous system development: ELAV like RNA binding
protein 3 (elavi3) by twofold and tubulin alpha 1 (tubal)
by 1.8-fold (Fig. 5a). Compared to the negative control,
there was no significant difference in (+) antx-a-exposed
zebrafish (a=0.05) for any of the selected genes related
to neurotoxicity, oxidative stress, DNA damage, or hepa-
totoxicity (Figs. 5a, 6a). In contrast, caffeine exposure in
fathead minnows led to significant (p<0.05) transcrip-
tional increases in 5 of the 7 neurotoxicity-related genes
(8—24-fold) (Fig. 5b), 5 of 6 oxidative stress and DNA
damage-related genes (2—-18-fold) (Fig. 6b), whereas glu-
tathione s-transferase (gst) was significantly down regu-
lated (5-fold) (Fig. 6b). In () antx-a-exposed fathead
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Fig. 3 Behavioral response profiles of mean zebrafish swimming movement and speed in the dark (a) and in the light (b) each comprising

20 min (2 intervals of 10 min) after 96 h exposure to (4) anatoxin-a or caffeine. Behavioral parameters include swim distance, number of changes

in movement (count), and swim duration in total and across 3 speeds, bursting (> 20 mm/s), cruising (5-20 mm/s), and freezing (<5 mm/s). The
tables below the graphs indicate a significant increase (1) or decrease ({) in activity compared to the negative control. In the (£) antx-a treatments,
ANOVA and Dunnett’s post hoc were used to analyze treatment level responses compared to the negative control (*p <0.10; **p < 0.05; ***p < 0.01).
T tests were used to analyze caffeine influences compared to the negative control (A p<0.10; AN p<0.05; AMA p<0.01). A total of 24 zebrafish (4
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in movement (count), and swim duration in total and across 3 speeds, bursting (> 20 mm/s), cruising (5-20 mm/s), and freezing (<5 mm/s). The
tables below the graphs indicate a significant increase (1) or decrease ({) in activity compared to the negative control. In the (£) antx-a treatments,
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T tests were used to identify potential caffeine influences compared to the negative control (A p<0.10; AN p<0.05; AAA p<0.01). A total 12 fathead

minnows, a trend towards transcriptional upregulation in
most target genes was observed at the 1450 pg/L treat-
ment level, with a notable 40-fold upregulation observed
in superoxide dismutase (sod1). However, only elavi3 was
significantly changed (16-fold, p<0 0.05). In the three
lowest treatment levels (12-682 pg/L), gst (3—14-fold)
and cytochrome P450 Family 3 Subfamily A Member 126
(cyp3a126) (4-8-fold) were significantly downregulated
(p<0.05).

Discussion

Antx-a is an emerging water quality threat [14] that has
elicited spontaneous muscle spasms [48] and seizures
[49] in mammals, but corresponding studies in alterna-
tive vertebrate models and other aquatic and terrestrial
organisms are limited. In the present study, we hypothe-
sized that (+) antx-a could cause similar responses in fish
models, resulting in stimulatory behavior and increased
changes in movement direction following waterborne
exposure. Whereas zebrafish behavior was slightly stim-
ulated, and thus, appears in general agreement with
previous information from mammals, significantly less
locomotion was observed in the fathead minnow, espe-
cially under dark conditions. However, photomotor
response was not significantly affected in either model
at the environmentally relevant concentrations of antx-a

examined here. These contrasting responses may indi-
cate different sites of action or receptor subtypes being
activated by (+) antx-a. For example, nicotine differen-
tially influences behavior in mammalian models, leading
to either hyper- or hypolocomotor activity, depending
on the site of action and which acetylcholine recep-
tor subtype is activated [50]. Further mechanistic study
of molecular initiation event(s) for antx-a is needed to
understand sublethal influences on fish behavior.
Previous antx-a research has demonstrated largely
decreased locomotor and other behaviors in various
terrestrial organisms and Daphnia (Table 1). Rats and
mice exposed to (4) antx-a (10-225 pg/kg), (+) antx-a
(200-950 ug/kg), or an unspecified enantiomeric mix-
ture (100-250 pg/kg), had lowered locomotor activity
and operant responding (nicotine discrimination and
food response) in behavioral assays compared to saline
controls [51-54]. Higher doses (1,250,000-2,500,000 pg/
kg) led to immediate extreme seizures, tachycardia, gasp-
ing, twitching, and coma before death [49]. In addition,
antx-a decreased locomotion and other behaviors of
roundworms in a dose- and time-dependent manner at
0.1-100 pg/kg antx-a, though here again enantiomers
were not reported [55]. Daphnia locomotion was also
lowered by (£) antx-a as they were immobilized with
an EC;, of 2090 pg/L at 24 h and 1700 pg/L at 48 h [56].
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Fig. 5 RT-gPCR neurotoxicity-related gene expression data for zebrafish (a) or fathead minnows (b) exposed for 96 h to (+) antx-a or caffeine
compared to the negative control. Transcript levels were normalized to housekeeping gene, elongation factor 1 alpha in zebrafish and 18s ribosomal
RNA in fathead minnow, using the 2722¢, method. In the (&) antx-a treatments, ANOVA and Dunnett’s post hoc were used to analyze treatment
level responses compared to the negative control (*p <0.05; **p < 0.01; ***p <0.001). T tests were used identify potential caffeine influences
compared to the negative control A p<0.05; AN p<0.01; AMA p<0.001, error bars (£ SD). Zebrafish included 4 replicates with 21-24 larvae used for
each treatment level. Fathead minnows included 4 replicates with 13-15 larvae used for each treatment level
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gfap

(+) Antx-a altered swimming speed and limb activity
in Daphnia within 10 s at 50,000 pg/L with decreased
swimming speed at 24 h [59]. Antx-a exposure also
altered Daphnia heart rate, thoracic limb activity and
post-abdominal claw movement typically lowering these
activities dependent on dose [57]. Decreased locomotion,
particularly at higher speeds, following antx-a is consist-
ent with the fathead minnows’ behavioral responses in
the current study; however, this behavioral response pro-
file was opposite from our observations with zebrafish,
which were more active at higher speeds. Neuronal nic-
otinic acetylcholine receptors are highly conserved in
vertebrates [58] with 17 nicotinic acetylcholine receptor
subunits while invertebrates are less clear, though it has
been suggested that Drosophila have 10 while C. elegans
may have from 27 to 42 subunits [59]. Interestingly mam-
mals have 16 genes encoding nicotinic acetylcholine
receptors while zebrafish have 27 [60]. Understanding

the diversity of the functions and subunit diversity of this
receptor as it relates to antx-a toxicity may help elucidate
why locomotor behaviors differ among species, including
the current observations with zebrafish.

Fish behavioral studies with antx-a have indicated var-
ied responses, though these efforts have examined dif-
ferent developmental stages, and studied various routes
of exposure, concentrations, and sex-specific responses,
which collectively challenge among experiment compari-
sons (summarized in Table 1). Zebrafish were exposed
for 96 h starting at 4—6 h post-fertilization in the present
study, but age-specific susceptibility to antx-a may exist
and lead to different responses or thresholds for the end-
points examined here. For example, antx-a of an unspeci-
fied enantiomeric mixture at 400 pg/L altered zebrafish
heart rate, decreasing 9% at 55 h and increasing 12%
at 80 h [31]. One year old zebrafish exposed to 800 pg/
kg (£) antx-a via intraperitoneal injection resulted in
immediate rapid respiration, either frenetic swimming
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to the negative control. Transcript levels were normalized to housekeeping gene, elongation factor 1 alpha in zebrafish and 18s ribosomal RNA in
fathead minnow, using the 2’MCT method. In the (&) antx-a treatments, ANOVA and Dunnett’s post hoc were used to analyze treatment level
responses compared to the negative control (*p <0.05; **p < 0.01; ***p <0.001). T tests were used to identify potential caffeine influences compared
to the negative control (A p<0.05; AN p<0.01; AA p<0.001), error bars (£ SD). Zebrafish included 4 replicates with 21-24 larvae used for each
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or complete lack of swimming with some moving back-
ward, abnormal body position, and gulping for air [61].
Interestingly, this study also showed sex-specific prot-
eomic responses [61] though it is unclear whether gen-
der differences in adult fish exist for behavior. Rainbow
trout immersed in an unspecified enantiomeric mixture
of 129-499 pg/L antx-a led to multiple abnormal behav-
iors after 5 min including irregular/erratic swimming,
jaw spasms, air gulping, and difficulty in maintaining
equilibrium, though these fish largely recovered by 3 h
[32]. Japanese medaka fish exposed to (£) antx-a through
oral gavage from 200 to 20,000 pg/kg showed immediate
neurotoxic effects including altered opercular movement,
abnormal swimming, and muscle rigidity [62]. Since
antx-a producing cultures of cyanobacteria may contain
other biologically active molecules, studies examining
behavioral responses to cyanobacteria were not included
in Table 1, but remain necessary to understand behavio-
ral toxicity of antx-a-producing cyanobacterial blooms in

aquatic systems [15, 16, 21, 30, 63—65]. It is also impor-
tant to note that much of the antx-a behavioral data with
fish and other organisms (Table 1) did not employ the
quantitative behavioral tracking software employed dur-
ing the present study. Quantitative behavioral acquisi-
tion presents opportunities for robust and reproducible
analyses in aquatic toxicology, particularly as behavioral
responses are increasingly integrated within environ-
mental protection efforts.

Early exposure to chemicals that alter neurotrans-
mission, such as nicotine and chlorpyrifos, can lead to
neurodevelopmental damage and abnormalities from
inappropriate timing and intensity of neurotrophic
actions [66, 67]. The neurodevelopmental linked genes
examined here, al-tubulin (tubal), ELAV like neuron-
specific RNA binding protein 3 (elavi3), glial fibrillary
acidic protein (gfap), myelin basic protein (mbp), neuro-
geninl (neurogl), sonic hedgehog a (shha), and synapsin
Ila (syn2a), have been shown to be transcribed in the
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Table 1 (continued)

References

Response

Behavior
type

Exposure  Study

duration

Exposure
method

Analytically
verified?

Treatment levels

Age

Organism

Purified
toxin

Toxin

Enantiomer

duration

purity

extracted

from

culture?

Current study

50 min Larval pho-  Consistent larval

9% h

Immer-

Yes

Fathead Larvae<48h 12-1960 pg/L

No

>98%

photomotor

tomotor

sion

post-hatch

minnow

(Pime-
phales

response to

response/
locomo-
tion

(2021) 33:40

control. Refrac-
tory movement

promelas)

in 145-1960 pg/L

(£) antx-a-

exposed fish
showing less

locomotion at
highest speed
(>20 mm/s).

Fairly consistent
results in light

and dark periods
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first few days of fish development in neuronal stem cells,
developing neurons, astrocytes, or oligodendrocytes, and
are potential markers for rapid developmental neurotox-
icity screening [68]. However, (+) antx-a had little effect
on the transcription of zebrafish genes relating to neuro-
toxicity, which is consistent with no significant behavio-
ral changes in this fish model, nor oxidative stress, DNA
damage, and hepatotoxicity at the environmentally rel-
evant treatment levels examined in the present study.
Fathead minnow responses were more variable, though
only 1 of 7 neurotoxicity-related genes, elavi3, was sig-
nificantly transcriptionally altered. At the 1450 pg/L
(£) antx-a treatment level, elavi3, which is involved in
post-transcriptional regulation of neuronal RNA [69],
was significantly upregulated in fathead minnows; this
may be due to neurogenesis-related compensatory
mechanisms. Similar compensatory regulation may be
occurring for other upregulated genes at this concentra-
tion, though many showed lessened upregulation at the
higher 1960 pg/L level. Upregulation of elav/3 in devel-
oping zebrafish after exposure to tri-n-butyl phosphate,
an organophosphate pesticide, was linked to significantly
lowered fish relative free swimming speed [70]. However,
other studies with the pesticide fenvalerate have reported
decreased zebrafish swimming activity accompanied
by downregulation of elavi3 and other neurogenesis-
linked genes [71]. Future studies with antx-a in these fish
models should examine transcriptomic responses not
included this analysis.

Oxidative stress can be linked to neurotoxicity in
contributing to neuronal death [72] and neurobehav-
ioral toxicity due to inhibition of antioxidant scaveng-
ing [73]. While no change in transcription was observed
in zebrafish, nuclear factor (erythroid-derived 2)-like
2a (nrf2a), an endogenous sensor for cellular oxidative
stress, was upregulated at the two highest levels of antx-
a exposure in the fathead minnow. The function of nrf2a
is highly evolutionarily conserved and works through
antioxidant defense regulation [74]. nrf2a binds to anti-
oxidant response element sequences, which results in
the activation of antioxidant genes [74-76]. This likely
accounts for the antioxidant genes in the current study
following similar gene expression patterns because nrf2a,
gcle, gpxla, and sod1 were upregulated at higher (£) antx-
a treatment levels (1450-1960 pg/L). Previous research
with cellular extracts containing antx-a and a purified
toxin of an unknown enantiomer mixture has reported
oxidative stress responses in multiple organisms and
cell lines [77-80]. Both gst and cytochrome P450 family
3 subfamily A polypeptide 126 (cyp3al26) transcription
were significantly lowered in fathead minnows follow-
ing (£) antx-a exposure, which also decreased swimming
behavior at>20 mm/s. Multiple studies have reported
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transcriptional changes in these genes associated with
behavioral effects. Similarly to this study, bifenthrin, an
insecticide, led to downregulated cyp3a and gst after 24 h
exposure in fathead minnows [81] at the same treatment
level (0.14 ug/L) that significantly decreased fathead min-
now swimming performance in an earlier experiment [82].
This observation could possibly help link behavioral and
gene transcription responses, but further study is needed.
Lack of oxidative stress-related transcriptional responses
in zebrafish in the current study could have resulted from
treatment levels being too low to elicit responses, the
exposure being too short (96 h), and/or the age difference
between zebrafish and fathead minnows when experi-
ments were initiated, among the other factors.

Fish are routinely employed during environmental
quality efforts and are increasingly employed as alter-
native vertebrates during biomedical studies. Though
zebrafish and fathead minnows represent two of the most
common fish models, experiments examining suble-
thal toxicity of chemicals with both species are limited,
particularly when molecular and behavioral endpoints
are considered. In the present study, we observed fat-
head minnows to be more sensitive to (%) antx-a than
zebrafish at the environmentally relevant concentrations
examined. Other studies have demonstrated these com-
mon model organisms to have varying sensitivities to
bisphenol A, cumene hydroperoxide, tert-butyl hydrop-
eroxide [33], 1-heptanol, citalopram [34], 3-bromo-
1-propanol, tris(2,3-dibromopropyl) phosphate [47], and
caffeine [35], for which the fathead minnow model was
2-8 times more acutely sensitive than zebrafish. How-
ever, perfluorooctanoic acid [33] and sodium decyl sul-
fate [47] were 2—16 times more acutely toxic to zebrafish
than fathead minnows. Further, chemicals can elicit
opposite behavioral responses in both species, as illus-
trated by 3-chloro-1,2-propanediol and tris(2,3-dibromo-
propyl) phosphate, which both generally produced
stimulatory effects in fatheads and refractory responses
in zebrafish [47]. Advancing an understanding of the
toxicokinetics and toxicodynamics (TKTD) of antx-a in
these models will be important to define such among
species differences. Unfortunately, very little research has
been done on species-specific TKTD with antx-a.

Zebrafish embryos are relatively insensitive to many
neurotoxic compounds, specifically those with molecu-
lar initiation events such as acetylcholinesterase inhi-
bition, blockage of voltage-gated sodium channels,
or interference with GABA-gated chlorine channels,
compared to later life stages [83—85]. Though fathead
minnow embryos have been shown to have lessened
sensitivity to some neurotoxicants (e.g., fluoride, cad-
mium) [86], more research is needed to determine the
extent to which interspecies insensitivities may exist for
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a wider range of neurotoxicants and neurotoxins. Age
can also affect behavioral responses in larval fish, even
in zebrafish born 3 days apart [42]. In the present study,
we employed standard experimental designs from the
OECD and the US EPA for zebrafish and fathead min-
nows, respectively. Subsequently, age of these fish models
differed when experiments were initiated, and thus, may
have contributed to the differential sensitivities observed
here. FET tests for fathead minnows have been proposed
that use embryos at similar ages to zebrafish in OECD
FET studies [87, 88], yet this previous work focused on
standard survival and growth response variables. Clearly,
comparative toxicology research must be advanced to
understand such interspecies differences and translate
sublethal information among common model organisms
employed for ecological and biomedical research.

Conclusion

Though cyanobacteria blooms and other HABs appear
to be increasing in magnitude, frequency and duration at
the global scale, it remains uncommon among regulatory
and resource management organizations to attribute deg-
radation of inland surface water quality to HAB events
[1]. Because comparative toxicology information for
cyanotoxins, including antx-a, among vertebrates is lack-
ing, in the present study we examined environmentally
relevant levels of (£) antx-a and observed differential
influences on swimming behavior and gene transcrip-
tion in two common larval fish models. Importantly, we
observed (4) antx-a to elicit opposite movement pat-
terns in two common fish models, and further identi-
fied the fathead minnow model to be more sensitive to
the toxin than zebrafish for behavioral and gene expres-
sion endpoints. Future studies are needed to understand
these interspecies differences, influences of routes of
exposure, the enantioselective toxicity of this compound,
transcriptomic and proteomic responses, and to develop
adverse outcome pathway(s) for this emerging water
quality threat. Further, research is needed to determine
whether antx-a predominately influences water qual-
ity risks during bloom events that may produce multiple
known toxins and other biologically active molecules.
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