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Abstract 

Background: Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, informa-
tion on sublethal toxicological responses of aquatic organisms is limited. We examined influences of (±) antx-a (11–
3490 µg/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative 
stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish) 
and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic 
exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using 
isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control.

Results: Caffeine influences on fish behavior responses were similar to previous studies. Following exposure to (±) 
antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species. 
Though zebrafish behavioral responses profiles were not significantly affected by (±) antx-a at the environmen-
tally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the 
145–1960 µg/L treatment levels. In addition, no significant changes in transcription of target genes were observed 
in zebrafish; however, elavl3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in 
fathead minnows.

Conclusion: We observed differential influences of (±) antx-a on swimming behavior and gene transcription in two 
of the most common larval fish models employed for prospective and retrospective assessment of environmental 
contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive 
than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed 
to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation 
events within adverse outcome pathways, and subsequent individual and population risks for this emerging water 
quality threat.
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Background
Though cyanobacteria are important primary produc-
ers in freshwater and marine ecosystems, large-scale 
blooms of harmful species present risks to human 
health and ecosystems when elevated levels of toxins are 
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produced. Site‐specific cyanobacterial and other harm-
ful algal blooms in inland waters can cause more pro-
nounced impacts on environmental quality than many 
conventional chemical contamination events [1]. Tox-
ins produced during cyanobacterial blooms vary widely 
with numerous compounds classified by mechanism of 
action and structure [2], along with other substances for 
which environmental fate and toxicological profiles are 
largely unknown. Reported responses following exposure 
include neurotoxicity, hepatotoxicity, dermatotoxicity, 
immunotoxicity and other adverse outcomes in diverse 
organisms [3]. Cyanotoxins levels in aquatic systems are 
elevated by higher  cell density when  blooms  occur, but 
toxins biosynthesis is influenced by genetic factors  and 
environmental conditions such as temperature [4, 5], 
light [6, 7], and nutrient levels and stoichiometry [8–10]. 
Understanding aquatic  conditions that lead to produc-
tion and release of toxins and subsequent consequences 
is key to protecting ecosystems and public health, espe-
cially since bloom magnitude, frequency and duration 
appear to be increasing with climate change [11–13].

Some of the most common neurotoxic cyanobacterial 
toxins are anatoxins, which have been identified in over 30 
countries during blooms of Aphanizomenon, Dolichosper-
mum (prev. Anabaena), Microcystis, Nostoc, Oscillatoria, 
Planktothrix, Phormidum, Raphidiopsis and other pelagic 
and benthic cyanobacterial genera [14]. The most frequently 
reported form of anatoxin is anatoxin-a (antx-a), which can 
accumulate in fish and other aquatic organisms [15–18]. 
Antx-a is a chiral, bicyclic amine that binds irreversibly to 
nicotinic acetylcholine receptors with a higher affinity than 
acetylcholine and is not hydrolyzed by acetylcholinest-
erase [19–22], though its mechanism of action is not fully 
elucidated. Studies have implicated antx-a in the death of 
fish, dogs, bats, livestock, and birds [23–26]. However, this 
compound has received much less study than other cyano-
bacterial toxins such as microcystins and saxitoxins [2]. 
Robust toxicity studies of antx-a with aquatic organisms 
are limited, with the majority of previous efforts failing to 
analytically verify treatment levels or employ standardized 
experimental designs [14]. Importantly, toxicity assays using 
the racemic mixture, (±) antx-a, are widely reported in lit-
erature, although only one enantiomer, (+) antx-a, has been 
described in aquatic systems [15], and is more potent in 
frogs and rodent models [20, 27–29]. For example,  LD50 val-
ues for mice administered intravenously were observed to 
be 386 µg/kg for (+) antx-a, compared to 913 µg/kg for (±) 
antx-a, and no deaths were observed in mice up to 73 mg/kg 
for (−) antx-a [27].

Sublethal toxicity of antx-a is poorly understood, par-
ticularly in aquatic organisms, which includes increasingly 
common alternative vertebrate models for biomedical 
applications [14]. Previous aquatic toxicology studies with 

antx-a have not consistently stated the purity of toxin 
under investigation or which enantiomers were studied 
and a number have examined organismal responses fol-
lowing exposure to cultures that may differentially produce 
antx-a and other bioactive molecules [14]. For example, 
exposure of pure (±) antx-a at 80–640 µg/L only reduced 
standard length in carp, while exposure to extracts of Ana-
baena sp. (ANA 37) containing (+) antx-a at 83–666 µg/L 
were highly toxic [30]. In zebrafish, 400 µg/L of an unde-
fined antx-a enantiomeric mixture temporarily altered 
heart rate in a developmental stage-dependent fashion, 
with heart rate decreasing 9% at 55 h and increasing 12% 
at 80 h [31]. Further, when rainbow trout were exposed to 
an unspecified enantiomeric mixture of antx-a, immediate 
abnormal behavioral effects (irregular/erratic swimming, 
jaw spasms, swimming near surface with mouth in air, dif-
ficulty maintaining equilibrium) were noted, followed by 
fish recovery by 3  h [32]. Thus, an understanding of the 
aquatic toxicology of antx-a has remained elusive.

In the present study, we investigated sublethal toxicity 
of (±) antx-a influences in embryonic and larval zebrafish 
and fathead minnow models. We explored whether and 
the extent to which behavioral and gene transcriptional 
endpoints are affected by (±) antx-a in these common 
fish models, following exposure to experimental treat-
ment levels selected from centiles of a probabilistic expo-
sure distribution of antx-a in surface waters [14].

Methods
Fish culture
Tropical 5D wild-type zebrafish (Danio rerio) were main-
tained at Baylor University (Waco, Texas, USA) follow-
ing standard culturing conditions described previously 
[33–35]. Zebrafish were housed in a Z-Mod recirculating 
system (Marine Biotech Systems, Beverly, Massachusetts, 
USA) at a density of < 4 fish per liter. Temperature was 
held at 28 ± 1 ̊C, pH at 7.0 ± 0.1, and salinity at 260 ppm 
(Instant Ocean). Fish were fed twice daily with artemia 
(Artemia sp. nauplii; Pentair AES, Apopka, Florida, USA) 
and once daily with flake food (Pentair AES, Apopka, 
Florida, USA) under a 16-h:8-h light:dark photoperiod. 
Fathead minnow (Pimephales promelas) larvae were 
acquired < 48  h post-hatch (Environmental Consulting 
and Testing, Superior WI, USA). Culture conditions were 
maintained at 25° C ± 1 °C and pH varied from 7.8 to 8.1. 
All experimental procedures and fish-culturing protocols 
followed Institutional Animal Care and Use Committee 
protocols approved at Baylor University.

Experimental design
To ensure comparability of this study to other efforts, 
standardized experimental methods from the Organi-
sation for Economic Co-operation and Development 
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(OECD) guidelines for toxicity testing with zebrafish 
[36] and US Environmental Protection Agency (EPA) for 
fathead minnows [37] were modified for use in studying 
specific behavioral [34, 35] and gene transcriptional end-
points [33]. Solutions of (±) antx-a (> 98%; CAS 64285-
06-9; Abcam, Cambridge, UK) and caffeine (> 95%; CAS 
58-08-2; Sigma-Aldrich, St. Louis, Missouri, USA), which 
was used as a behavioral positive control [35], were pre-
pared in reconstituted hard water (RHW) [38]. Since 
antx-a is an ionizable weak base, solutions were titrated 
to pH 7.5 for ionization state consistency among experi-
ments  [37, 39]. Common water quality parameters (dis-
solved oxygen, temperature, conductivity, alkalinity, and 
hardness) of the RHW used for all experiments were rou-
tinely measured during experimentation.

Zebrafish embryos were exposed at 4–6 h post-fertili-
zation (hpf) and placed in 100-mL glass beakers contain-
ing 52 mL of solution (4 replicate experimental units: 26 
embryos in each, 2-mL solution per embryo) in an incu-
bator at 28  °C. Embryos were from the same batch and 
the experiment was performed at the same time, except 
for the 3000 μg/L treatment level, which was conducted 
during  a subsequent  experiment. Fathead minnow lar-
vae < 48 h post-hatch were placed in 500-mL glass beak-
ers containing 300  mL of exposure water (4 replicate 
experimental units: 15 larvae in each, 20 mL per larvae) 
at the same time in an incubator at 25  °C. Incubators 
were maintained on backup power with the photoperiod 
for both species 16-h:8-h light:dark. Nominal treatment 
levels were determined based on environmental exposure 
distributions with the highest concentration (1500 μg/L) 
corresponding with the 97th centile of reservoir occur-
rence data [14]. Both species were exposed at nominal 
concentrations of 10, 100, 500, 1000, and 1500  μg/L. In 
a follow-up experiment using zebrafish, (±) antx-a was 
increased to examine an additional 3000 μg/L treatment 
level. The higher concentration experiment was com-
pleted after the lower treatment levels were analyzed to 
inform future toxicology studies. Caffeine was selected 
as a positive control due to activity as a cholinergic ago-
nist [40]. Caffeine treatments (412  μg/L for zebrafish, 
56,380 μg/L in fathead minnow) were based on levels that 
elicited a significant behavioral response in prior research 
[35]. For 96 h of exposure, water changes occurred daily 
for zebrafish and at 48 h for fathead minnows. Fish were 
checked daily for mortality and developmental abnor-
malities, with dead fish removed from experimental 
units. Following the experiment, 6 zebrafish larvae (4 
replicates, ~ 100–102 hpf) from each treatment level were 
placed individually into 48-well plates with 1 mL of expo-
sure water [35]. For fathead minnow, 4 larvae (3 behavio-
ral replicates, ~ 144 hph) were placed into 24-well plates 
in 2  mL of exposure water due to their larger size [35]. 

Only larvae with no clear developmental malformations 
(bent spines, edemas, etc.) were employed for behavioral 
assays [41]. Organisms allowed to acclimatize in the incu-
bator prior to being loaded in the behavioral system with 
consistent acclimation times among the plates [38].

Photolocomotor behavioral analyses
Following previous methods [34, 35, 42], larval photolo-
comotor activity was recorded using automated tracking 
software and associated platform (Zebrabox, ViewPoint, 
Lyon, France). Behavioral analyses were initiated from 
12:00 to 15:00 to decrease time of day-related changes 
in behavior [42, 43]. The ViewPoint system was set in 
tracking mode and behavioral recordings occurred over 
50  min. Recording started with a 10-min dark acclima-
tion followed by a 40-min observation period consist-
ing of two altering 10-min light/dark cycles. Distance 
swam, changes in number of movements (counts), and 
duration of movements across three speed thresholds: 
bursting (> 20 mm/s), cruising (5–20 mm/s), and freezing 
(< 5 mm/s) were recorded at 1-min intervals. To measure 
larval swimming responses to a sudden change in light 
condition, a photomotor response was observed follow-
ing methods previously used [44] with slight modifica-
tions [34]. Photomotor response for each photoperiod 
transition (2 light and 2 dark periods) was calculated as 
the change in mean distance traveled (in mm) between 
the last minute of an initial photoperiod and the first 
minute of the following period. Photomotor responses 
were observed across each speed threshold (bursting, 
cruising, and freezing) in addition to total distance.

Gene transcription
Total RNA and protein were simultaneously extracted 
from 21 to 24 zebrafish larvae per beaker with 4 replicates 
(n = 4) and 13–15 fathead minnow larvae per beaker with 
4 replicates (n = 4) after the 96-h exposure period using 
an AllPrep RNA/Protein Kit (Qiagen, Hilden, Germany) 
following manufacturer’s instructions with minor modi-
fications. Fish from the behavioral experiment and the 
remaining fish in the experimental units were used for 
analysis. Specifically, following homogenization, samples 
were incubated for 5  min at 37  °C with the extraction 
proceeding according to instructions thereafter. While 
extracted protein was kept at − 80  °C for future studies, 
quality of total RNA was evaluated using a NanoDrop 
One Microvolume UV–Vis Spectrophotometer (Thermo 
Fisher Scientific, Waltham, Massachusetts, USA). 
Total RNA with an  A260/280 > 1.8 was cDNA converted 
with ~ 1000 ng for zebrafish and 500 ng for fathead min-
now for experiment 1 (0–1.5 mg) and ~ 500 ng converted 
for experiment 2 (0–3  mg) for zebrafish using TaqMan 
Reverse Transcription Reagents (Invitrogen, Carlsbad, 
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CA, USA). Primers sets were designed using the National 
Center for Biotechnology Information (NCBI) primer 
blast tool or taken from the literature (Additional file 1: 
Table  S1). The qualities of the PCR products were con-
firmed on a 2% agarose gel with SYBR safe staining 
(Invitrogen).

Two-step RT-qPCR was done with Power SYBR Green 
PCR Master Mix (Applied Biosystems, Foster City, CA, 
USA). The 20-μL reaction mix consisted of 10 μL of the 
PCR master mix, 0.6 μL of each 10 μM PCR primer (IDT, 
Coralville, IA, USA), 7.8 μL of nanopure water, and 1 μL 
template cDNA (1: ~ 20 ratio used). RT-qPCR was car-
ried out on a QuantStudio 6 Flex Real-Time PCR system 
(Thermo Fisher Scientific). The thermal cycle profile was: 
preincubation at 95 °C for 10 s and 60 °C for 1 min with 
melting curve analysis. Transcript levels were normalized 
to housekeeping genes using the  2−ΔΔC

T method [45]. 
Based on initial geNorm analysis of 3 potential house-
keeping genes (data not shown), elongation factor 1 alpha 
(elfα) for zebrafish and 18s ribosomal RNA (18s rRNA) 
for fathead minnows were used as housekeeping genes.

Analytical measures
Experimental treatment levels of (±) antx-a were analyti-
cally verified using a previously published isotope-dilu-
tion liquid chromatography tandem mass spectrometry 
(LC–MS/MS) method [46]. Briefly, samples were col-
lected and diluted accordingly in 10:90 (v/v) nanopure 
water:acetonitrile buffered with 5  mM ammonium for-
mate and 3.6  mM formic acid (pH 3.7). Diluted sam-
ple (990 µL) was added to a 2-mL autosampler vial and 
spiked with 10 µL of antx-a-13C4 (1 µg/mL). Quantifica-
tion was completed using previously described method 
parameters on a 1260 High-Performance Liquid Chro-
matography system equipped with a Poroshell HILIC-Z 
column (2.1 × 150 mm, 2.7 μm, 120 Å) and G6420 triple 
quadrupole mass spectrometer (Agilent, Santa Clara, 
CA) [46].

Statistical analyses
Statistical analyses for survival, behavior, and RT-
qPCR data were carried out in SPSS Statistics 27 (IBM, 
Armonk, NY, USA). Data were examined for normal-
ity by Shapiro–Wilk’s test and for homogeneity by 
Levene’s test. Behavioral analyses were performed for 
each treatment with 6 zebrafish larvae (4 replicates), 
and 4 fathead minnow larvae (3 replicates), which is 
consistent with our previous work with these species 
[34, 35, 42]. Survival of the negative control to the 
exposure treatments was compared with a Fisher’s 
exact test (α = 0.05). Independent samples t tests for 
the caffeine positive control vs the negative control, 
and one-way analysis of variance (ANOVA) tests for 

antx-a treatment levels  and the negative control were 
performed for the behavioral data (α = 0.10), and tran-
scription was analyzed using the  2−ΔΔC

T method [45] 
for the RT-qPCR data (α = 0.05), after parametric test-
ing criteria was met. Dunnett’s post hoc tests were 
performed to identify potential differences among 
treatment levels. Non-parametric Kruskal–Wallis tests 
and Mann–Whitney U tests were performed when 
data did not pass ANOVA testing criteria even after 
log transformation.

Results
Analytical verification of experimental treatment levels
Measured levels of (±) antx-a were 11, 118, 671, 1310, 
1950, and 3490  μg/L for the zebrafish studies, and 12, 
145, 682, 1450, and 1960  μg/L for the fathead minnow 
experiment. Both were slightly higher than nominal con-
centrations (14.0–44.7%) with no (±) antx-a detected 
in the controls. Due to differences between the analyti-
cally verified and nominal concentrations, only meas-
ured concentrations are used for subsequent results and 
discussion.

Survival and developmental abnormalities
Mortality in negative control fish was < 10% at 96 h and 
no (±) antx-a or caffeine treatment had significantly dif-
ferent survivability using Fisher’s exact test (α = 0.05). 
While there was low mortality for all treatment levels, 
almost all zebrafish deaths occurred within 24  h, while 
fathead minnow mortalities occurred mostly by 96  h. 
There were few developmental abnormalities in both spe-
cies (~ 1%), which mainly consisted of bent spines.

Behavior of negative and positive controls
In the negative control, photolocomotor activity of larval 
zebrafish and fathead minnows were similar to previous 
reports from our laboratory [34, 35, 42, 47]. For exam-
ple, zebrafish increased movement in dark and decreased 
movement in light conditions (Fig. 1a), and fathead min-
nows increased movement in light and decreased move-
ment in dark conditions (Fig.  1c). Activity of negative 
control fish at each minute of the experiment indicated 
that zebrafish (Fig.  1b) changed movement patterns at 
each light cue and stayed at relatively steady plateaus of 
movement during each period represented by gray (dark 
activity) and white (light activity) blocks. Fathead min-
now activity (Fig.  1d) included more variable behavior 
during each period with changes in movement pattern 
occurring without a concurrent light cue. Caffeine expo-
sure of 412 μg/L to zebrafish and 56,380 μg/L to the fat-
head minnow significantly lowered (p < 0.05) total count, 
cruising distance, cruising count, and freezing distance 
in zebrafish, and significantly (p < 0.1) decreased bursting 
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distance, count, and duration in dark conditions and total 
count, cruising distance, count, and duration, and freez-
ing count of fathead minnows. In both species, caffeine 

did not elicit significant (α = 0.1) photomotor changes 
between the light/dark period transitions (Fig. 2a, b).
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Behavioral responses to (±) antx‑a
While exposed zebrafish showed consistent increased 
movement in transitions from light to dark and decreased 
movement in transitions from dark to light at similar lev-
els to the negative control (Fig. 2a), fathead minnows had 
a more variable photomotor response (Fig. 2b), particu-
larly in the transition to dark period 2. Zebrafish behav-
ioral response profiles (Fig.  3) indicated stimulatory 
movement at the highest speed threshold (> 20 mm/s) for 
bursting distance, count, and duration during dark con-
ditions, and for all endpoints in light conditions for the 
11 through 1950 µg/L (±) antx-a treatment levels. These 
responses, though not statistically significant (α = 0.1), 
were more pronounced in the light period. We further 
examined a higher level of (±) antx-a at 3490 µg/L. Here 
again, zebrafish behaved similarly to the lower concen-
trations in the dark conditions, with slight stimulation at 
the 3 bursting endpoints. However, activity in the light 
tended to be lower for all variables, which was opposite 
of lower treatment levels though these responses were 
also not statistically significant. In contrast, fathead min-
nows showed opposite locomotor behavioral profiles 
from zebrafish. Bursting swim behavior was generally 
refractory in both the dark and light following (±) antx-a 
exposure. As displayed in Fig. 4, fathead minnow bursting 

count was significantly reduced by the higher treat-
ment levels, including 145 (p < 0.05), 682 (p < 0.1), 1450 
(p < 0.05), and 1960 (p < 0.1) µg/L, with cruising duration 
(p < 0.05) lowered in the 145 µg/L treatment. Light behav-
ior showed a similar trend in refractory behavior for most 
treatments, though the lowest treatment level (12 µg/L) 
exhibited a slightly stimulatory locomotor response for 
most endpoints. 

Gene transcription responses (±) antx‑a
In zebrafish, 412  μg/L caffeine significantly decreased 
(p < 0.05) the transcription of two genes related to central 
nervous system development: ELAV like RNA binding 
protein 3 (elavl3) by twofold and tubulin alpha 1 (tuba1) 
by 1.8-fold (Fig.  5a). Compared to the negative control, 
there was no significant difference in (±) antx-a-exposed 
zebrafish (α = 0.05) for any of the selected genes related 
to neurotoxicity, oxidative stress, DNA damage, or hepa-
totoxicity (Figs. 5a, 6a). In contrast, caffeine exposure in 
fathead minnows  led to significant (p < 0.05) transcrip-
tional increases in 5 of the 7 neurotoxicity-related genes 
(8–24-fold) (Fig.  5b), 5 of 6 oxidative stress and DNA 
damage-related genes (2–18-fold) (Fig. 6b), whereas glu-
tathione s-transferase (gst) was significantly down regu-
lated (5-fold) (Fig.  6b). In (±) antx-a-exposed fathead 
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minnows, a trend towards transcriptional upregulation in 
most target genes was observed at the 1450  μg/L treat-
ment level, with a notable 40-fold upregulation observed 
in superoxide dismutase (sod1). However, only elavl3 was 
significantly changed (16-fold, p < 0 0.05). In the three 
lowest treatment levels (12–682  μg/L), gst (3–14-fold) 
and cytochrome P450 Family 3 Subfamily A Member 126 
(cyp3a126) (4–8-fold) were significantly downregulated 
(p < 0.05). 

Discussion
Antx-a is an emerging water quality threat [14] that has 
elicited spontaneous muscle spasms [48] and seizures 
[49] in mammals, but corresponding studies in alterna-
tive vertebrate models and other aquatic and terrestrial 
organisms are limited. In the present study, we hypothe-
sized that (±) antx-a could cause similar responses in fish 
models, resulting in stimulatory behavior and increased 
changes in movement direction  following waterborne 
exposure. Whereas zebrafish behavior was slightly stim-
ulated, and thus, appears in general agreement with 
previous information from mammals, significantly less 
locomotion was observed in the fathead minnow, espe-
cially under dark conditions. However, photomotor 
response was not significantly affected in either model 
at the environmentally relevant concentrations of antx-a 

examined here. These contrasting responses may indi-
cate different sites of action or receptor subtypes being 
activated by (±) antx-a. For example, nicotine differen-
tially influences behavior in mammalian models, leading 
to either hyper- or hypolocomotor activity, depending 
on the site of action and which acetylcholine recep-
tor subtype is activated [50]. Further mechanistic study 
of molecular initiation event(s) for antx-a is needed to 
understand sublethal influences on fish behavior.

Previous antx-a research has demonstrated largely 
decreased locomotor and other behaviors in various 
terrestrial organisms and Daphnia (Table  1). Rats and 
mice exposed to (+) antx-a (10–225  µg/kg), (±) antx-a 
(200–950  µg/kg), or an unspecified enantiomeric mix-
ture (100–250  µg/kg), had lowered locomotor activity 
and operant responding (nicotine discrimination and 
food response) in behavioral assays compared to saline 
controls [51–54]. Higher doses (1,250,000–2,500,000 µg/
kg) led to immediate extreme seizures, tachycardia, gasp-
ing, twitching, and coma before death [49]. In addition, 
antx-a decreased locomotion and other behaviors of 
roundworms in a dose- and time-dependent manner at 
0.1–100  µg/kg antx-a, though here again enantiomers 
were not reported [55]. Daphnia locomotion was also 
lowered by (±) antx-a as they were immobilized with 
an  EC50 of 2090 µg/L at 24 h and 1700 µg/L at 48 h [56]. 
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Fig. 4 Behavioral response profiles of mean fathead minnow swimming movement and speed in the dark (a) and in the light (b) each comprising 
20 min (2 intervals of 10 min) after 96-h exposure to (±) anatoxin-a or caffeine. Behavioral parameters include swim distance, number of changes 
in movement (count), and swim duration in total and across 3 speeds, bursting (> 20 mm/s), cruising (5–20 mm/s), and freezing (< 5 mm/s). The 
tables below the graphs indicate a significant increase (↑) or decrease (↓) in activity compared to the negative control. In the (±) antx-a treatments, 
ANOVA and Dunnett’s post hoc were used to analyze treatment level responses compared to the negative control (*p < 0.10; ** p < 0.05; ***p < 0.01), 
T tests were used to identify potential caffeine influences compared to the negative control (^ p < 0.10; ^^ p < 0.05; ^^^ p < 0.01). A total 12 fathead 
minnows (3 replicates with 4 larvae) were used for each treatment level
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(+) Antx-a altered swimming speed and limb activity 
in Daphnia within 10  s at 50,000  µg/L with decreased 
swimming speed at 24  h [59]. Antx-a exposure also 
altered Daphnia heart rate, thoracic limb activity and 
post-abdominal claw movement typically lowering these 
activities dependent on dose [57]. Decreased locomotion, 
particularly at higher speeds, following antx-a is consist-
ent with the fathead minnows’ behavioral responses in 
the current study; however, this behavioral response pro-
file was opposite from our observations with zebrafish, 
which were more active at higher speeds. Neuronal nic-
otinic acetylcholine receptors are highly conserved in 
vertebrates [58] with 17 nicotinic acetylcholine receptor 
subunits while invertebrates are less clear, though it has 
been suggested that Drosophila have 10 while C. elegans 
may have from 27 to 42 subunits [59]. Interestingly mam-
mals have 16 genes encoding nicotinic acetylcholine 
receptors while zebrafish have 27 [60]. Understanding 

the diversity of the functions and subunit diversity of this 
receptor as it relates to antx-a toxicity may help elucidate 
why locomotor behaviors differ among species, including 
the current observations with zebrafish.

Fish behavioral studies with antx-a have indicated var-
ied responses, though these efforts have examined dif-
ferent developmental stages, and studied various routes 
of exposure, concentrations, and sex-specific responses, 
which collectively challenge among experiment compari-
sons (summarized in Table  1). Zebrafish were exposed 
for 96 h starting at 4–6 h post-fertilization in the present 
study, but age-specific susceptibility to antx-a may exist 
and lead to different responses or thresholds for the end-
points examined here. For example, antx-a of an unspeci-
fied enantiomeric mixture at 400  µg/L altered zebrafish 
heart rate, decreasing 9% at 55  h and increasing 12% 
at 80 h [31]. One year old zebrafish exposed to 800 µg/
kg (±) antx-a via intraperitoneal injection resulted in 
immediate rapid respiration, either frenetic swimming 
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Fig. 5 RT-qPCR neurotoxicity-related gene expression data for zebrafish (a) or fathead minnows (b) exposed for 96 h to (±) antx-a or caffeine 
compared to the negative control. Transcript levels were normalized to housekeeping gene, elongation factor 1 alpha in zebrafish and 18s ribosomal 
RNA in fathead minnow, using the  2−ΔΔC

T method. In the (±) antx-a treatments, ANOVA and Dunnett’s post hoc were used to analyze treatment 
level responses compared to the negative control (*p < 0.05; **p < 0.01; ***p < 0.001). T tests were used identify potential caffeine influences 
compared to the negative control ^ p < 0.05; ^^ p < 0.01; ^^^ p < 0.001, error bars (± SD). Zebrafish included 4 replicates with 21–24 larvae used for 
each treatment level. Fathead minnows included 4 replicates with 13–15 larvae used for each treatment level
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or complete lack of swimming with some moving back-
ward, abnormal body position, and gulping for air [61]. 
Interestingly, this study also showed sex-specific prot-
eomic responses [61] though it is unclear whether gen-
der differences in adult fish exist for behavior. Rainbow 
trout immersed in an unspecified enantiomeric mixture 
of 129–499 µg/L antx-a led to multiple abnormal behav-
iors after 5  min including irregular/erratic swimming, 
jaw spasms, air gulping, and difficulty in maintaining 
equilibrium, though these fish largely recovered by 3  h 
[32]. Japanese medaka fish exposed to (±) antx-a through 
oral gavage from 200 to 20,000 µg/kg showed immediate 
neurotoxic effects including altered opercular movement, 
abnormal swimming, and muscle rigidity [62]. Since 
antx-a producing cultures of cyanobacteria may contain 
other biologically active molecules, studies examining 
behavioral responses to cyanobacteria were not included 
in Table 1, but remain necessary to understand behavio-
ral toxicity of antx-a-producing cyanobacterial blooms in 

aquatic systems [15, 16, 21, 30, 63–65]. It is also impor-
tant to note that much of the antx-a behavioral data with 
fish and other organisms (Table  1) did not employ the 
quantitative behavioral tracking software employed dur-
ing the present study. Quantitative behavioral acquisi-
tion presents opportunities for robust and reproducible 
analyses in aquatic toxicology, particularly as behavioral 
responses are increasingly integrated within environ-
mental protection efforts.

Early exposure to chemicals that alter neurotrans-
mission, such as nicotine and chlorpyrifos, can lead to 
neurodevelopmental damage and abnormalities from 
inappropriate timing and intensity of neurotrophic 
actions [66, 67]. The neurodevelopmental linked genes 
examined here, α1-tubulin (tuba1), ELAV like neuron-
specific RNA binding protein 3 (elavl3), glial fibrillary 
acidic protein (gfap), myelin basic protein (mbp), neuro-
genin1 (neurog1), sonic hedgehog a (shha), and synapsin 
IIa (syn2a), have been shown to be transcribed in the 
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Fig. 6 RT-qPCR oxidative stress, DNA damage, and hepatotoxicity gene expression data comparing larval fathead minnows exposed for 96 h to (±) 
antx-a or caffeine compared to the negative control. For zebrafish (a) or fathead minnows (b) exposed for 96 h to (±) antx-a or caffeine compared 
to the negative control. Transcript levels were normalized to housekeeping gene, elongation factor 1 alpha in zebrafish and 18s ribosomal RNA in 
fathead minnow, using the  2−ΔΔC

T method. In the (±) antx-a treatments, ANOVA and Dunnett’s post hoc were used to analyze treatment level 
responses compared to the negative control (*p < 0.05; **p < 0.01; ***p < 0.001). T tests were used to identify potential caffeine influences compared 
to the negative control (^ p < 0.05; ^^ p < 0.01; ^^^ p < 0.001), error bars (± SD). Zebrafish included 4 replicates with 21–24 larvae used for each 
treatment level. Fathead minnows included 4 replicates with 13–15 larvae used for each treatment level
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first few days of fish development in neuronal stem cells, 
developing neurons, astrocytes, or oligodendrocytes, and 
are potential markers for rapid developmental neurotox-
icity screening [68]. However, (±) antx-a had little effect 
on the transcription of zebrafish genes relating to neuro-
toxicity, which is consistent with no significant behavio-
ral changes in this fish model, nor oxidative stress, DNA 
damage, and hepatotoxicity at the environmentally rel-
evant treatment levels examined in the present study. 
Fathead  minnow responses were more variable, though 
only 1 of 7 neurotoxicity-related genes, elavl3, was sig-
nificantly transcriptionally altered. At the 1450  μg/L 
(±) antx-a treatment level, elavl3, which is involved in 
post-transcriptional regulation of neuronal RNA [69], 
was significantly upregulated in fathead minnows; this 
may be due to neurogenesis-related compensatory 
mechanisms. Similar compensatory regulation may be 
occurring for other upregulated genes at this concentra-
tion, though many showed lessened upregulation at the 
higher 1960  μg/L level. Upregulation of elavl3 in devel-
oping zebrafish after exposure to tri-n-butyl phosphate, 
an organophosphate pesticide, was linked to significantly 
lowered fish relative free swimming speed [70]. However, 
other studies with the pesticide fenvalerate have reported 
decreased zebrafish swimming activity accompanied 
by downregulation of elavl3 and other neurogenesis-
linked genes [71]. Future studies with antx-a in these fish 
models should examine transcriptomic responses not 
included this analysis.

Oxidative stress can be linked to neurotoxicity in 
contributing to neuronal death [72] and neurobehav-
ioral toxicity due to inhibition of antioxidant scaveng-
ing [73]. While no change in transcription was observed 
in zebrafish, nuclear factor (erythroid-derived 2)-like 
2a (nrf2a), an endogenous sensor for cellular oxidative 
stress, was upregulated at the two highest levels of antx-
a exposure in the fathead minnow. The function of nrf2a 
is highly evolutionarily conserved and works through 
antioxidant defense regulation [74]. nrf2a binds to anti-
oxidant response element sequences, which results in 
the activation of antioxidant genes [74–76]. This likely 
accounts for the antioxidant genes in the current study 
following similar gene expression patterns because nrf2a, 
gclc, gpx1a, and sod1 were upregulated at higher (±) antx-
a treatment levels (1450–1960  µg/L). Previous research 
with cellular extracts containing antx-a and a purified 
toxin of an unknown enantiomer mixture has reported 
oxidative stress responses in multiple organisms and 
cell lines [77–80]. Both gst and cytochrome P450 family 
3 subfamily A polypeptide 126 (cyp3a126) transcription 
were significantly lowered in fathead minnows follow-
ing (±) antx-a exposure, which also decreased swimming 
behavior at > 20  mm/s. Multiple studies have reported Ta
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transcriptional changes in these genes associated with 
behavioral effects. Similarly to this study, bifenthrin, an 
insecticide, led to downregulated cyp3a and gst after 24 h 
exposure in fathead minnows [81] at the same treatment 
level (0.14 μg/L) that significantly decreased fathead min-
now swimming performance in an earlier experiment [82]. 
This observation could possibly help link behavioral and 
gene transcription responses, but further study is needed. 
Lack of oxidative stress-related transcriptional responses 
in zebrafish in the current study could have resulted from 
treatment levels being too low to elicit responses, the 
exposure being too short (96 h), and/or the age difference 
between zebrafish and fathead minnows when experi-
ments were initiated, among the other factors.

Fish are routinely employed during environmental 
quality efforts and are increasingly employed as alter-
native vertebrates during biomedical studies. Though 
zebrafish and fathead minnows represent two of the most 
common fish models, experiments examining suble-
thal toxicity of chemicals with both species are limited, 
particularly when molecular and behavioral endpoints 
are considered. In the present study, we observed fat-
head minnows to be more sensitive to (±) antx-a than 
zebrafish at the environmentally relevant concentrations 
examined. Other studies have demonstrated these com-
mon model organisms to have varying sensitivities to 
bisphenol A, cumene hydroperoxide, tert-butyl hydrop-
eroxide [33], 1-heptanol, citalopram [34], 3-bromo-
1-propanol, tris(2,3-dibromopropyl) phosphate [47], and 
caffeine [35], for which the fathead minnow model was 
2–8 times more acutely sensitive than zebrafish. How-
ever, perfluorooctanoic acid [33] and sodium decyl sul-
fate [47] were 2–16 times more acutely toxic to zebrafish 
than fathead minnows. Further, chemicals can elicit 
opposite behavioral responses in both species, as illus-
trated by 3-chloro-1,2-propanediol and tris(2,3-dibromo-
propyl) phosphate, which both generally produced 
stimulatory effects in fatheads and refractory responses 
in zebrafish [47]. Advancing an understanding of the 
toxicokinetics and toxicodynamics (TKTD) of antx-a in 
these models will be important to define such among 
species differences. Unfortunately, very little research has 
been done on species-specific TKTD with antx-a.

Zebrafish embryos are relatively insensitive to many 
neurotoxic compounds, specifically those with molecu-
lar initiation events such as acetylcholinesterase inhi-
bition, blockage of voltage-gated sodium channels, 
or interference with GABA-gated chlorine channels, 
compared to later life stages [83–85]. Though fathead 
minnow embryos have been shown to have lessened 
sensitivity to some neurotoxicants (e.g., fluoride, cad-
mium) [86], more research is needed to determine the 
extent to which interspecies insensitivities may exist for 

a wider range of neurotoxicants and neurotoxins. Age 
can also affect behavioral responses in larval fish, even 
in zebrafish born 3 days apart [42]. In the present study, 
we employed standard experimental designs from the 
OECD and the US EPA for zebrafish and fathead min-
nows, respectively. Subsequently, age of these fish models 
differed when experiments were initiated, and thus, may 
have contributed to the differential sensitivities observed 
here. FET tests for fathead minnows have been proposed 
that use embryos at similar ages to zebrafish in OECD 
FET studies [87, 88], yet this previous work focused on 
standard survival and growth response variables. Clearly, 
comparative toxicology research must be advanced to 
understand such interspecies differences and translate 
sublethal information among common model organisms 
employed for ecological and biomedical research.

Conclusion
Though cyanobacteria blooms and other HABs appear 
to be increasing in magnitude, frequency and duration at 
the global scale, it remains uncommon among regulatory 
and resource management organizations to attribute deg-
radation of inland surface water quality to HAB events 
[1]. Because comparative toxicology information for 
cyanotoxins, including antx-a, among vertebrates is lack-
ing, in the present study we examined environmentally 
relevant levels of (±) antx-a and observed differential 
influences on swimming behavior and gene transcrip-
tion in two common larval fish models. Importantly, we 
observed (±) antx-a to elicit opposite movement pat-
terns in two common fish models, and further identi-
fied the fathead minnow model to be more sensitive to 
the toxin than zebrafish for behavioral and gene expres-
sion endpoints. Future studies are needed to understand 
these interspecies differences, influences of routes of 
exposure, the enantioselective toxicity of this compound, 
transcriptomic and proteomic responses, and to develop 
adverse outcome pathway(s) for this emerging water 
quality threat. Further, research is needed to determine 
whether antx-a predominately influences water qual-
ity risks during bloom events that may produce multiple 
known toxins and other biologically active molecules.
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 Additional file 1: Table S1. List of genes and associated primer 
sequences used in this study for gene transcription analysis focusing 
on neurotoxicity, oxidative stress, DNA damage, and hepatotoxicity. In 
the table, ZF refers to zebrafish specific sequences, while FHM refers to 
fathead minnow specific sequences. Gene sequences that were not used 
from literature were designed for this study using the NCBI Primer-BLAST 
tool. *Efficiencies were determined using a standard curve of Ct values 
acquired from a 4-fold dilution series of cDNA (1, 1:4, 1:16) in duplicate.
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