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Abstract 

Background:  Children are at high risk of suffering health consequences of air pollution and childhood exposure can 
increase the risk of developing chronic diseases in adulthood. This study, part of the MAPEC_LIFE project (LIFE12 ENV/
IT/000614), aimed to investigate the associations between exposure to urban air pollutants and micronucleus (MN) 
frequency, as a biomarker of chromosomal damage, in buccal cells of children for supporting implementation and 
updating of environmental policy and legislation.

Methods:  This prospective epidemiological cohort study was carried out on 6- to 8-year-old children living in five 
Italian towns with different levels and features of air pollution. Exfoliated buccal cells of the children were sampled 
twice, in winter and spring, obtaining 2139 biological samples for genotoxicological investigation. Micronucleus (MN) 
frequency was investigated in buccal cells of children and its association with air pollution exposure was assessed 
applying multiple Poisson regression mixed models, including socio-demographic and lifestyle factors as confound-
ers. We also dichotomize air pollutants’ concentration according to the EU Ambient Air Quality Directives and WHO Air 
Quality Guidelines in all Poisson regression models to assess their risk predictive capacity.

Results:  Positive and statistically significant associations were found between MN frequency and PM10, PM2.5, ben-
zene, SO2 and ozone. The increment of the risk of having MN in buccal cells for each μg/m3 increase of pollutant con-
centration was maximum for benzene (18.9%, 95% CIs 2.2–38.4%) and modest for the other pollutants (between 0.2 
and 1.4%). An increased risk (between 17.9% and 59.8%) was found also for exposure to PM10, benzene and benzo(a)
pyrene levels higher than the threshold limits.

Conclusions:  Some air pollutants are able to induce chromosomal damage in buccal cells of children even at 
concentrations below present EU/WHO limits. This type of biological effects may be indicative of the environmental 
pressure which populations are exposed to in urban areas.
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Background
According to the 2018 Environmental Performance 
Index [1], poor air quality is the greatest environmental 
threat to public health. In 2017, more than 90% of people 
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worldwide live in areas that exceed the World Health 
Organization (WHO) Guidelines for healthy air. Air pol-
lution contributed to almost 5 million deaths (nearly 1 in 
every 10) and 147 million years of healthy life lost, glob-
ally, and it reduces life expectancy on average by 1 year 
and 8 months [2]. Air pollution exposure has been linked 
to a wide range of diseases [3–5], among which heart dis-
ease and stroke are the most common, followed by lung 
diseases and lung cancer [6]. More recently, maternal 
exposure to outdoor air pollution has been associated 
with adverse impacts on fertility, pregnancy, newborns 
and children, and some evidence emerged on the asso-
ciation between exposure to air pollution and new onset 
type 2 diabetes in adults and with obesity, systemic 
inflammation, aging, Alzheimer’s disease, dementia [6] 
and autoimmune diseases [7]. In 2013, the International 
Agency for Research on Cancer (IARC) classified out-
door air pollution and particulate matter as carcinogenic 
to humans (Group 1), specifically via genotoxic path-
ways [8]. In particular, the IARC reported that human 
exposure to outdoor air pollution or particulate matter 
is associated with increases in genetic damage that have 
been shown to be predictive of cancer in humans [8].

Compared to adults, children are at higher risk of suf-
fering health consequences of airborne chemicals for 
their higher exposure and susceptibility [9]. Even low-
dose exposure to air pollutants during windows of vul-
nerability in utero and in early infancy can result in 
disease, disability, and death in childhood and across 
lifespan [10]. Really, some data suggest that genetic dam-
age occurring early in life may affect the risk of develop-
ing chronic diseases, including cancer, in adulthood more 
than later damage events [11, 12].

In the last decades, studies on the health effects of air 
pollution have increasingly used a molecular epidemio-
logical approach, investigating biological and genotoxic 
effects in cells of exposed subjects [13]. The use of bio-
markers in the investigation of health effects of air pollu-
tion, as well as other exposures, could improve exposure 
assessment, increase the understanding of mechanisms 
and allow the investigation of individual susceptibil-
ity [14]. Measuring biomarkers of early effects, detect-
able a long time before clinical disease develops, allows 
a prompt detection of the biological consequences of 
a specific situation, such as the exposure to air pollut-
ants. Moreover, some biomarkers of early effect, such as 
micronuclei, are predictive of cancer risk [15]. Further-
more, in contrast to disease monitoring, biomarkers of 
early effects are measurable in a wide number of indi-
viduals, providing a global pattern of the possible effects 
of total environmental exposures in a population. Today, 
almost all air pollution studies investigating human 
health effects employ some sort of biomarker [16] and 

the attention is more and more focused on the effects of 
early exposure, occurring during prenatal and childhood 
periods [17]. Despite this growth of molecular epidemio-
logical studies on air pollution effects, the studies inves-
tigating the impact of this exposure on children are still 
few, with small sample size and poor evaluation of poten-
tial confounding factors.

This research is part of the MAPEC_LIFE project 
(Monitoring air pollution effects in children for support-
ing public health policy, http://www.mapec​-life.eu), a 
prospective epidemiological cohort study funded by the 
EU Life + Programme (LIFE12 ENV/IT/000614). The aim 
was to investigate the associations between exposure to 
urban air pollutants and micronucleus frequency, as a 
biomarker of chromosomal damage, in exfoliated buccal 
cells of children, taking into account socio-demographic 
and lifestyle factors as confounders. The results of this 
investigation could contribute to a better understand-
ing of the impact of this major environmental issue on 
children health, providing a concrete contribution to the 
implementation and updating of environmental policy 
and legislation.

Results
The project was started in November 2014 and involved 
26 schools in five towns. Among the 3144 candidate 
children, 1767 (56.2%) agreed to participate and 1356 of 
them were eligible for the research (Fig. 1). Of these, 1317 
children were included in the study, providing buccal 
cell samples in winter, and 1149 of them provided again 
their buccal cells in spring. Therefore, 1149 of 1317 initial 
participants (87%) provided a double biological sample. 
After excluding samples unsuitable for laboratory analy-
sis, 2139 biological samples were analyzed, 1093 of which 
collected in winter and 1046 in spring. The majority of 
cell samples showed no micronucleus (MN) (55.5%) or 
MN frequency between 0.5 and 2 MN/1000 cells (43.8%), 
while only 0.7% of the samples showed an MN frequency 
higher than 2 MN/1000 cells (Fig. 2).

The levels of air pollutants monitored by the Regional 
Agencies of Environmental Protection (ARPAs) (PM10, 
PM2.5, benzene, NO2, SO2, O3) in the 3 weeks preceding 
the biological samplings in winter and spring are shown 
in Additional file 1: Table S1. As expected, the mean lev-
els of the pollutants were higher in winter than in spring, 
except for ozone, which showed higher concentration in 
spring than in winter. However, almost no children were 
exposed to benzene levels higher than the EU limit and 
no one was exposed to SO2 and O3 levels over both the 
EU and WHO thresholds.

The application of the univariate mixed Poisson regres-
sion models showed associations between MN frequency 
and town of residence and temperature (Table  1). All 
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the towns showed lower Incidence Rate Ratios (IRRs) 
for MN frequency than Brescia, considered as the refer-
ence. MN frequency showed a negative association with 
temperature. Also sampling season was associated with 
MN frequency (data not shown), but, since season and 
temperature were collinear, only the latter was retained 
in the models because it was a continuous variable and 
therefore more informative than season. However, for 
ozone, the Poisson model included a cubic spline for the 
day of the year instead of temperature, due to the sea-
sonal trend of the ozone, which is higher in spring–sum-
mer than in winter. Using the mixed Poisson regression 
models including temperature and town of residence as 
confounding factors, we found that MN frequency was 
positively associated with body mass index (BMI) and 

exposure to second-hand smoke at home and negatively 
associated with adherence to Mediterranean diet and 
parent’s education (Table 1). The complete results regard-
ing the associations between MN frequency and all the 
data retrieved by questionnaire are reported in Addi-
tional file 1: Table S2.

The Poisson regression mixed models including all 
the variables in Table  1 as confounding factors showed 
a positive, though not statistically significant association 
between MN frequency and concentration of polycyclic 
aromatic hydrocarbons (PAHs), their nitro-compounds 
(nitroPAHs), carcinogenic PAHs (cPAHs) and benzo(a)
pyrene (BaP) in PM0.5 samples (Table 2). The strongest 
associations were found for nitroPAHs (IRR = 1.391, 95% 

Fig. 1  Flow diagram describing subjects’ selection and inclusion in the study
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CIs 0.464–4.172, p = 0.556) and BaP (IRR = 1.205, 95% 
CIs 0.980–1.481, p = 0.078).

No relationship between MN frequency and in  vitro 
PM0.5 mutagenicity was found including in the model 

the net revertant values obtained for all the strains of 
Salmonella typhimurium used in the Ames test (TA100, 
TA98, TA98NR, YG1021) (Table 3).

The analysis of the association between MN frequency 
and level of air quality parameters measured by ARPAs 
showed positive and statistically significant associations 
for PM10 (peak value of the previous 21  days), PM2.5 
(peak value of the previous 21 days and mean value of the 
15- to 21-day lag period), benzene (mean value of the 15- 
to 21-day lag period), SO2 (peak values of the previous 
21 days) and ozone (peak values of the previous 21 days) 
(Table  4). Particularly, an 18.9% (95% CIs 2.2–38.4%) 
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Fig. 2  MN frequency (MN/1000 cells) in buccal cells of children

Table 1  Associations between  MN frequency and  town 
of  residence, temperature and  some children’s features, 
assessed by  computing Incidence Rate Ratio (IRR) using 
a  Poisson regression model. 95% Confidence Intervals 
(95% CIs) and p value are reported

*Associations were assessed including town of residence and temperature in the 
model as potential confounders

N IRR 95% CIs P value

Town of residence

 Brescia 494 1.000 – – –

 Lecce 428 0.600 0.414 0.871 0.007

 Perugia 453 0.662 0.468 0.937 0.020

 Pisa 334 0.829 0.593 1.160 0.275

 Torino 430 0.647 0.448 0.933 0.020

 Temperature 2139 0.952 0.944 0.961 <0.001

 Children’s BMI* 2139 1.030 1.009 1.052 0.005

Children’s adherence to Mediterranean diet*

 Low 1876 1.000 – – –

 High 263 0.824 0.683 0.994 0.043

Children’s exposure to second-hand smoke at home*

 No 1864 1.000 – – –

 Yes 275 1.199 1.017 1.415 0.031

Graduated mother*

 No 1116 1.000 – – –

 Yes 1022 0.862 0.756 0.983 0.026

Graduated father*

 No 1265 1.000 – – –

 Yes 846 0.864 0.754 0.990 0.035

Table 2  Analysis of  the  associations between  MN 
frequency and  concentration of  PM0.5, PAHs (polycyclic 
aromatic hydrocarbons), nitroPAHs, cPAHs (carcinogenic 
PAHs) and BaP (benzo(a)pyrene). The Incidence Rate Ratio 
(IRR), 95% Confidence Intervals (95% CIs) and p value are 
reported

All the associations were assessed including town of residence, temperature, 
child BMI and adherence to Mediterranean diet, exposure to second-hand 
smoke at home, having graduated mother and father in the model as potential 
confounders

Air pollutant 
concentration

IRR 95% CIs P value

PM0.5 0.988 0.968 1.007 0.212

PAHs 1.017 0.995 1.041 0.137

NitroPAHs 1.391 0.464 4.172 0.556

cPAHs 1.033 0.991 1.077 0.123

BaP 1.205 0.980 1.481 0.078

Table 3  Analysis of  the  associations between  MN 
frequency and  mutagenic activity of  PM0.5, as  detected 
by  Ames test on  4 strains of  Salmonella typhimurium 
(TA100, TA98, TA98NR, YG1021) with  and  without 
metabolic activation (S9)

All the associations were assessed including town of residence, temperature, 
child BMI and adherence to Mediterranean diet, exposure to second-hand 
smoke at home, having graduated mother and father in the model as potential 
confounders

The Incidence Rate Ratio (IRR), 95% Confidence Intervals (95% CIs) and p value 
are reported

Strain net revertants IRR 95% CIs P value

TA100 0.971 0.900 1.049 0.458

TA100 + S9 – – – –

TA98 0.971 0.753 1.251 0.818

TA98 + S9 0.787 0.636 0.973 0.027

TA98NR 0.891 0.650 1.222 0.474

TA98NR + S9 0.917 0.625 1.347 0.660

YG1021 1.006 0.990 1.023 0.438

YG1021 + S9 0.998 0.988 1.009 0.718
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increment of the risk of having MN in buccal cells for 
each μg/m3 increase of benzene concentration was 
apparent, while the increase of the risk for the other asso-
ciations was between 0.2% and 1.4% for one unit increase 
of the level of each pollutant.

The analysis regarding the complete set of pollut-
ant measures is reported in Additional file  1: Table  S3. 
Almost all the positive associations between MN fre-
quency and air pollutant levels were observed for the 
exposure levels in the 3rd week before biological sam-
pling, for all pollutants but SO2, for which a significant 
association was found also with the peak value of the 
previous 14  days. For ozone, positive associations were 
observed for almost all exposure measures.

To investigate the risk of having MN in buccal cells 
when exposure levels exceeded the thresholds established 
by the EU Ambient Air Quality Directives and WHO Air 
Quality Guidelines, the Poisson regression models were 
applied dichotomizing air pollutant levels at the thresh-
olds. Considering EU Ambient Air Quality Directives, a 
positive association was found between MN frequency 
and PM10 exposure higher than the annual limit value 
of 40  μg/m3 in the 15- to 21-day lag period preceding 
the biological sampling, with an increase of the risk of 
17.9% (95% CIs 0.6–38.1%, p = 0.042) (Table  5). On the 
other hand, considering WHO Air Quality Guidelines, 
the exposures to levels of PM10, benzene and BaP higher 
than the annual limits were associated with increased 

MN frequency. In particular, being exposed to pollutant 
concentration over the thresholds increased the risk of 
22.5% (95% CIs 3.9–44.3%, p = 0.015) for PM10, of 27.8% 
(95% CIs 3.8–57.3%, p = 0.021) for benzene and of 59.8% 
(95% CIs 21.0–111.1%, p = 0.001) for BaP. The complete 
results of the analysis considering EU and WHO limits 
are reported in the Additional file 1: Tables S4 and S5.

Discussion
We investigated the association between MN frequency 
and air pollution exposure in 2139 buccal cell samples of 
primary school children living in five Italian towns. We 
found an increase of risk of having MN in buccal cells for 
an increase of the levels of benzene, ozone, PM2.5, PM10 
and SO2 registered in the lag time of 15–21 days before 
cell sampling.

The ability of outdoor air pollution and of many of its 
components to induce different types of genetic effects, 
including MN formation, is supported by strong mecha-
nistic evidence in both humans and experimental systems 
[8]. However, few studies investigated MN frequency in 
children exposed to air pollution. Most of them found 
higher MN frequencies in children exposed to high com-
pared to low levels of air pollutants [33, 39–44], and some 
found a statistical association between MN frequency 
and single air pollutants. For example, Ceretti et al. [45] 
found an association with PM10 and NO2 in 181 buccal 
cells samples of preschool children in Brescia. Ozone was 
associated with MN frequency in both exfoliated buccal 
cells and peripheral blood lymphocytes of 64 children 
aged 4–12 years from USA [46]. BaP was associated with 
MN frequency evaluated in umbilical cord blood lym-
phocytes of 178 Czech newborns [42]. However, other 
studies provided negative or inconsistent results regard-
ing the association between MN frequency and air pol-
lutant exposure in children’s cells [47–49].

Micronuclei are small additional nuclei, formed of 
acentric chromosomal fragments or whole chromosomes 
that are not included in the main daughter nucleus dur-
ing nuclear division (Fig. 3). They are stable cytogenetic 
alterations, which can represent early biological events 
along the pathway of cancer development and are asso-
ciated with the chromosome instability phenotype often 
seen in cancer [50]. Actually, a significant increase of all 
cancer incidence was found in groups of subjects with 
high MN frequency in peripheral blood lymphocytes 
[15], identifying this biomarker as a predictive of can-
cer development. Moreover, MN frequency in periph-
eral lymphocytes of healthy individuals was associated 
with the risk of cardiovascular diseases [51] and neuro-
degenerative disorders [52]. Even if these associations 
have been found for MN detected in lymphocytes, they 
can be probably referred also to MN in buccal cells, for 

Table 4  Analysis of  the  associations between  MN 
frequency and  air pollutant levels. For  each compound, 
21-day peak value and  15- to  21-day mean value are 
reported

The Incidence Rate Ratio (IRR), 95% Confidence Intervals (95% CIs) and p value 
are shown
a  For O3, taking into account its specific seasonal trend, the Poisson model 
was performed including a cubic spline for the day of the year (seasonality) 
rather than temperature. All the associations were assessed including town 
of residence, temperature, child BMI and adherence to Mediterranean diet, 
exposure to second-hand smoke at home, having graduated mother and father 
in the model as potential confounders

Air pollutant Air pollutant measures IRR 95% CIs P value

PM10 21-day peak value 1.003 1.000 1.005 0.042

15- to 21-day mean value 1.002 0.997 1.008 0.409

PM2.5 21-day peak value 1.005 1.000 1.009 0.049

15- to 21-day mean value 1.010 1.001 1.019 0.027

Benzene 21-day peak value 1.000 0.995 1.006 0.862

15- to 21-day mean value 1.189 1.022 1.384 0.025

NO2 21-day peak value 0.999 0.996 1.002 0.490

15- to 21-day mean value 0.998 0.990 1.006 0.593

SO2 21-day peak value 1.002 1.000 1.004 0.011

15- to 21-day mean value 1.041 0.998 1.084 0.060

O3
a 21-day peak value 1.014 1.007 1.022 < 0.001

15- to 21-day mean value 0.999 0.987 1.010 0.798
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the strong correlation between MN frequency in these 
two types of cells [53, 54]. For this reason, we decided 
to measure MN frequency in exfoliated buccal cells, 
which are directly exposed to airborne compounds, can 
be collected by noninvasive sampling and can be ana-
lyzed without establishing cell culture [54]. The most 

significant exposure period for observing associations 
with MN frequency corresponded to the 15–21  days 
before biological sampling. This was consistent with the 
lifetime of the exfoliated buccal cells, which in 7–21 days 
differentiate and migrate from basal layer to the kerati-
nized surface layer, and the mechanism of the MN for-
mation, which needs that the stem basal cells, with the 
chromosomal damage, express it as MN during nuclear 
division [55, 56].

We also evaluated the association between MN fre-
quency and air pollutant levels according to the limits 
established by the EU Ambient Air Quality Directives 
and WHO Air Quality Guidelines. The WHO guidelines 
seem more protective for exposure to PM10, benzene 
and BaP than the EU directives. However, they both were 
insufficient to protect children from the genotoxic activ-
ity of air pollutants. Indeed, we found positive association 
of MN frequency with PM2.5 and, even more, SO2 and 
ozone for which children’s exposure was under the EU 
and WHO limits. Similarly, conclusions of the ESCAPE 
project showed that exposure to particulate matter may 
increase the risk for lung cancer even at concentrations 
below the existing EU air quality limit values for PM10 
(40 μg/m3) and PM2.5 (25 μg/m3) [57]. These results were 
consistent with the assumption for which a threshold for 

Table 5  Analysis of  the  associations between  MN frequency and  exposure levels exceeded the  thresholds established 
in both the EU Ambient Air Quality Directive and the WHO Air Quality Guidelines

All the associations were assessed including town of residence, temperature, child BMI and adherence to Mediterranean diet, exposure to second-hand smoke at 
home, having graduated mother and father in the model as potential confounders

Number of biological samples (N) and mean MN frequency ± SD (MN/1000) are reported for children exposed to levels lower (<) or higher (>) than the limits. 
Associations were assessed by computing Incidence Rate Ratio (IRR) with a Poisson regression model

*, **p value < 0.05, < 0.01, respectively, assessed by Poison regression mixed model
a  BaP concentration detected on PM0.5 samples collected near schools
b  Estimated Reference Levels (RL)

Air pollutant Type of limit Limit value <EU/WHO limit >EU/WHO limit IRR (95% CIs)

N MN/1000 mean ± SD N MN/1000 mean ± SD

PM10 EU daily 50 µg/m3 1946 0.33 ± 0.49 193 0.40 ± 0.46 1.011 (0.811, 1.262)

WHO daily 50 µg/m3 1946 0.33 ± 0.49 193 0.40 ± 0.46 1.011(0.811, 1.262)

EU annual 40 µg/m3 1700 0.30 ± 0.45 439 0.46 ± 0.58 1.179*
(1.006, 1.381)

WHO annual 20 µg/m3 590 0.26 ± 0.42 1529 0.36 ± 0.50 1.225* (1.039, 1.443)

PM2.5 EU annual 25 µg/m3 1579 0.31 ± 0.45 419 0.46 ± 0.59 1.099 (0.915, 1.320)

WHO annual 10 µg/m3 307 0.23 ± 0.34 1691 0.36 ± 0.51 1.125 (0.916, 1.382)

WHO daily 25 µg/m3 1579 0.31 ± 0.45 419 0.46 ± 0.59 1.099 (0.915, 1.320)

Benzene EU annual 5 µg/m3 1772 0.33 ± 0.47 33 0.26 ± 0.36 0.818 (0.472, 1.418)

WHO annuala 1.7 µg/m3 1438 0.30 ± 0.45 367 0.41 ± 0.54 1.278* (1.038, 1.573)

NO2 EU annual 40 µg/m3 1435 0.33 ± 0.49 704 0.34 ± 0.48 0.782 (0.665, 0.921)

WHO annual 40 µg/m3 1435 0.33 ± 0.49 704 0.34 ± 0.48 0.782 (0.665, 0.921)

BaPb EU annual 1 ng/m3 1868 0.31 ± 0.46 166 0.51 ± 0.59 1.145 (0.900, 1.457)

WHO annuala 0.12 ng/m3 1146 0.24 ± 0.36 888 0.44 ± 0.57 1.598** (1.210, 2.111)

Fig. 3  Image of buccal mucosa cells stained with the Feulgen plus 
Light Green method and observed through fluorescence microscopy 
(magnification 1000x). On the left, a differentiated cell without 
damage; on the right, a differentiated cell with three micronuclei
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PM exposure below which no health damage is observed 
has not been identified [58].

Strengths and weaknesses of the study: This study has 
various strengths. First, it has a large sample size, includ-
ing 2139 biological samples, collected in two seasons for 
1149 children. To our knowledge, this is the largest sam-
ple size in studies investigating the association of MN fre-
quency in children’s cells with air pollution. Second, the 
study recruited children living in five towns and in two 
different seasons, allowing to assess the effect of different 
mixtures of air pollutants, in the periods of the year with 
the highest and lowest levels of air pollutants in Italy.

This study has some limits, too. The main limit is the 
lack of evaluation of children’s personal exposure to air 
pollutants. Epidemiological studies often refer air pollut-
ant levels to subjects’ residence [59]. However, we pre-
ferred to use daily levels of air pollutants measured by the 
ARPAs and PM0.5 sampling at school during biological 
sampling days because children involved stayed at school 
for quite the whole day and lived near the attended 
school. Nevertheless, indirect measures of exposure to 
other potential agents causing DNA damage were pro-
vided by questionnaires, as it is often done in epidemio-
logical research of health effects of air pollution.

Conclusions
The MAPEC_LIFE project found an association between 
MN frequency detected in buccal cells of children and 
levels of some air pollutants, such as PM10, PM2.5, ben-
zene, SO2 and ozone. These associations supported the 
role of air pollution exposure in inducing DNA damage, 
even at concentrations below present EU limits, which 
may be indicative of the environmental pressure which 
populations are exposed to in urban areas.

According to these results, some suggestions emerged 
for public health policy. First, apart from the routinely 
measured air quality parameters, some airborne pollut-
ants, such as BaP, which induced biological damage, are 
candidates for air quality monitoring. Second, air pollu-
tion directives need to be constantly revised according to 
research findings, including these regarding early biologi-
cal effects. Last, the buccal MN cytome assay is a simple, 
cost-effective and noninvasive test, which may be useful 
for monitoring air pollution biological effects. In particu-
lar, it may be used to detect specific exposure situations 
dangerous to health, to identify population groups with 
high susceptibility and to monitor the impact of interven-
tions for ambient air pollution control.

Methods
The protocol of the study was described in detail in Feretti 
et al. [18]. In brief, the study was carried out on primary 
school children (6- to 8-year old) living in five Italian 

towns, characterized by different levels and features of air 
pollution. Brescia and Torino are located in North Italy, 
in the highly industrialized area of the Po Valley, one of 
the most polluted areas in Europe [6], where the theo-
retical increase of cancer risk for children due to benzene 
exposure estimated applying the standard United States 
Environmental Protection Agency (USEPA) methodol-
ogy was found higher than acceptability threshold [19]. 
Pisa and Perugia are located in Central Italy, a medium–
low polluted area. Lecce is located in a very low polluted 
area, in Southern Italy [20]. The project was approved 
by the Ethics Committees of the local Health Authori-
ties of each town. Informed consent was obtained from 
children’s parents after an explanation of the intent of the 
study, possible results and their meaning. Only children 
whose parents filled in the consent form were included 
in the study. A comic assent form was also presented to 
children before biological sampling. The children who 
refused to provide buccal cell sample were excluded.

About 200 children were recruited from primary 
schools in each urban area. Children with severe dis-
eases and those who had been exposed to antineoplas-
tic agents, had undergone radiation therapy or X-rays in 
the previous 12 months, or had a dental prosthetic, were 
excluded. A cluster sampling design was adopted. The 
primary sampling unit was the school, which was ran-
domly chosen in each town. Schools with less than 100 
students were not considered. Furthermore, all children 
of the first, second and third classes of each selected 
school were asked to participate in the study.

Exfoliated buccal cells were sampled twice, in winter 
(between November 2014 and March 2015) and spring 
(between April and June 2015), which are characterized 
by very different concentration of air pollutants in Italy. 
Micronucleus (MN) frequency was measured as a bio-
marker of early effect, according to the buccal micronu-
cleus cytome assay (BMCyt assay) procedure by Thomas 
and Fenech [21]. To reduce variability among centers, 
cells were collected and fixed by each recruiting unit and 
then sent to a unique laboratory for the slide preparation 
and analysis. For each subject, two coded slides were pre-
pared and read blind by trained scorers that determined 
initially the frequency of different cell types in 1000 cells 
and then MN frequency among a minimum of 2000 dif-
ferentiated cells. All the details of biological sampling 
procedure, test method and assay results were reported 
in Villarini et al. [22].

A questionnaire to collect information on socio-demo-
graphic and other features of the children was adminis-
tered to children’s parents twice, before each biological 
sampling. It included questions about children’s expo-
sures to genotoxic substances different from outdoor 
air pollution (indoor air pollution, second-hand smoke, 
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consumption of food potentially containing genotoxic 
compounds), some lifestyle aspects (physical activity, 
time spent outside, dietary habits) and some parent’s 
characteristics (nation of birth, education level, employ-
ment status), which are potential confounding factors 
of the relationship between air pollution exposure and 
biomarkers of early effects. The analysis of reliability of 
the questionnaire and the socio-economic, lifestyle and 
socio-cultural characteristics of the children have been 
already published [23–26].

Child exposure to air pollution was evaluated by both 
collecting ultra-fine particulate matter (PM0.5) sam-
ples near the selected schools and gathering data about 
the concentration of the main air pollutants from the 
Regional Agencies of Environmental Protection (ARPAs). 
PM0.5 sampling was carried out in the area adjacent to 
each school in the same days of the biological sampling, 
using a high-volume air sampler which collected PM0.5 
on fiberglass filters for 72 consecutive hours. Chemi-
cal analysis of the organic extracts of the samples was 
conducted to assess the concentration of polycyclic aro-
matic hydrocarbons (PAHs) and their nitro-compounds 
(nitroPAHs). Furthermore, in  vitro genotoxicity was 
evaluated using Ames test on Salmonella typhimurium 
(TA100, TA98, TA98NR, YG1021 strains), cytokinesis-
block MN (CBMN) test on A549 cells and comet assay 
on A549 and BEAS-2B cells. Methods and descriptive 
results of PM0.5 sampling and analysis were reported in 
Bonetta et al. [27].

We retrieved data on levels of the air pollutants regu-
lated by the EU Ambient Air Quality Directives, i.e., 
PM10, PM2.5, NO2, SO2, benzene, O3 [28], which are 
measured daily by the Air Quality Monitoring Network 
of the ARPAs, accessing to the free databases on their 
websites [29–33] in the five towns during study period. 
Given the small size (less than 200.000 inhabitants) of 
four towns (Brescia, Perugia, Pisa and Lecce) and the 
small number of monitoring stations in each of them, the 
exposure level attributed to each child was calculated as 
the average of the levels detected by all the town stations. 
Torino, in contrast, is a big town (about 880.000 inhab-
itants), which has a large number of monitoring stations 
in the different urban areas that allowed us to couple a 
monitoring station to each school. As buccal cells have 
a maximum 3-week life, we assessed the associations 
between MN frequency and air pollutant concentrations 
in the 3 weeks before cell sampling. Various air pollutant 
measures were used: (a) averages of the daily concentra-
tions of the 7, 14 and 21  days preceding the biological 
sampling, (b) averages of each of three 1-week lag periods 
before biological sampling (1–7, 8–14, 15–21  days) and 
(c) peak concentrations—i.e., maximum hourly concen-
trations—in the 7, 14 and 21  days preceding biological 

sampling. For PM10, also the number of exceedance 
days of the daily EU law limit (50  µg/m3) occurring in 
the 7, 14 and 21 days preceding biological sampling was 
considered.

Since meteorological conditions influence air pollutant 
levels and might determine health effects, we retrieved 
values of temperature, relative humidity, wind intensity 
and rainfall measured by the ARPAs during the period 
of the PM0.5 samplings. Since data on relative humid-
ity, wind intensity and rainfall were not available for all 
the towns, only temperature was analyzed as a possible 
confounding factor for the relationship between MN fre-
quency and air pollutants.

The sample size was determined considering the 
expected effect size, the natural variability of the study 
outcome, a type I error probability fixed at 5%, two 
sided, and a type II error probability fixed at 5%. Regard-
ing effect size and natural variability, we used informa-
tion from a previous study, which found a mean MN 
frequency of 1.43 (± 0.84) and 1.13 (± 0.63) per 1000 
cells in children living in areas at higher and lower lev-
els of PM2.5, respectively, with about 5  μg/m3 of mean 
difference between them during the study period [34]. 
A sample size of about 200 children per exposure level 
should have been large enough to assess a mean differ-
ence of 0.20 MN/1000 cells between exposed and non-
exposed, using a two-tailed t-Student test for unpaired 
data and considering also the clustered sampling strat-
egy applied. Estimating a loss of approximately 20% of 
samples, because of incomplete or incorrectly filled in 
questionnaires and/or an insufficient number of cells col-
lected through biological sampling, an oversampling of 
participants was planned, resulting in about 240 children 
recruited per town.

Statistical analysis
The MN count was considered as the response variable 
in multiple Poisson regression models. The data were 
doubly structured, consisting in two repeated measure 
within subject at level one, and of grouped subjects per 
each sampled school, as primary sampling unit at level 
two. However, subjects with only one MN measure were 
also included. To account of this data structure, we speci-
fied a hierarchical mixed effect model with subject and 
school-specific random intercepts. Fitting the Poisson 
regression models, Incidence Rate Ratios (IRRs) for each 
independent variable were estimated with their 95% con-
fidence intervals (95% CIs). We checked for over-disper-
sion and eventually provided robust standard error of the 
estimates.

The analysis plan was (1) modeling of town of resi-
dence, season and temperature; (2) inclusion of potential 
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confounders and indirect measures of exposure obtained 
via questionnaire; and (3) inclusion of air pollutants’ data.

In the first step of the analysis, we described the univar-
iate associations between MN frequency and town of res-
idence, season and temperature. In the second step of the 
analysis, we evaluated the association of MN frequency 
with each demographic and exposure variable collected 
through the questionnaire by multiple hierarchical mixed 
effect Poisson regression models including town of resi-
dence and temperature. Some variables were dichoto-
mized due to the small number of subjects in some 
categories: mother’s and father’s education level as high 
(university degree) vs low, score of adherence to Mediter-
ranean diet as high (6–10 units) vs low. In the third step 
of the analysis, we assessed the association between MN 
frequency and air pollution exposure. Regarding PM0.5 
samples collected near each school, we investigated the 
association with the concentration of PM0.5, PAHs, 
nitroPAHs, carcinogenic PAHs (cPAHs) and Benzo(a)
pyrene (BaP) by multiple hierarchical mixed effect Pois-
son regression models including temperature, town of 
residence and the previously identified confounding fac-
tors at step 2. The association between MN frequency 
and in  vitro PM0.5 mutagenicity was analyzed as well, 
including in the model the net revertant values obtained 
for all the strains of Salmonella typhimurium used in the 
Ames test (TA100, TA98, TA98NR, YG1021). Regarding 
the air pollutants monitored by ARPAs in each town, all 
the measures described above were considered for each 
pollutant. Temperature (or cubic spline for time trend 
for ozone, since the high collinearity between ozone and 
temperature), town of residence and confounding factors 
from the questionnaire selected as previously defined 
were included in the model too.

As stated above, air pollutant variables collected thor-
ough ambient monitors were cluster-level variables, with 
each cluster corresponding to an enrolled school. The 
statistical models included a cluster-specific random 
effect to account for intraclass correlation.

Possible non-linearity in concentration–response func-
tion was assessed fitting a cubic spline or a restricted 
polynomial function. Interaction terms were tested by 
likelihood ratio tests.

We also took account, for seasonality, fitting a cubic 
spline on day of the year, although this approach can be 
conservative because we collected measurements only in 
a few months of the year.

To assess the risk predictive capacity of air quality 
legislation, concentration of air pollutants was dichoto-
mized according to the threshold levels established in 
both the EU Ambient Air Quality Directives [28, 35] 
and the WHO Air Quality Guidelines [36, 37]. These 
dichotomous variables were included in the same Poisson 

regression model to assess their association with MN fre-
quency, taking into account all confounding factors con-
sidered in previous analysis. We refined the models using 
a backward selection algorithm with inclusion criterion 
p < 0.05, according to VanderWeele and Shpitser [38].

All tests were two-tailed tests with p < 0.05. Statistical 
analyses were conducted using the STATA 14.2 statistical 
package (Stata Corp, College Station, TX, USA).
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