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Abstract 

Background:  Phthalates were detected in various environments due to their widespread application. In this study, 
indoor dust samples from 94 buildings, including 72 residences and 22 dormitories, were collected in seven geo-
graphical regions in China and analyzed for eight phthalate esters (PAEs). Investigation of contamination profiles, 
geographical distribution, sources, and risks of PAEs in indoor dusts was explored.

Results:  The highest Σ8PAEs concentration in residential buildings was found in Northeast China (median: 
164.71 μg·g−1), which was 2.3 and 2.8 times higher than that in South China (median: 71.71 μg·g−1) and Southwest 
China (median: 58.53 μg·g−1), respectively. Di (2-ethylhexyl) phthalate (DEHP), di-iso-butyl phthalate (DIBP), and di-
n-butyl phthalate (DBP) were the dominant compounds of Σ8PAEs in indoor dusts from residences and dormitories. 
The administrative levels revealed that the highly serious contamination occurred in the provincial capital, followed 
by nonprovincial cities and countries. Such an occurrence was related to the usage of PAE products and the level of 
urbanization. Principal component analysis (PCA) and positive matrix factorization (PMF) showed that the emission 
from cosmetics and personal care products, plasticizers, and household building materials were the possible PAE 
sources in indoor dusts. Among three routes of ingestion, dermal adsorption, and inhalation, dust ingestion was the 
main route of human exposure to PAEs. The health risk of PAE exposure for different populations in descending order 
of children > women > men. The hazard indexes of noncancer were higher than the threshold value of 10−6 during 
human exposure to DBP and DEHP. Children also faced potential noncancer risk due to benzyl butyl phthalate (BBzP) 
and di-n-octyl phthalate (DnOP) exposure. The carcinogenic risks via exposure to BBzP and DEHP were negligible.

Conclusion:  Overall, PAEs were widely presented in indoor dusts. Obvious difference was observed in the distribu-
tion of PAEs concentration in indoor dusts due to the differences in economic development and usage of PAEs prod-
uct. Plasticizers, household building materials, and cosmetics and personal care products were likely PAE sources in 
indoor dusts. The risk assessment suggested that carcinogenic risks of BBzP and DEHP were negligible, but DBP, DEHP, 
DnOP, and BBzP may pose noncancer risks to humans.
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Background
Phthalate esters (PAEs) are a class of manufactured 
organic chemicals that have been used as plasticizers/
additives, emollients, antifoaming agents, humectants, or 
carriers in various industrial and consumer products [1–
4]. Phthalate esters were dominated plasticizers, account-
ing for 70–80% of the market share of plastic plasticizers, 
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and the domestic PVC production capacity was 22.82 
million tons in 2017 [5]. From January to September 
2019, the total output of national plastic products indus-
try enterprises has been reached 59.94 million tons [6].

The employment of various phthalates differs widely 
with chemical and physical properties [7]. Low molecular 
weight PAEs, such as dimethyl phthalate (DMP), diethyl 
phthalate (DEP), and di-n-butyl phthalate (DBP), are 
mainly used as solvents or carriers in personal care prod-
ucts and coatings. DBP is additionally used in cellulose 
esters, epoxy resins, and special adhesive formulations 
[1]. Meanwhile, PAEs with long/branching alkyl chain, 
such as di(2-ethylhexyl) phthalate (DEHP), di-n-octyl 
phthalate (DnOP), and benzyl butyl phthalate (BBzP), are 
mainly used as plasticizers in the polymers to improve 
flexibility, workability, and general handling properties [1, 
8].

Most PAEs are physically mixed to the polymeric mate-
rials, thereby facilitating their easy entrance to the envi-
ronment during their manufacture, usage, or disposal [4, 
9]. The widespread application of products containing 
PAEs in daily life resulted in their universality in environ-
ments and frequent detection in various environmental 
matrices, including drinking water [10], surface water 
[11], indoor/outdoor air [12–14], dust [7, 15], sediment 
[16, 17], soil [18, 19], food [20], and urine [21, 22]. Mean-
while, some PAEs [e.g., DEHP, DBP, BBzP, DEP, and di-
n-hexyl phosphoric acid (DHXP)] have been proven to 
be endocrine-disrupting compounds, and exposure to 
phthalates may result in reproductive effects [23], hyper-
tension, and childhood obesity problems [8, 24–26]. Six 
PAEs, including DMP, DEP, BBzP, DBP, DEHP, and DnOP, 
have been listed as priority pollutants by the USEPA and 
the European Union due to their widespread occurrence 
in the biosphere and potential adverse effects on the 
environment and humans [27, 28, 29, 29]. DEP, DBP, and 
DnOP have also been identified as priority pollutants by 
the National Environmental Monitoring Center in China 
[30].

Persistent organic pollutants (POPs) tend to accumu-
late in the dust and soils [31]. Humans spend most of 
their time indoors; thus, indoor dust is a considerable 
daily exposure source of PAEs for humans. To date, an 
increasing number of studies reported the contamina-
tion of PAEs in indoor dust in different building environ-
ments. However, limited information of PAEs in dust is 
available. For instance, a few studies investigated the 
PAEs in different types of indoor dust in the USA [32], 
Germany [33, 34], Denmark [35], Norway [35, 36], Swe-
den [9, 37], and Japan [38]. As one of the largest PAE pro-
ducers and users in the world, China has also conducted 
a few surveys on the occurrence of PAEs in indoor dusts. 
However, these surveys are limited to localized regions, 

such as Xi’an [15], Beijing [3], Nanjing [39], Xinjiang [40], 
and the Pearl River Delta [41]. Children are physiologi-
cally more vulnerable to environmental pollution when 
compared with adults because children are considerably 
exposed due to their frequent skin contact with PAE-
containing products [42]. Therefore, assessing the health 
risk from exposure to PAEs in residential dust in China 
is urgent. Till date, only one study reported a nationwide 
survey on the characteristics of PAEs in indoor dust col-
lected from bedrooms or saloons in China. However, 
this study only estimated the daily intake (DI) via vari-
ous routes, and the exposure risks were not assessed 
[43]. In this study, eight PAEs were analyzed in 94 indoor 
dust samples collected across China. This study aims to 
investigate the concentration, spatial distribution char-
acteristics, sources, and health risks to human (including 
noncancer and carcinogenic risks) exposure to PAEs in 
indoor dusts from residences and dormitories.

Materials and methods
Standards
Eight PAE standards (DMP, DBP, DEP, DIBP, BBzP, DEHP, 
DnOP, and dinonyl phthalate (DNP)) were obtained from 
AccuStand (New Haven, CT, USA), and their structures 
and selected physicochemical properties were summa-
rized in Additional file 1: Table S1. The deuterated inter-
nal standards of diethyl phthalate-3,4,5,6-d4 (DMP-d4, 
0.10  g·mL−1), di-n-butyl phthalate-d4 (DBP-d4), and bis 
(2-ethylhexyl) phthalate-3,4,5,6-d4 (DEHP-d4) were pur-
chased from AccuStand. Acetone and ethyl acetate used 
were chromatographically pure and purchased from 
Burdick & Jackson.

Sample collection and preparation
The collection of 94 dust samples, including 72 bed-
room or drawing room dust samples from houses and 
22 dust samples from dormitories, was conducted from 
seven regions in China during August and October 2019. 
Detailed information on all sampling sites is presented 
in Additional file 1: Figure S1. Before sampling, the floor 
to be sampled is cleaned by owners. Dust samples were 
collected by gently sweeping the top of furniture and the 
floor with disposable brushes. All brushes used before 
sampling were precleaned with methanol. After sam-
pling, the samples were wrapped with aluminum foils 
and stored in a polyethylene zip-lock bag. Then, the 
samples were transported to the laboratory within three 
days. Subsequently, dusts were sieved through a 200-
mesh sieve, homogenized thoroughly, and then stored in 
a brown glass jar at 4 °C until analysis. All samples were 
analyzed within 30 d.
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Sample analysis
Indoor dust samples (0.10  g, dry weight) were put 
into a 15  mL glass tube, and 200  ng internal standards 
were spiked to the samples. PAEs in dust samples were 
extracted with 2 mL ethyl acetate by mechanical oscilla-
tion at 180 rpm for 1 h and left at room temperature for 
1 h. Approximately 1 mL of extract was transferred to a 
GC vial. The extraction method consulted the standard 
“Soil quality -Determination of selected phthalates using 
capillary gas chromatography with mass spectrometric 
detection (GC/MS)” (ISO 13913-2014) [44].

Instrumental analysis
The extracts were analyzed with a Shimadzu gas chro-
matography–mass spectrometry (GCMS-QP2010Plus, 
Shimadzu, Japan) equipped with an electron ionization 
(EI) source. Quantification of each target compound was 
performed in the single  ion  monitoring (SIM) mode. 
The analytes were separated using a capillary column 
(DB-5MS, 30  m × 0.25  mm × 0.25  μm). The flow rate of 
the ultra-high purity helium carrier gas (purity 99.999%) 
was maintained at 1.0  mL·min−1. The column tempera-
ture program started at 60 °C (held for 1.0 min), ramped 
to 220  °C at a rate of 20  °C·min−1 and held for 1.0 min, 
and finally increased at 5 °C·min−1 to 290 °C and held for 
9.0 min. The ion source, injection port, and quadrupole, 
and transmission line temperatures were maintained at 
300, 300, and 250  °C, respectively. The injection volume 
was 1 μL. Quantification was conducted by the external 
calibration method based on a six-point calibration curve 
for each compound.

Quality assurance and quality control (QA/QC)
All kinds of plastic containers were strictly avoided to 
reduce background contamination during the entire sam-
ple processing. All glassware was precleaned three times 
with acetone before use. The calibration curves were 
measured for all eight PAEs with concentrations rang-
ing from 20  ng·mL−1 to 1000  ng·mL−1, and the regres-
sion coefficients of calibration curves were > 0.99. The 
LODs of PAEs ranged from 0.0008  μg·g−1 for DBP to 
0.0048 μg·g−1 for DnOP. The LOQs for DMP, DEP, DIBP, 
DBP, BBzP, DEHP, DnOP, and DNP were 0.0038, 0.0098, 
0.0027, 0.0024, 0.0128, 0.0036, 0.0143, and 0.0095 μg·g−1, 
respectively (Additional file  1: Table  S2). Blank samples 
were processed with every batch of 20 samples. No tar-
get compound was detected in procedural blanks; there-
fore, the background concentration of these chemicals 
was neglected. The relative recoveries of target PAEs in 
spiked matrix samples ranged from 75.95 to 125.36%, 
while those of internal standards in spiked blank mats, 
spiked matrices, and dust samples were 80.34–131.61%, 

76.54–116.86%, and 76.89–120.98%, respectively. The 
precision of the analytical method was evaluated by ran-
domly selecting 10 samples analyzed in duplicate, with 
the coefficient variation below 15%.

Statistical analysis
Statistical analysis was conducted with IBM SPSS Statis-
tics 25.0, EPA PMF 5.0, and Origin 2019. A spatial dis-
tribution map of PAEs was created using ArcGIS version 
10.2. Concentrations lower than the LOQ were assigned 
a value of LOQ/2 for statistical analysis. Pearson’s corre-
lation was employed to analyze correlations between PAE 
concentrations in various environmental matrices. PCA 
and PMF receptor models used in this study are widely 
used factor analysis receptor models which do not need 
source profiles. The explicit descriptions of these models 
can be found in our previous studies [45–47]. They are 
also provided in the supplementary information. Gener-
ally, they can be expressed by the following basic Eq. (1):

where xik is the concentration of ith species for the kth 
sample; fpk is the contribution of the pth source to the 
kth sample; gip is the ith species concentration from the 
pth source; and eik is the error. Factors extracted from the 
ambient concentrations can be linked to potential source 
categories.

Human exposure and health risk assessment
The formulas with slight modification from the US EPA 
[48], which have been widely employed in previous stud-
ies [27, 43, 49], are defined as Eqs. (2–4) to assess the 
average daily dosage (ADD, mg·mg·kg−1·d−1) of PAEs 
for adults and children via different exposure path-
ways of PAEs, namely ingestion, dermal absorption, and 
inhalation. ADDing, ADDder, and ADDinh are the ADD 
(mg·kg−1·d−1) through dust ingestion, dermal absorp-
tion, and inhalation, respectively.

where Cdust is the PAE concentration measured in dust 
(mg·kg−1). IRingestion is the dust ingestion rate (mg·d−1). 
IRinhalation is the dust inhalation rate (m3·d−1). SA is 

(1)xik =

p
∑

j=1

gipfpk + eik

(2)ADDing =
Cdust × IRingestion × EF× ED× CF

BW × AT

(3)
ADDder =

Cdust × SA × AF× ABF× EF× ED× CF

BW × AT

(4)ADDinh =
Cdust × IRinhalation × EF× ED

BW × AT× PEF
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the dermal exposure area (cm2). ABF is the dermal 
adsorption fraction. AF is the dermal adherence fac-
tor for dust (mg·cm−2·d−1). BW is the body weight (kg). 
AT is the averaging time (d): for noncancer risks, AT 
(d) = ED × 365; for carcinogens risks, AT (d) = average 
lifetime × 365. ED is the exposure duration (y). EF is the 
exposure frequency (d·y−1). CF is the conversion factor 
(1.0 × 10−6 kg·mg−1). PEF is the particle emission factor 
(1.36 × 109 m3·kg−1).

Carcinogenic and noncancer risks of PAEs were 
assessed following the procedures by the US EPA 
(2001) [48]. Noncancer risks of PAE exposure via dust 
were quantified by the hazard quotient (HQ) and haz-
ard index (HI) using Eqs. (5–6):

where RfD is the reference dose value of each PAE 
(mg·kg−1·d−1), HQ represents the health risks of the 
individual PAEs to human health via different expo-
sure routes, and i represents different exposure routes. 
The values of HI > 1 × 10−6 indicate that the exposure of 
inhabitants to PAEs might induce the noncancer risk.

As for the carcinogenic PAEs, the lifetime average 
daily exposure doses (LADD, mg·kg−1·d−1) were esti-
mated on the basis of the following expressions (7–9):

Carcinogenic risk (CR) was obtained from Eq. (10).

where CSF represents the cancer slope factor, including 
ingestion cancer slope factor ( CSFingestion ), inhalation 
cancer slope factor ( CSFinhalation ), and dermal adsorp-
tion cancer slope factor ( CSFdermal ). CSFingestion is 0.0019 
and 0.014  kg·d·mg−1 for BBzP and DEHP, respectively 
[27, 50]. CSFinhalation and CSFdermal were assumed to be 
equal to CSFingestion to assess the cancer risks by der-
mal adsorption and inhalation [27]. A CR value below 
1 × 10−6 represents the negligible or acceptable cancer 

(5)HQi =
ADDi

RfD

(6)HI =
∑

HQi

(7)LADDder =
Cdust × ABF× CF

AT

(

SAchild × AFchild × EDchild × EFchild

BWchild

+
SAadult × AFadult × EDadult × EFadult

BWadult

)

(8)LADDinh =
Cdust

AT×PEF

(

IRinhalatiionchild×EDchild×EFchild
BWchild

+
IRinhalationadult×EDadult×EFadult

BWadult

)

(9)LADDing =
Cdust × CF

AT

(

IRingestionchild × EDchild × EFchild

BWchild
+

IRingestionadult × EDadult × EFadult

BWadult

)

(10)CR = LADD× CSF

risk. The relevant parameters for human exposure and 
health risk assessment are listed in Additional file  1: 
Table S3.

Results and discussion
Concentrations and spatial distribution of PAEs in indoor 
dust
The concentration and detection frequency of PAEs in 
indoor dusts from residences and dormitories are respec-
tively shown in Fig. 1 and Additional file 1: Figure S2. All 
eight PAEs were detected in indoor dusts samples, dem-
onstrating a detection frequency from 77.27 to 100%. 
DMP, DEP, DIBP, DEHP, and DBP were the most fre-
quently detected compounds in all 94 samples, followed 
by BBzP, DnOP, and DNP in residences with the detec-
tion frequency of 81.94–95.83%. Similarly, the detection 
frequencies of BBzP and DnOP in the dormitories were 
77.27 and 86.36%, respectively.

The concentrations of the total PAEs (Σ8PAEs) in indoor 
dusts from residential buildings ranged from 8.86 μg·g−1 
to 808.43  μg·g−1 with a median of 104.58  μg·g−1 and a 
geometric mean of 101.32 μg·g−1. The spatial distribution 
of Σ8PAEs is depicted in Fig. 2. Different concentrations 
were observed in the distribution of PAE  concentra-
tion in indoor dusts among seven administrative regions 
of China. The highest concentration of Σ8PAEs in indoor 
dusts was found from Northeast China (NEC, median: 
164.71  μg·g−1, range: 32.29–778.54  μg·g−1). Meanwhile, 
the relatively low values of Σ8PAEs were from North-

west (NWC, median: 145.11  μg·g−1, range: 16.88–
534.65  μg·g−1), East China (EC, median: 107.59  μg·g−1, 
range: 32.91–808.43 μg·g−1), North China (NC, median: 
82.60 μg·g−1, range: 38.46–416.66 μg·g−1), Central China 
(CC, median: 80.97  μg·g−1, range: 8.86–618.62  μg·g−1), 
and South China (SC, median: 71.72  μg·g−1, range: 
25.04–185.32  μg·g−1). The lowest value of ΣPAEs in 
dust was found in Southwest China (SWC, median: 
58.83 μg·g−1, range: 43.57–266.68 μg·g−1). On the whole, 
the concentration of PAEs in northern China was higher 
than that in southern China. The result was consist-
ent with early studies [43], which was caused by the 
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differences in usage patterns between eight PAEs among 
the seven geographic regions in China.

When considering the individual phthalates in indoor 
dust among all geographical regions, the composition 
with the highest concentration in indoor dusts from 
residential buildings was DEHP, which ranged from 
5.60  μg·g−1 to 754.41  μg·g−1 with a median value of 
50.79 μg·g−1, followed by DBP (median: 23.56 μg·g−1) and 
DIBP (median: 8.84 μg·g−1). DBP and DEHP are known 
as the main additives used in the industrial production 
[51]. Moreover, DBP and DIBP showed a relatively high 
abundance in indoor dust, which might be related to the 
extensive usage of DBP and DIBP as personal care prod-
ucts, such as cosmetics and pharmaceutical coatings [29, 
29, 41].

The median concentrations of DEP, DMP, DNP, DnOP, 
and BBzP were two orders of magnitude lower than 
DEHP. Consistent with the results by other studies, the 
median concentrations of DEP and DMP were gener-
ally measured at lower levels than other PAEs in indoor 
dusts. This measurement was probably due to the high 
volatility and the reported existence of DEP mainly in gas 
phase than that in dust phase because of its high vapor 
pressure and low molecular weight [9, 49, 52].

A comparison of PAE concentrations in indoor dusts 
in different regions worldwide is presented in Addi-
tional file 1: Table S4. DEHP, DBP, DEP, DMP, and DIBP 
were the most commonly reported ones. The PAE con-
centrations (except for DMP and DIBP) detected in 
this study were slightly higher than those in a previous 
nationwide survey on the PAE levels in the indoor dust 
samples in China [43]. DEHP dominated the phthalates 
contaminating Chinese indoor dusts consistent with 
the profile in many countries worldwide, but DEHP 
levels measured in this study were significantly lower 
than other studies all over the world (Additional file 1: 
Table  S4). The sequence of concentrations of major 
individual PAEs with DEHP > DBP > DIBP was in agree-
ment with previous reports in China [43], Albany/USA 
[32], Sweden [9], and France [53]. The DBP concentra-
tion in indoor dusts in China (23.56 μg·g−1) was lower 
than that in Sweden (38.00  μg·g−1) [9], Saudi Arabia 
(33.00  μg·g−1) [54] and at higher levels than Albany/
USA (13.10 μg·g−1) [32], Delaware/USA (12.00 μg·g−1) 
[55], California/USA (18.20  μg·g−1) [56], France 
(9.10  μg·g−1) [53], Canada (16.80  μg·g−1) [57], and 
Kuwait (2.00  μg·g−1) [54]. The DIBP levels in indoor 
dusts measured in this study were similar to those in 
some European countries, such as Sweden with a mean 

Fig. 1  Concentration of PAEs in indoor dust samples (μg·g−1) from seven regions in China
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value of 7.90 μg·g−1[9], Belgium at 9.40 μg·g−1[58], and 
Ireland at 7.00 μg·g−1[58], while lower than those from 
Saudi Arabia (22.00 μg·g−1) [54], Kuwait (17.00 μg·g−1) 
[54], and France (20.00  μg·g−1) [53]. The difference in 
the compositional profile of PAEs in indoor dust world-
wide might be attributed to the difference in housing 
environment, sampling time, utilization of phthalates in 
consumer products, and analytical techniques.

The concentrations of Σ8PAEs in dormitories 
were 14.03–1877.37  μg·g−1 with a median value of 
55.32  μg·g−1. The highest level of individual PAEs 
in dormitories was DEHP with a median value of 
34.65  μg·g−1, which was 2.85 and 3.84 times higher 
than DBP (12.17  μg·g−1) and DIBP (9.02  μg·g−1), 
respectively.

A comparative analysis of the median concentra-
tion of eight phthalate esters in dust in dormitories 
and residences is shown in Figs. 1 and 3. Thus, the PAE 
concentration in residences was higher than that in 
dormitories, except for DIBP. The difference between 
phthalate concentration in dust in residences and dor-
mitories was likely due to the excessive use of decora-
tive materials, household appliances, and furniture in 
residential buildings when compared with dormitories.

Distribution of PAEs in regions with different 
administrative levels
According to the administrative levels, the sampling 
regions of 72 residential dusts were divided into the 
following three types: provincial capital, nonprovin-
cial city, and county. Environmental pollution is closely 

Fig. 2  Spatial distribution of the Σ8PAEs in residential dusts of China

Fig. 3  Comparison of the median concentration of phthalate esters 
in residences and dormitories
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associated with the economic development and urbani-
zation; thus, different degrees of environmental pollu-
tion are found in the three types of regions. As shown 
in Fig.  4, the concentrations of Σ8PAEs descended in 
the order of provincial capital (114.44 μg·g−1) > nonpro-
vincial city (105.96  μg·g−1) > county (66.83  μg·g−1). Up 
to now, the concentration of PAEs in urban and rural 
indoor dust has not been discussed. Zhu et  al. [43] 
indicated that the high levels of Σ9PAEs were observed 
in dust from developed areas, and the high producing 
capacity and consumption amount of PAEs in devel-
oped cities may influence their geographic distribution. 
In addition, the levels of PAEs in urban and rural soil 
have been reported in previous studies, which reflected 
that the urbanization and industrialization commercial 
activities and dense population may cause the increased 
PAE concentrations in soil [59, 60]. The high level of 
PAEs in the center of urban areas was probably caused 
by the densely anthropogenic activities [61].

PAE occurrence in residential dust was mainly 
derived from the usage of PAE products (such as home 
building materials, electronic products, cosmetics, and 
consumer products). Previous studies have proven that 
phthalate contamination is related to the use of build-
ing materials and electronics. The highest concentra-
tion of Σ16PAEs in the agricultural soils of Guangzhou 
City was observed at the site close to the largest archi-
tecture market of South China, wherein a considerable 
amount of plastic wastes was discarded [62]. PAEs are 
also commonly used in consumer products [9], and 
these chemicals released from PAE products would 
not degrade because of the nature of the indoor envi-
ronment and may persist for a long time [63]. The con-
sumption of PAE products in large cities is higher than 

that in small places, which resulted in the low concen-
tration of PAEs in the country.

Composition profiles of PAEs in indoor dust
The composition characteristics of PAEs in indoor dust 
are presented in Fig. 5. The composition of PAEs in resi-
dential indoor dust from different geographical areas of 
China was not different, indicating a similar source of 
PAEs in the indoor environment. Considering the com-
position among all geographical regions, DEHP was 
the most abundant PAE individual in indoor dust from 
residential buildings, followed by DBP and DIBP, dem-
onstrating proportions of 60.42, 28.02, and 10.51% of 
Σ8PAEs, respectively. Especially, the contribution of 
DEHP to the total concentration of PAEs was reached 
83.79% in Northeast China. Kang et  al. [41] also illus-
trated that DBP, DEHP, and DIBP were the predomi-
nant compounds in indoor dust around the Pearl River 
Delta, accounting for 1.72 − 29.30%, 56.00 − 96.50%, and 
0.35 − 13.40% to the total PAEs, respectively. Moreover, 
the predominance of DEHP and DBP was found in other 
environmental matrices, including soil [64, 65], water 
[16], sediment [16], air [13], and sludge [66]. Consider-
ing the low contribution of DMP and DEP, Orecchio et al. 
(2013) [67] reported that the percentages of the high vol-
atile PAEs (e.g., DMP, DEP) in indoor dust were generally 
lower than those with low volatility.

The proportions of individual PAEs in the indoor dusts 
in dormitories were in the order of DEHP > DBP > DIB
P > DNP > DnOP > DMP > DEP > BBzP. The cumulative 
concentration of DEHP, DBP, and DIBP accounted for 
99.00% of Σ8PAEs, which was consistent with residences. 

Fig. 4  Concentration of PAEs in three types of regions with different 
administrative levels

Fig. 5  Composition profiles of PAEs in indoor dusts of residences and 
dormitories from several regions in China
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The similar pattern of PAE contamination profile in 
indoor dusts collected from residences and dormitories 
in China suggested the main sources of PAEs in different 
indoor dusts were similar.

Human exposure of phthalate esters via indoor dust
The ADDs of eight measured phthalates via multiple 
pathways in indoor dusts for children (between the age 
of 1–6) and adults are shown in Table  1. The results 
indicated that the total intakes ΣADD (ADDing + ADD-
inh + ADDder) of PAEs from indoor dusts for children 
and adults were 4.38 × 10−4 and 7.23 × 10−5 mg·kg−1·d−1 

respectively indicating that children were more suscep-
tible to the PAE intake than the adults. The ADDs of 
children via ingestion, dermal, and inhalation of indoor 
dusts were respectively 6.07-, 5.12-, and 2.14-folds 
higher than those of adults possibly due to the addi-
tional hand-to-mouth activities and the differences in 
selected parameters (such as lower body weights and 
high ED). Simultaneously, the calculated ΣADD, ADDing, 
and ADDder of women were respectively approximately 
1.17, 1.17, and 1.04 times larger than men. However, 
the ADDinh of women was at a lower level than men, 
which might be attributed to different physiological 

Table 1  Health risk of human exposure to PAEs in indoor dust

*Represents the value exceed 1 × 10−6, which could pose health risk to people

BBzP DEHP DMP DEP DBP DnOP DIBP DNP ΣPAEs

ADDing Children 5.11E−07 2.12E−04 6.28E−07 6.7E−07 9.83E−05 1.09E−06 3.69E−05 7.72E−07 4.36E−04

Adults 8.42E−08 3.49E−05 1.03E−07 1.1E−07 1.62E−05 1.80E−07 6.07E−06 1.27E−07 7.19E−05

Adult males 7.75E−08 3.21E−05 9.52E−08 1.02E−07 1.49E−05 1.66E−07 5.59E−06 1.17E−07 6.61E−05

Adult females 9.10E−08 3.77E−05 1.12E−07 1.19E−07 1.75E−05 1.95E−07 6.56E−06 1.37E−07 7.77E−05

ADDder Children 2.41E−09 1.00E−06 2.97E−09 3.17E−09 4.64E−07 5.16E−09 1.74E−07 3.65E−09 2.06E−06

Adults 4.72E−10 1.95E−07 5.79E−10 6.18E−10 9.07E−08 1.01E−09 3.40E−08 7.12E−10 4.02E−07

Adult males 4.61E−10 1.91E−07 5.66E−10 6.04E−10 8.86E−08 9.86E−10 3.32E−08 6.96E−10 3.93E−07

Adult females 4.78E−10 1.98E−07 5.87E−10 6.26E−10 9.19E−08 1.02E−09 3.45E−08 7.22E−10 4.08E−07

ADDinh Children 4.18E−11 1.73E−08 5.13E−11 5.48E−11 8.03E−09 8.93E−11 3.01E−09 6.31E−11 3.57E−08

Adults 1.94E−11 8.06E−09 2.39E−11 2.55E−11 3.74E−09 4.16E−11 1.40E−09 2.94E−11 1.66E−08

Adult males 2.05E−11 8.50E−09 2.52E−11 2.69E−11 3.94E−09 4.38E−11 1.48E−09 3.10E−11 1.75E−08

Adult females 1.94E−11 8.05E−09 2.38E−11 2.54E−11 3.73E−09 4.15E−11 1.40E−09 2.93E−11 1.66E−08

HQing Children 2.56E−06* 1.06E−02* 6.28E−08 8.38E−07 9.83E−04* 2.73E−06*

Adults 4.21E−07 1.75E−03* 1.03E−08 1.38E−07 1.62E−04* 4.50E−07

Adult males 3.87E−07 1.61E−03* 9.52E−09 1.27E−07 1.49E−04* 4.14E−07

Adult females 4.55E−07 1.89E−03* 1.12E−08 1.49E−07 1.75E−04* 4.87E−07

HQder Children 1.21E−08 5.00E−05* 2.97E−10 3.96E−09 4.64E−06* 1.29E−08

Adults 2.36E−09 9.77E−06* 5.79E−11 7.73E−10 9.07E−07 2.52E−09

Adult males 2.31E−09 9.55E−06* 5.66E−11 7.55E−10 8.86E−07 2.46E−09

Adult females 2.39E−09 9.90E−06* 5.87E−11 7.83E−10 9.19E−07 2.55E−09

HQinh Children 2.09E−10 8.66E−07 5.13E−12 6.85E−11 8.03E−08 2.23E−10

Adults 9.72E−11 4.03E−07 2.39E−12 3.19E−11 3.74E−08 1.04E−10

Adult males 1.03E−10 4.25E−07 2.52E−12 3.36E−11 3.94E−08 1.10E−10

Adult females 9.71E−11 4.02E−07 2.38E−12 3.18E−11 3.73E−08 1.04E−10

HI Children 2.57E−06* 1.06E−02* 6.31E−08 8.42E−07 9.88E−04* 2.75E−06*

Adults 4.24E−07 1.76E−03* 1.04E−08 1.39E−07 1.63E−04* 4.53E−07

Adult males 3.90E−07 1.62E−03* 9.58E−09 1.28E−07 1.50E−04* 4.17E−07

Adult females 4.58E−07 1.90E−03* 1.12E−08 1.50E−07 1.76E−04* 4.89E−07

LADD Adults 6.84E−08 2.83E−05

Adult males 6.84E−08 2.84E−05

Adult females 6.82E−08 2.83E−05

CR Adults 1.30E−10 3.97E−07

Adult males 1.30E−10 3.97E−07

Adult females 1.30E−10 3.96E−07
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characteristics, living habits, and other parameters. Dust 
ingestion was the main pathway of human PAE exposure 
from indoor dusts. The ADDs of PAEs for children and 
adults through dust ingestion were 2–4 orders of mag-
nitude higher than those through dust inhalation and 
dermal adsorption. Similar results were also reported by 
other studies [27, 43].

The HI of noncancer risks for children, adult female, 
and adult male exposure to individual PAEs in the indoor 
dusts was in the decreasing order of DEHP > DBP > DnO
P > BBzP > DEP > DMP. The HI values of DEP and DMP 
from indoor dust for children and adults were all within 
the acceptable level. However, the HI values of DEHP 
and DBP for all age groups were 3–4 orders of magni-
tude higher than 1 × 10−6. This finding indicates the non-
cancer risk to children and adults from DEHP and DBP 
exposure through indoor dust. Moreover, the noncan-
cer risk for PAE exposure in children in indoor dust was 
larger than that in adults, and the HI for children was 6.07 
times larger than adults. Simultaneously, the HI values of 
BBzP and DnOP to children also exceeded 1 × 10−6 with 
the values of 2.57 × 10−6 and 2.75 × 10−6, respectively. In 
addition, women were found to be at heightened risks 
than men (Table 1). The carcinogenic risks of DEHP and 
BBzP in indoor dusts for adults via three exposure routes 
were 3.97 × 10−7 and 1.30 × 10−10, respectively. Carcino-
genic risk profiles for adult males (CRDEHP: 3.97 × 10−7; 
CRBBzP: 1.30 × 10−10) and females (CRDEHP: 3.96 × 10–7; 
CRBBzP: 1.30 × 10–10) were similar. These profiles were all 
below the threshold value (1 × 10−6), indicating that the 
carcinogenic risk of human exposure to DEHP and BBzP 
in indoor dusts was relatively low or negligible.

Possible sources of PAEs in indoor dust
Source apportionment by PCA model
PCA and Pearson correlation analysis were performed to 
investigate the possible sources of PAEs in indoor dust 
(Fig.  6, Additional file  1: Figures. S3 and S4). The first 
three principal components (PC1–PC3) with an eigen-
value > 1.0 were extracted for indoor dusts in residences. 
PC1 explained 33.50% of the total variance with loading 
of 0.97 and 0.85 for DIBP and DMP, respectively. The 
results were in agreement with the Pearson correlation 
analysis in the residential dust, which inferred a signifi-
cant correlation between DMP and DIBP (Fig. 6), indicat-
ing possible sharing of similar sources. PC 2 accounted 
for 25.82% of the total phthalate esters in these samples 
and was dominated by low molecular PAEs with high 
loading for DEHP (0.90), BBzP (0.69), and DNP (0.75). 
As shown in Fig.  6, DEHP was significantly correlated 
with BBzP and DNP, suggesting the possibility of simi-
lar sources or emission behaviors. PCA suggested high 
loading of DBP (0.92) and DEP (0.86) on PC3, which 

contributed as high as 23.39% to the total variance. Sig-
nificant correlations were found between DBP and DEP 
(Fig. 6).

PAEs were used in a wide range of applications, and 
individual PAE might have multiple uses. High molecu-
lar weight PAEs, such as DEHP, DnOP, and BBzP, have 
been widely used as plasticizers in the polymer industry 
to improve flexibility, workability, and general handling 
properties [1, 68, 69]. BBzP and DnOP are also used in 
construction materials and home furniture, such as wall-
papers, vinyl flooring, adhesives, and synthetic leather 
[1, 68]. PAEs with low molecular weights, such as DMP, 
DBP, and DEP, are mainly used in cosmetics and personal 
care products. In addition, DBP and DIBP are used in 
applications of plasticizers and personal care products 
[69]. DBP is also used in special adhesive formulations, 
cellulose esters, and epoxy resins [1, 70]. Therefore, DMP 
and DIBP in PC1 and DBP and DEP in PC3 were mainly 
related to cosmetics and personal care products and 
plasticizers. DEHP, BBzP, DnOP, and DNP in PC2 were 
mainly associated with the use of plasticizers, construc-
tion materials, and home furniture.

For indoor dusts in dormitories, the two extracted 
principal components explained 48.12 and 22.31% of 
the total variation (Additional file 1: Figure S4). The ele-
ments of the first factor corresponded to those for indoor 
dust from residences. DBP, DIBP, DNP, DEHP, and BBzP 
were significantly correlated with each other (p < 0.01 or 
p < 0.05). DEP and DMP concentrations were positively 
correlated (r = 0.664; p < 0.05) (Fig. 6). The second factor 
was loaded on DMP and DEP, which may also be related 

Fig. 6  Correlation analysis of PAEs of indoor dust. The bottom 
left corner is the correlation analysis of phthalates in indoor dust 
from residences. The top right corner is the correlation analysis of 
phthalates in indoor dust from dormitories
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to the release from cosmetics, personal care products, 
and surface coating materials [25].

Source apportionment by PMF model
Two datasets were imported to the PMF 5.0 model in this 
study, and potential sources of PAEs in residences and 
dormitories were identified by the PMF model as shown 
in Fig.  7. The theory and formulas of the PMF and the 
rationality of the research results are stated in the sup-
plementary material. Three sources for indoor dusts in 
residences were chosen as the optimal number for the 
PMF model and were comparable to those characterized 
by the PCA model with some differences. Factor 1 was 
responsible for 41.21% of the total variance and domi-
nated by DIBP (83.64%), DBP (81.24%), DEHP (63.06%), 
and DNP (66.33%), which was associated with plasticiz-
ers employed in multifarious plastic products. Factor 2 
accounted for 41.80% of the variance and obtained high 
concentrations for BBzP (79.82%) and DnOP (88.87%). 

Meanwhile, contributions to other PAEs were relatively 
low, and a large number of building materials and deco-
rated furniture possibly contributed to this source. The 
third factor explained 17.52% of the variance and had 
high loads on DEP (87.70%) and DMP (61.52%), which 
was mainly linked to the cosmetics and personal care 
products.

Two sources for dormitories were chosen as the opti-
mal number for the PMF model. Source profiles for 
PAEs obtained from the PMF model are displayed in 
Fig.  7b. The source analysis result was consistent with 
that obtained by the PCA model. The contributions to 
the ΣPAEs of the two sources were F2 (60.38%) and F1 
(36.92%). DMP (70.90%) and DEP (54.59%) were promi-
nent in Factor 1, which is interpreted as the cosmetics 
and personal care products sources. For Factor 2, DBP 
(64.79%), DIBP (50.77%), DEHP (80.42%), BBzP (60.48%), 
DnOP (88.09%), and DNP (87.96%) obtained high 
weighting. Therefore, the second source denoted the joint 

Fig. 7   Source profiles and contributions of PAEs in indoor dust from residences and dormitories based on the results of PMF
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contributions of plasticizers, furnishings, and construc-
tion materials.

The difference between source profile in dust in resi-
dences and dormitories was possibly related to the usage 
patterns and the dwelling characteristics. For example, 
high population density might cause a high contribution 
of personal care product sources in dormitories. Mean-
while, the use of additional household appliances, deco-
ration materials, and furnishings in residential buildings 
might lead to the higher source contributions of the 
plasticizers and furnishings in residences compared with 
dormitories.

The fitting results were determined by linear regres-
sion between the predicted Σ8PAE concentration and the 
observed concentration. The fitting plots showed that 
the concentration predicted by the two models both fit 
well the observed concentration of PAEs in dormitories 

and residences, respectively (R2 range from 0.8197 to 
0.8662) (Fig.  8). Overall, the PMF model (slopes were 
0.9822 and 0.8869 for dormitory and residence, respec-
tively) performed better with the slopes closing to “1” of 
the regression equations compared with the PCA model 
(slopes were 0.9339 and 0.8096 for dormitory and resi-
dence, respectively). The Σ8PAE concentration modeled 
by the PCA and PMF models presented good correla-
tions. As shown in Additional file 1: Figure S5, R2 values 
were 0.8884 and 0.8060, the intercepts were 16.2120 and 
1.6795, and slopes both approached unity. The compari-
son of the results between the two models based on the 
source profiles demonstrates considerable similarities 
between the two models, but some differences existed in 
source contributions. As mentioned above, 97.29% of the 
Σ8PAEs concentrations in dormitories were explained by 
the PMF model. The Σ8PAE concentrations in residences 

Fig. 8  Model fit of the observed-versus-predicted Σ8PAE concentration (μg·g−1) from PCA and PMF
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were slightly overestimated by the PMF model with 
100.54%. However, the Σ8PAE concentrations in resi-
dences and dormitories were all underestimated by the 
PCA model with 81.70 and 70.43%, respectively. Overall, 
the results obtained by PMF provided practical and phys-
ical meanings. Multiple models should be conducted to 
reduce the weaknesses of individual approaches to obtain 
compelling results in future studies.

Conclusions
Eight PAEs, including DEP, DMP, DIBP, DBP, BBzP, 
DEHP, DnOP, and DNP, were detected in indoor dusts 
from several areas in China. Predominant contami-
nants in the indoor dusts were DBP, DEHP, and DIBP. 
The highest concentration of Σ8PAEs in indoor dust was 
found in Northeast China and decreased in the order of 
the Northwest, East China, North China, Central China, 
South China, and Southwest China. The median concen-
trations of PAEs in residential buildings were often higher 
than those in dormitories and the differences in source 
profiles between the two indoor environments. This 
finding suggests that the usage pattern of these chemi-
cals was different between residences and dormitories 
in China. The highest PAE concentration was observed 
in the provincial capital, followed by nonprovincial city 
and country. Emissions of cosmetics and personal care 
products, plasticizers, and household building materi-
als may explain the sources of PAEs in the indoor dusts. 
The ingestion of indoor dusts was the major pathway of 
human exposure to PAEs. When compared with adults, 
children face considerable health risks, and women are 
more threatened than men. Exposure to DBP and DEHP 
in indoor environments might cause notable noncancer 
risks for humans. In addition, the hazard indexes of BBzP 
and DnOP indicated their noncancer risk to children. The 
carcinogenic risk of human exposure to DEHP and BBzP 
in the indoor dusts was negligible. Additional attention 
should be provided to indoor dusts and measures should 
be taken to decrease daily PAE exposure of humans.
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