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Abstract 

Background: The ability to use dissolved organic phosphorus (DOP) is important for survival and competition when 
phytoplankton are faced with scarcity of dissolved inorganic phosphorus (DIP). However, phosphorus availability to 
the freshwater dinoflagellate Peridinium bipes has received relatively little attention, the efficiency of glycerol phos-
phate use by phytoplankton has rarely been investigated, and the regulatory molecular mechanisms remain unclear.

Result: In the present study, cultures of the freshwater dinoflagellate Peridinium bipes were set up in 119 medium 
(+DIP), DIP-depleted 119 medium (P-free), and β-glycerol phosphate-replacing-DIP medium (+DOP). Gene expres-
sion was analyzed using transcriptomic sequencing. The growth rate of cells in DOP treatment group was similar to 
that in DIP group, but chlorophyll a fluorescence parameters RC/CS0, ABS/CS0,  TR0/CS0,  ET0/CS0 and  RE0/CS0 markedly 
decreased in the DOP group. Transcriptomic analysis revealed that genes involved in photosynthesis, including psbA, 
psbB, psbC, psbD, psaA and psaB, were downregulated in the DOP group relative to the DIP group. Glycerol-3-phos-
phate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase, rather than alkaline phosphatase, were 
responsible for β-glycerol phosphate use. Intercellular gluconeogenesis metabolism was markedly changed in the 
DOP group. In addition, genes involved in ATP synthases, the TCA cycle, oxidative phosphorylation, fatty acid metabo-
lism and amino acid metabolism in P. bipes were significantly upregulated in the DOP group compared with the DIP 
treatment.

Conclusions: These findings suggested that β-glycerol phosphate could influence the photosynthesis and metabo-
lism of P. bipes, which provided a comprehensive understanding of the phosphorus physiology of P. bipes. The 
mechanisms underlying the use of β-glycerol phosphate and other DOPs are different in different species of dinoflag-
ellates and other phytoplankton. DIP reduction may be more effective in controlling the bloom of P. bipes than DOP 
reduction.
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Background
Phosphorus is a vital element involved in many bio-
chemical reactions and metabolic processes, including 
cell membrane synthesis, signal transduction, photosyn-
thesis, nucleic acid metabolism and energy metabolism 
[1–4]. As an essential nutrient for growth, phosphorus 
availability not only constrains phytoplankton productiv-
ity but also plays a very important role in the community 
structure of phytoplankton [4]. Therefore, phosphorus 
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is regarded as a limiting factor in marine and freshwater 
ecosystems [5].

In aquatic environments, dissolved inorganic phospho-
rus (DIP) and dissolved organic phosphorus (DOP) are 
the two major total dissolved phosphorus (TDP) pools 
[6]. DIP can be directly used by phytoplankton cells [7]. 
However, DIP is rapidly consumed and shows very low 
replenishment from external sources, often resulting in 
growth-limiting concentrations in aquatic environments 
[8–10]. However, DOP is relatively abundant in aquatic 
environments. In natural waters, DOP is derived from 
soil and sediment, excretion by live organisms, and decay 
of dead organisms [11]. DOP also comes from organic 
compounds discharged from industrial, agricultural and 
domestic drainage [12]. According to Benitez-Nelson [8], 
in coastal marine environments and in the open ocean, 
the DOP pool can be up to 50% or 75% of the TDP pool, 
respectively. Other studies have shown that in the North 
Atlantic Ocean, DOP often accounts for > 80% of the 
TDP pool [13–15]. The DOP pool has even been found 
to exceed DIP by an order of magnitude in some environ-
ments, such as the Sargasso Sea, where DOP:DIP ratios 
in surface waters can exceed 100 [13, 16]. Bogé et al. [17] 
observed that the highest DOP concentration in Toulon 
Bay, France, was 0–0.33  μM, while DIP concentration 
was approximately 0–0.19 μM.

Because DOP can be only assimilated by phytoplank-
ton cells with the assistance of hydrolases [6, 18], the 
ability to use DOP is a potential driving factor in both 
phytoplankton species composition and the initiation 
and maintenance of harmful algal blooms (HAB) [9]. 
Glycerol phosphate is an important component of DOP 
because it is widely used in biology as well as in medicine 
and other fields of human endeavor [19–21]. However, 
the efficiency of glycerol phosphate use by phytoplankton 
has rarely been investigated, and the regulatory molecu-
lar mechanisms remain unclear.

Dinoflagellates are an important functional component 
of the phytoplankton community in marine and fresh-
water ecosystems [22, 23]. Many dinoflagellates, such 
as Ostreopsis [24], Akashiwo [25–27], Alexandrium [28] 
and Karenia [6, 29], have been reported to cause HABs 
in marine ecosystems [30, 31]. Phosphorus is believed to 
affect the abundance, volume, toxin synthesis and motile 
form of these dinoflagellates [32–34] and to be one of the 
primary factors influencing the frequency of red tides 
[35]. Numerous studies have indicated that dinoflagel-
lates can assimilate various types of DOP when DIP is 
insufficient [18, 36–38]. However, relative to marine eco-
systems, the dinoflagellate species in freshwater ecosys-
tems are little studied.

Recently, species of Peridinium have occurred in dense 
blooms in freshwater reservoirs and lakes throughout 

the world. During the bloom of P. cinctum, the organism 
comprises more than 90% of the phytoplankton biomass 
in Lake Kinneret, Israel and Lake Torrens, Australia [39, 
40]. A bloom of P. bipes was also observed in the meso-
trophic Huanglongdai Reservoir (biomass 5138  μg  L−1), 
China, and Juam Reservoirs, South Korea [41, 42]. High-
biomass blooms have caused mass mortalities of a variety 
of aquatic organisms through predation, starvation, shad-
ing, or creation of anoxic conditions [43–46].

Wynne et  al. [39] suggested that the rapid decline of 
Peridinium in Lake Kinneret in June is brought about 
by a combination of physical and chemical factors, such 
as pH, temperature, irradiation and limitation of P, N or 
other micronutrients. Previous studies have been pro-
posed that phosphorus not only affects the abundance, 
toxin synthesis and motile form of these dinoflagellates 
[32–34], but also regulates the frequency of dinoflagel-
late species [35]. However, it is regretful that phosphorus 
availability to the freshwater dinoflagellate P. bipes has 
received relatively little attention. Thus, the aims of this 
study were (1) to evaluate the growth and photosynthetic 
responses of P. bipes to DIP and DOP; and (2) to identify 
potential genes and pathways involved in the use of DIP 
and DOP by comparative transcriptomic analysis.

Materials and methods
Algal strain and culture conditions
The strain of Peridinium bipes used in this study was iso-
lated from a tributary of Three Gorges Reservoir, China. 
This strain was grown in 119 medium (http://algae .ihb.
ac.cn/Produ cts/Produ ctDet ail.aspx?produ ct=10) at 
25 ± 1 °C under white light with intensity 50 mmol pho-
tons m−2s−1 and a 12-h light/12-h dark cycle. A mixture 
of ampicillin (final concentration 200 µg mL−1), kanamy-
cin (final concentration 100 µg mL−1) and streptomycin 
(final concentration 100  µg  mL−1) was used to inhibit 
the growth of bacteria to < 1% of the culture biomass, 
which was confirmed using a Nikon CE-I fluorescence 
microscope (Nikon, Tokyo, Japan). Before the experi-
ment, all glassware was soaked in 0.1  mol  L−1 HCl for 
24  h and then rinsed with ultrapure water to prevent 
external phosphorus contamination. Cells in the logarith-
mic growth phase (after growth for about 10 days) were 
collected by centrifugation at 2683×g for 5 min, washed 
three times with P-free medium (119 medium without 
phosphorus), and then inoculated in P-free medium for 
5 days to remove excess phosphate [6].

When the DIP concentration in the culture was below 
the detection limit of 0.2 µmol L−1, the cells were inoc-
ulated into 500-mL glass flasks containing 250  mL 119 
medium. Three different conditions were used: (i) 119 
medium without P (P-free medium); (ii) P-free 119 
medium supplemented with 52  µmol  L−1  K2HPO4 (DIP 

http://algae.ihb.ac.cn/Products/ProductDetail.aspx?product=10
http://algae.ihb.ac.cn/Products/ProductDetail.aspx?product=10
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treatment, as the control); and (iii) P-free 119 medium 
with 52 µmol L−1 β-glycerol phosphate (DOP treatment). 
All phosphorus reagents were purchased from Sigma–
Aldrich (USA; > 99% purity, analysis- or chromatography 
analysis-grade). The initial concentration of P. bipes in 
each treatment was 0.37 × 104 cells L−1.

Cell density and specific growth rate
After inoculation, cell density was determined using a 
hemocytometer chamber under a Nikon CE-I micro-
scope. Specific growth rate (μ) was calculated as 
μ = (lnN1 − lnN0)/(t1 − t0), where N0 and N1 are the bio-
mass at times t0 and t1, and t0 and t1 are the times that the 
exponential growth phase started and ended.

Polyphasic Chl a fluorescence transient and energy 
pathway model
Samples in logarithmic growth were dark-adapted 
for 20  min before conducting chlorophyll a fluores-
cence measurement using a Plant Efficiency Analyzer 
(Hansatech Instruments Ltd., UK) with an actinic light 
of 3000 μmol photon m−2s−1. Fluorescence signals were 
recorded within a time scan of 10  μs to 2  s. Baesd on 
the theory of energy flux in PSII, several fluorescence 
parameters were obtained from the polyphasic Chl a 
fluorescence transient (OJIP) curve [47]. An energy path-
way model of photosynthesis in P. bipes was established 
according to the energy flow model of Appenroth et  al. 
[48] with specific activity parameters of the unit area of 
photosynthetic apparatus and the unit active reaction 
centers (RC) of P. bipes.

DIP concentration and alkaline phosphatase activity
DIP concentrations were measured by the phosphorus 
molybdenum blue method [49]. The supernatant in sam-
ples was used to determine the activity of extracellular 
phosphatases. Alkaline phosphatase activity (APA) was 
detected with p-nitrophenyl phosphate (Amresco, USA) 
as the substrate [50].

Transcriptome analysis
After 11-day inoculation, samples from the DIP and 
DOP treatments were harvested by suction filtration. The 
supernatant was discarded, and the centrifuge tube was 
immersed in liquid nitrogen to freeze the cell pellet for 
later processing. RNA isolation, library preparation and 
sequencing referred to the methods of Dong et  al. [51]. 
Transcriptome measurement was undertaken by Novo-
gene Company (Beijing, China). The data were submitted 
to NCBI (Accession No. PRJNA608149).

Clean data (clean reads) were obtained by removing 
reads containing adapters or poly-N and low-quality 
reads from the raw data. Q20, Q30, GC-content and 

sequence duplication level of the clean data were cal-
culated. All downstream analyses were based on high-
quality clean data. Gene function was annotated based 
on the following databases: Nr (NCBI non-redundant 
protein sequences), Nt (NCBI non-redundant nucleotide 
sequences), Pfam (Protein family), KOG/COG (Clus-
ters of Orthologous Groups of proteins), Swiss-Prot (a 
manually annotated and reviewed protein sequence data-
base), KO (Kyoto Encyclopedia of Genes and Genomes 
Ortholog database), and GO (Gene Ontology). Tran-
script relative abundance was aligned to annotated gene 
models using the HTSeq method (HTSeq v0.6.1) and was 
expressed as the number of reads. Fragments per kilo-
base of exon per millions of fragments mapped (FPKM) 
values were normalized to obtain the gene expres-
sion levels from RNA-Seq. Then, analysis of differential 
expression in different treatments was conducted using 
the DEGseq method in the DESeq R package (1.18.0). 
The cutoff value for analyzing gene transcriptional activ-
ity was determined based on the 95% confidence interval 
for all FPKM values. Fold expression changes between 
different samples were calculated using transcript relative 
abundance  log2 ratios. A differentially gene expression 
was accepted when genes showed at least q value < 0.005 
and |log2FoldChange| > 1.

Statistical analysis
All experiments were performed in triplicate. Data 
obtained in this study were analyzed using a least sig-
nificant difference test with one-way analysis of variance 
(ANOVA) in SPSS software version 17.0 (IBM, USA). 
Statistical significance was determined at p < 0.05. Data 
were plotted using Origin software version 6.1 (Origin-
Lab Corporation, USA).

Results
Growth
The growth of P. bipes under different treatments after 
culture for 20  days is shown in Fig.  1a. Compared with 
the DIP group, a significant decrease was found in the 
P-free treatment (p < 0.01, ANOVA). However, no sig-
nificant difference was determined when cells were 
cultured in DIP and DOP (the β-glycerol phosphate 
group). After culture for 20 days, the cell density reached 
1.95 × 104 cells L−1 (DIP group) and 1.79 × 104 cells L−1 
(DOP group). A significant decrease in specific growth 
rate was observed in the P-free treatment compared 
with the DIP and DOP treatments (Fig.  1b) (p < 0.01, 
ANOVA). Specific growth rates (μ) in the P-free, DIP 
and DOP treatments were 0.06  day−1, 0.12  day−1, and 
0.11 day−1, respectively.
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DIP concentration and APA
When P. bipes was inoculated into the DIP-containing 
medium, the concentration of DIP showed a rapid deple-
tion by the 10th day compared with day 1 (p < 0.01), while 
it was consistently low in the P-free group. In contrast, 
the DIP concentration in the DOP group increased 
sharply to reach 0.91  mg  L−1 on the 5th day (p < 0.01), 
and then declined slowly (Fig. 2a). On day 15, there was 
about 0.41 mg L−1 residual DIP in the DOP culture. APA 
was barely detectable on the first day in all three groups 
(Fig. 2b). On day 5 and thereafter, APA increased in the 
P-free group. In contrast, APA remained low in the other 
two groups.

Chlorophyll a fluorescence of PSII
OJIP curves for P. bipes treated in P-free, DIP and DOP 
conditions are shown in Fig. 3. Phase J increased clearly 
from the normalized OJIP curve in the P-free and DOP 
groups compared with that for the DIP group. A total 
of 18 parameters calculated from chlorophyll a fluores-
cence induction curves are shown in Additional file  1: 
Table  S1. The values of  PIabs (performance index based 
on absorption of light energy), Sm (multiple turnover in 
the closure of the RCs), N (QA has been reduced in the 
time span from 0 to tFmax), and ψ(E0) (probability [at t = 0] 
that a trapped exciton moves an electron into the elec-
tron transport chain beyond QA) exhibited a remarkable 

decrease in the DOP group compared with those in the 
DIP group (p < 0.05). The values of VJ (relative variable 
fluorescence in the J-step) and M0 (approximate initial 
slope of the fluorescence transient) increased in the DOP 
group compared with that in the DIP group (p < 0.05). 
Compared with the DIP group, a significant decline in 
 PIabs, Sm, N, ψ(E0) , and ϕ(E0) (quantum yield of electron 

Fig. 1 Cell density (a) and specific growth rate (b) of P. bipes 
cultured at groups of phosphorous free (–P),  KH2PO4 (DIP), 
β-glycerol-phosphate (DOP). Values shown are the mean of three 
replicates ± standard error

Fig. 2 Dissolved inorganic phosphate concentration and alkaline 
phosphatase activity at different groups of phosphorous free (–P), 
 KH2PO4 (DIP), β-glycerol-phosphate (DOP). Values shown are the 
means of three replicates ± standard error. *p < 0.05

Fig. 3 OJIP curves at different groups of phosphorous free (–P), 
 KH2PO4 (DIP), β-glycerol-phosphate (DOP)
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transport), and an increase in VJ and M0 was found in the 
P-free group (p < 0.05).

A simple energy flow model is shown in Fig. 4. Refer-
ring to the RC in the membrane and thus dealing with 
specific energy flux ABS/RC (absorption flux per RC), 
 TR0/RC (trapped energy flux per RC) and  DI0/RC (dis-
sipated energy flux per RC) increased significantly, but 
 ET0/RC (electron transport flux per RC) and  RE0/RC 
(reduction of end acceptors at the PSI electron acceptor 
side per RC) declined markedly in the P-free group com-
pared with those in the DIP group (p < 0.05). Similarly, 
a significant difference in  TR0/RC,  ET0/RC and  RE0/RC 
was also found in the DOP group compared with that in 
the DIP group (p < 0.05). However, a significant decline 

in RC/CS0 (density of PSII RCs), ABS/CS0 (absorption 
flux per cross-section),  TR0/CS0 (trapped energy flux 
per cross-section),  ET0/CS0 (electron transport flux per 
cross-section),  DI0/CS0 (dissipated energy flux per cross-
section), and  RE0/CS0 (reduction of end acceptors at the 
PSI side per cross-section) in the P-free and DOP treat-
ments was observed in the algal model in contrast to 
the treatment of DIP. The most striking decease was the 
number of active RCs in the model.

Transcriptomic analysis
GO analyses revealed 31 downregulated genes when 
P. bipes was cultured in DOP compared with DIP 
that were mostly distributed in categories membrane, 

Fig. 4 Energy pipeline of the PSII behavior of P. bipes treated with P-free, DIP and DOP. The membrane model (left) demonstrates the specific energy 
fluxes (per reaction center, RC) and algae model (right) demonstrates the phenomenological energy fluxes (per excited cross-section, CS). The value 
of each energy flux is expressed by the appropriate adjustment of the width of the corresponding arrow. The small circles in the algae model show 
the number of active RC/CS0. *Indicates a p value < 0.05
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photosynthesis (photosynthetic electron transport chain, 
photosynthesis light reaction, and electron transport 
chain), generation of precursor metabolites and energy, 
thylakoid, and chlorophyll binding (Fig.  5a; Additional 
file  2). For example, the downregulated genes involved 
in photosynthesis included psbA (encoding PSII P680 
RC D1 protein), psbD (encoding PSII P680 RC D2 pro-
tein), psbC (encoding PSII CP43 chlorophyll apoprotein), 
psbB (encoding PSII CP47 RC protein), psbW (encoding 
PSII RC W protein), petD (encoding electron transport 
protein cytochrome b (C-terminal)/b6), psaA (encod-
ing PSI P700 chlorophyll a apoprotein A1), and psaB 
(encoding PSI P700 chlorophyll a apoprotein A2), which 
respectively showed 2.65-, 2.07-, 2.43-, 2.12-, 2.87-, 1.94-, 
2.09- and 1.99-fold downregulation in P. bipes cultured in 
DOP compared with these genes of cells cultured in DIP 
(p < 0.05) (Fig. 5b).

One hundred and forty-eight genes were significantly 
upregulated in DOP treatment compared with DIP 
treatment (Additional file  3). Significant shifts in gluco-
neogenesis were observed, and the genes encoding phos-
phoenolpyruvate carboxykinase, glycerol-3-phosphate 
dehydrogenase (GPDH), glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), malate dehydrogenase, fruc-
tose-1,6-bisphosphatase (FBP), and isocitrate lyase were 
respectively upregulated 4.70-, 9.64-, 4.52-, 4.17-, 3.73- 
and 5.13-fold in the DOP culture compared with these 
genes in DIP culture (p < 0.05). In addition, changes were 
observed in expression of genes involved in the TCA (tri-
carboxylic acid) cycle, oxidative phosphorylation, sulfur 
metabolism, membrane transport, ribosome and tran-
scription (p < 0.05) (Fig. 6).

Discussion
Mechanism of β‑glycerol phosphate uptake and use
In the face of DIP limitation, algae have evolved a set 
of mechanisms to obtain sufficient P [18, 52], including 
enhancement of the ability to assimilate low abundance 
inorganic phosphorus via high-affinity phosphate trans-
porters [53]; decreasing the demand for phosphorus by 
replacing membrane phospholipids with non-phospho-
rus lipids and accelerating the turnover of phospholipid 
to provide a short-term phosphorus supply [54–56]; 
bypassing phosphorus-consuming processes in glycoly-
sis reactions and lipid recycling [57–59]; and obtaining P 
from organic phosphorus, which is the major alternative 
phosphorus supply to DIP in ecosystems [34, 60–63], via 
alkaline phosphatase (AP) and other hydrolytic enzymes 
[6, 18, 64].

Oh et al. [36] found that Alexandrium tamarense grew 
poorly on glycerophosphate, while Gymnodinium cat-
enatum was able to use glycerophosphate as well as DIP, 
suggesting that dinoflagellates show different responses 

to glycerophosphate. DIP can be directly absorbed and 
used by cells, but the application of DOP requires cells 
to consume more energy to break bonds to obtain active 
phosphorus [62, 65]. In the present study, P. bipes grew 
well using β-glycerol phosphate—only slightly lower 
growth was found in the DOP group compared with the 
DIP group (Fig.  1), this indicates that glycerophosphate 
could be used as the sole phosphorus source to support 
the growth of P. bipes.

Measurement of PSII activity can provide information 
about photosynthetic apparatus, the absorption and dis-
tribution of energy, and the transportation of electrons 
in PSII of intact algal cells [66, 67]. Chlorophyll fluo-
rescence is a very useful method to analyze the energy 
transfer and photochemical events of PSII [47, 68, 69]. 
In this study, a remarkable decrease in density of reac-
tion centers (RC/CS0), absorption flux per cross-section 
(ABS/CS0), dissipated energy flux per cross-section  (DI0/
CS0), trapped energy flux per cross-section  (TR0/CS0), 
electron transport flux per cross-section  (ET0/CS0), and 
reduction of end acceptors at the PSI electron acceptor 
side per cross-section  (RE0/CS0) was found in P-free and 
DOP conditions compared with the culture grown in DIP 
(Additional file 1: Table S1; Figs. 3 and 4), indicating that 
photosynthesis decreased significantly in P-free and DOP 
conditions [70–72].

Moreover, an increase in the closure of active RCs (Vj) 
and the maximum rate at which QA was reduced (M0), 
and a decrease in the energy required for QA to be fully 
reduced (Sm) and for QA to be reduced in the time span 
from 0 to tFmax (N), was also observed in the P-free and 
DOP groups (Additional file  1: Table  S1; Figs.  3 and 4), 
suggesting that the probability that an electron resid-
ing on QA

− would enter the transport chain was reduced; 
which in turn reduced the proportion of quanta in the 
electron transport chain [47, 68, 69]. These findings indi-
cated that photosynthesis was inhibited in the DOP cul-
ture of P. bipes due to blockage of the electron transport 
chain from QA

− to QB.
Transcriptomic analyses revealed that 31 genes, includ-

ing many encoding photosynthesis-related proteins such 
as psbA, psbD, psbC, psbB, psbW, petD, psaA and psaB, 
were downregulated when P. bipes was cultured in DOP 
compared with that in DIP (Fig. 5a; Additional file 2). The 
RC of PSII consists of proteins D1 (encoded by psbA) and 
D2 (encoded by psbD), which provide the binding sites 
for the electron transfer chain cofactors [73]. Protein D1 
is connected with RC P680, the primary electron accep-
tor pheophytin, and the secondary electron acceptor 
QB, while the D2 protein provides a binding site for the 
electron acceptor QA [74, 75]. Due to strongly oxidative 
chemistry of PSII water splitting, the D1 protein is prone 
to constant photodamage, whereas most of the other PSII 
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Fig. 5 Down-regulated expression genes in P. bipes between DOP and DIP condition. Results are summarized for the three main GO categories: 
biological processes, cellular component and molecular function (a). Differential gene expression related to photosynthesis in P. bipes between DOP 
and DIP conditions (b)
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subunits ordinarily remain undamaged [76]. When sub-
jected to environmental stress, the degradation rate of D1 
and D2 proteins is greater than their synthesis rate, which 
drives destruction of the RC and blocks electron trans-
fer [77]. In this study, both psbA and psbD were down-
regulated in the DOP group (Fig.  5a; Additional file  2), 
suggesting that the synthesis rate of D1 and D2 proteins 
might be impeded, resulting in damage to the RCs and 
blocked electron transfer. CP43 and CP47 are important 
subunits of PSII, which together form the central light-
harvesting pigment complex and are closely connected 
to the RC [78]. Expression of psbC and psbB was down-
regulated (Fig. 5b) in the DOP treatment, indicating that 
the ability to capture light was reduced. These data col-
lectively indicated that PSII activity was inhibited in the 
DOP-cultured P. bipes.

Previous studies have proposed that some phytoplank-
ton can excrete AP to hydrolyze organic phosphorus 
when DIP is scarce [79, 80]. It is clear that in our study, 
β-glycerol phosphate was hydrolyzed because the con-
centration of DIP in the medium increased (Fig. 2a). Luo 

et al. [6] proposed that three mechanisms might underlie 
the use of DOP: (1) extracellular DOP hydrolysis is slow 
and coupled tightly to uptake, leaving no residual DIP; (2) 
DOP is absorbed directly without extracellular hydroly-
sis; and (3) both extracellular hydrolysis and direct uptake 
of DOP or its hydrolysis products occur. In the present 
study, however, there was no significant increase in APA 
when P. bipes was cultured in DOP (Fig. 2b), suggesting 
that P. bipes did not employ AP for β-glycerol phosphate 
hydrolysis. Huang et al. [81] showed that APA increased 
only when low-molecular-weight DOP was exhausted in 
marine microalgae. Luo et al. [6] found that the dinoflag-
ellate Karenia mikimotoi did not release AP to hydrolyze 
DOP when it was cultured in ATP, and 5ʹ-nucleotidase 
enzymatic activity was responsible for the utilization of 
ATP in K. mikimotoi [6], Prochlorococcus MED4 [82], 
Thalassiosira pseudonana [63] and Emiliania huxleyi 
[83]. These results suggested that AP was not the only 
enzyme to hydrolyze DOP. Therefore, the mechanism 
of DOP use in P. bipes needs to be further studied in the 
future.

Fig. 6 A schematized network of cellular metabolites’ network derived from transcriptome analyses in P. bipes between DOP and DIP treatments. 
The biochemical pathways and metabolites in blue are up-regulation. Cit citrate, Aco aconitate, Iso isocitrate, Oxa oxalosuccinate, Ket ketoglutarate, 
Suc-CoA succinyl-CoA, Suc succinate, Fum fumarate, Mal malate, Oxal oxaloacetate, Glu glutamine, Cyt cytochrome, FBP fructose-1,6-bisphosphatase, 
ETHE1 sulfur dioxygenase, GAPDH glyceraldehyde-3-phosphate dehydrogenase, PEP phosphoenolpyruvate, PEPCK phosphoenolpyruvate 
carboxykinase, F6P fructose-6-phosphate, G3P glycerol-3-phosphate, GPDH G3P dehydrogenase, GAP glyceraldehyde-3-phosphate, DHAP 
dihydroxyacetone phosphate
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Modulation of metabolic pathways by β‑glycerol 
phosphate
One hundred and forty-eight significantly upregulated 
genes were detected in transcriptomic analyses on growth 
of P. bipes in DOP compared with DIP (Fig. 6; Additional 
file  3). ATP synthases are membrane-embedded rotary 
motors that produce or consume ATP and control the 
pH within cells [84]. The  Na+/K+-ATPase is an ion pump 
belonging to the P-type ATPase family. Using energy 
derived from ATP hydrolysis,  Na+/K+-ATPase generates 
electrochemical gradients for  Na+ and  K+ across plasma 
membranes, as required for electrical excitability, cellu-
lar uptake of ions, nutrients and neurotransmitters, and 
regulation of cell volume and intracellular pH [85]. Kdp is 
a P-type ATPase of unique structure, a complex of three 
membrane proteins (KdpFABC); this complex is a high-
affinity ATP-dependent potassium uptake system, which 
plays a fundamental role in the steady supply of potas-
sium to cells [86]. The  Ca2+-transporting ATPase is the 
most abundant in the sarcoplasmic reticulum membrane 
[87]. It couples the energy derived from hydrolysis of ATP 
to transport of  Ca2+ ions across the membrane against a 
concentration gradient [87]. In the present study, genes 
encoding these P-type ATPases were upregulated in the 
DOP group (Fig.  6; Additional file  3), suggesting that 
DOP affected the regulation of ion transport and osmotic 
pressure of cells. F-type ATPases are highly conserved 
enzymes used primarily for the synthesis of ATP [84]. 
Upregulation of the genes encoding the F-type synthase 
(ATPeF1A, ATPeF1B) (Fig. 6; Additional file 3) indicated 
increased ATP synthesis and energy metabolism in the 
DOP group.

The metabolism of glycerol-3-phosphate (G3P) is 
important for environmental stress responses of eukar-
yotic microalgae. All cells contain polar lipids with a 
glycerol backbone; the glycerol backbone in the polar 
lipids of bacteria and eukaryotes is G3P [88]. G3P can be 
used in various metabolic pathways via glycolysis [88]. 
GPDH activity is important for glycerol production via 
the metabolism of G3P to provide osmotic stress toler-
ance or for lipid synthesis in many organisms [89, 90]. 
There is a G3P shuttle in mitochondria, consisting essen-
tially of two components: an  NAD+-GPDH (EC 1.1.1.8) 
in the cytosol, and a membrane-bound FAD-GPDH (EC 
1.1.99.5) located in the inner mitochondrial membrane. 
The  NAD+-GPDH reduces dihydroxyacetone phos-
phate (DHAP) to G3P using NADH as a reducing agent, 
while the FAD-GPDH catalyzes the conversion of G3P 
to DHAP and forms  FADH2 which enters the electron 
transport chain [91]. In this study, the expression of glpA 
encoding the FAD-GPDH was 9.64-fold higher in the 
DOP treatment than in the DIP treatment (Additional 
file 3), indicating the enhancement of DHAP generation.

The structure of β-glycerol phosphate used as the DOP 
in the experiments in this study is similar to that of G3P. 
Thus, GDPH might be an important enzyme for cataly-
sis of conversion of β-glycerol phosphate to DHAP. In the 
DOP culture group, the genes encoding GAPDH and FBP 
were significantly upregulated. GAPDH and FBP are key 
enzymes in gluconeogenesis. GAPDH can reversibly cat-
alyze the oxidation and phosphorylation of 1,3-diphos-
phoglycerate to glyceraldehyde-3-phosphate to form Pi 
[92]. FBP (encoded by FBP) and phosphoenolpyruvate 
carboxykinase (encoded by pckA) regulate the irrevers-
ible steps of gluconeogenesis [93, 94]. In the present 
study, the expression of FBP and pckA in P. bipes was sig-
nificantly upregulated in the DOP group compared with 
the DIP group (Fig. 6; Additional file 3), suggesting that 
the gluconeogenesis pathway was fueled by β-glycerol 
phosphate. As photosynthesis was downregulated on 
culture in DOP, intracellular organic synthesis and insuf-
ficient supply of glucose would be replenished by glu-
coneogenesis. Moreover, gluconeogenesis releases Pi, 
resulting in the observed increase of DIP in the culture 
medium (Fig. 2). The enhanced Pi could make up for the 
deficiency in the intracellular phosphorus supply if DOP 
could not be directly used, or the use was delayed.

The TCA cycle is the final common catabolic pathway 
for the oxidation of fuel molecules. In this cycle, succinyl-
CoA synthetase converts succinyl-CoA to succinate and 
yields a high-energy phosphate bond [95]. Malate dehy-
drogenase, encoded by the gene MDH2, is responsible 
for the regeneration of oxaloacetic acid and a new turn 
of the TCA cycle, and catalyzes conversion of malate to 
oxaloacetate and generates NADH. Oxidative decarboxy-
lation is an important stage in the TCA cycle. Complex 
I (NADH-Q reductase), Complex II (succinate-Q reduc-
tase), Complex III (cytochrome c reductase), Complex IV 
(cytochrome c oxidase) and Complex V (ATP synthase) 
are involved in oxidative phosphorylation to catalyze 
the transfer of electrons coupled with protons across the 
membrane using substrates generated in the TCA cycle 
[96]. In this study, genes encoding succinyl-CoA syn-
thase (e.g. LSC1, LSC2) and malate dehydrogenase (e.g. 
MDH2) were significantly upregulated in the DOP group 
compared with the DIP group (Fig. 6; Additional file 3). 
Moreover, genes involved in oxidative phosphorylation, 
such as those encoding cytochrome c reductase (GO: 
0004553) and cytochrome c oxidase (e.g. CYC , COX1), 
also showed significantly higher expression in the DOP 
group compared with the DIP group (Fig.  6; Additional 
file 3). These data indicate that P. bipes could enhance the 
production of energy to support metabolism when it was 
cultured in DOP.

The gene Amt is associated with ammonium transport 
and is induced substantially when ammonium is limiting 
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for growth. The assimilation of ammonium is regulated 
by the combined activities of glutamine synthetase, 
encoded by glnA [97]. In this study, Amt and glnA were 
respectively upregulated 6.77- and 3.92-fold in the DOP 
group compared with the DIP group (Additional file 3), 
suggesting that the enhancement of ammonium trans-
port is possibly resulted from the decline of the N:P ratio 
due to increased P concentration in the DOP group. 
Similar results have been observed in other dinoflagel-
lates, such as K. mikimotoi [6]. In addition, regulation of 
ammonium transporters is not only a function of sub-
strate availability resulting from external supply, but also 
the extent of internal metabolic pathways that are ammo-
nium-generating, namely photorespiration and the extent 
of mixotrophic nutrition [98].

Krüßel et  al. [99] demonstrated that sulfur dioxyge-
nase (encoded by ETHE1) plays an important role in 
plant cysteine catabolism. Sulfur dioxygenase can oxidize 
persulfide to sulfite and is involved in metabolic homeo-
stasis in mitochondria. It can also bind to nuclear tran-
scription factors [100]. The cysteine desulfurase IscS can 
catalyze formation of alanine and sulfane sulfur from 
cysteine, and provides sulfur for iron–sulfur cluster syn-
thesis [101]. The genes ETHT1 and IscS were upregulated 
3.66- and 7.23-fold, respectively, in the DOP group in our 
study compared with the DIP group (Additional file  3), 
suggesting that DOP improved sulfur metabolism and 
respiratory electron transport [99].

Conclusions
The present study combined physiological and tran-
scriptome sequencing analyses to determine the 
response of P. bipes to different phosphorus condi-
tions. The data indicate that the RC of PSII was dam-
aged and the electron transfer in PSII was blocked 
when P. bipes was cultured in DOP conditions, due to 
the downregulation of photosynthesis genes. GPDH 
and GAPDH are most likely responsible for β-glycerol 
phosphate use, and alkaline phosphatase activity was an 
indicator of DIP stress, but not an exclusive indicator 
for DOP. Moreover, gluconeogenesis played a vital role 
in β-glycerol phosphate use. In addition, ATPases, the 
TCA cycle, oxidative phosphorylation, and fatty acid, 
ammonium, sulfur and amino acid metabolism were 
significantly upregulated in DOP conditions compared 
with culture in DIP, suggesting their involvement in the 
use of β-glycerol phosphate or its hydrolysis products 
in P. bipes. Collectively, these findings provided a com-
prehensive understanding of the phosphorus physiol-
ogy of P. bipes. In addition, our results underscore that 
GPDH and GAPDH should be studied further, and 
that the mechanisms underlying the use of β-glycerol 

phosphate and other DOPs are different in different 
species of dinoflagellates and other phytoplankton, 
suggesting that the control of dinoflagellate blooms by 
targeted nutrient reduction is largely dependent upon 
the dominant species. DIP reduction may be more 
effective in controlling the bloom of P. bipes than DOP 
reduction.
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