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Abstract 

Background: Physical and biological properties of dust particles might affect the availability and distribution of 
chemicals associated to indoor dust; however it has not been adequately examined. In this study, household dust 
from Shanghai was fractionated into five particle sizes and size distribution, morphology, surface area, organic matter, 
microorganisms, elemental composition, metals and organophosphorus flame retardants (OPFRs) compositions were 
characterized. Also, household dust samples from Stockholm that has previously been characterized were included in 
the analysis of OPFRs for comparison.

Results: The respirable fraction had a yield of 3.3% in mass percentage, with a particle size of 2.22 ± 2.04 µm. As 
expected, both metals and OPFRs concentrations increased with decreased particle size. Al and Fe dominated (66–
87%) followed by the concentrations of Zn (5–14%) and Ga (1.8–5%) of the sum of 16 metals in the dust. The concen-
trations of OPFRs in Shanghai dust ranged from 5.34 to 13.7 µg/g (median: 7.21 µg/g), compared to household dust 
from Stockholm that ranged from 16.0 to 28.3 µg/g (median: 26.6 µg/g). Tris(2-chloroisopropyl) phosphate (TCIPP) 
and tris(2-chloroethyl) phosphate (TCEP) dominated in Shanghai dust samples while tris(2-butoxyethyl) phosphate 
(TBOEP) dominated in dust from Stockholm homes.

Conclusion: The results showed that mass percentage for each particle size fraction was not evenly distributed. 
Furthermore, the particle-bound microorganisms and OPFRs increased with decreased particle size, whereas metals 
had the highest concentrations at specific dust sizes. Therefore, it is essential to select the proper particle size in order 
to assess any specific human exposure study to indoor pollutants.
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Background
People spend most of their time indoor. In China, adults 
stay on average 20.0  h/day indoor and children 21.7  h/
day [1]. Indoor air pollution cause premature death of 

3.8  million people annually, due to pneumonia, stroke, 
ischaemic heart disease, chronic obstructive pulmonary 
disease and lung cancer [2–4]. Household dust contam-
ination may serve as a proxy for indoor air pollution of 
semi-volatile organic chemicals (SVOCs) [5]. In con-
trast to volatile chemicals, the SVOCs adsorb to surfaces 
of particulates, thus household dust might serve as a 
sink for indoor environmental contaminants [5]. Of the 
SVOCs, organophosphorus flame retardants (OPFRs) 
applied in household electronics, building materials, 
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flooring and furniture et al. may migrate from the materi-
als and partition among air, suspended particles and set-
tled dust [6]. Ubiquitous presence of OPFRs in household 
dust has been reported [7] and toxicological studies have 
shown that OPFRs have the potential to cause adverse 
endocrine and reproductive effects in animal studies [8]. 
Human exposure to hazardous chemicals may occur by 
ingestion, inhalation and dermal contact to household 
dust. Since infants and children are the most vulner-
able population to hazardous chemicals, it is important 
to lower their exposures as far as possible. The vulner-
ability is due to a greater intake of chemicals relative to 
their body weight as well as due to a rapid cell prolifera-
tion with growing organs and developing neurological 
system [9]. It is also important to lower indoor exposures 
to women in child-bearing ages to minimize the placental 
transfer of hazardous chemicals to the foetus.

Hence, to perform a thorough risk assessment for 
exposure to indoor air pollutants, it is crucial to assess 
physical, chemical and biological properties of house-
hold dust. Factors that are important to take into consid-
erations are: (i) to determine the dust particle sizes which 
are relevant for each exposure pathways, i.e. analyse the 
size fraction that adhere to the skin and can be ingested 
by a hand-to-mouth activities as well as a size fraction 
that is respirable; (ii) to characterize the dust morphol-
ogy since it impacts the inhalation and ingestion expo-
sure risk assessment. Dust agglomeration changes the 
aerodynamic diameter, which has an impact on its depo-
sition in different regions of the airways [10]. Also, dust 
morphology may imply dust sources and hence change 
chemical distribution among dust size fractions [11]; (iii) 
to determine particulate surface area, pore volume and 
organic matter of dust which are all indicators of adsorp-
tion capacity of SVOCs and known to influence on the 
desorption of SVOCs in the human body [12, 13]; (iv) to 
acknowledge the distribution of metals, microorganisms 
and trace organic compounds since they are generally not 
uniformly distributed among various particle sizes.

Shanghai is a large city with a population of 24 million 
and a significant traffic density by vehicles, boats and air-
crafts [14]. The composition of household dust is a mirror 
of products, materials and goods present in the homes, 
but also still may be affected by outdoor sources. There-
fore, characterization of household dust is important for 
accurate risk assessment of biological and chemical pol-
lutants from outdoor and indoor environments. In this 
study, a comprehensive comparison between different 
size fractions of household dust from Shanghai has been 
performed including: (i) physical characterization, such 
as dust particle size and particle size distribution, mor-
phology and specific surface area; (ii) inorganic chemical 
characterization including core- and surface elemental 

composition and metal content; (iii) organic characteri-
zation, such as organic matter and presence of microor-
ganisms; and (iv) chemical profiling of OPFRs levels on 
the different size fractions of dust from Shanghai (China) 
and an additional dust sample from Stockholm (Swe-
den) which has been previously characterized [10]. To 
our knowledge, this is the first report on a comprehen-
sive physical, chemical and biological characterization of 
household dust from Shanghai.

Materials and methods
Collection of household dust
The household dust was obtained through normal use of 
vacuum cleaning by household residents in Shanghai. All 
the sampling apartments locate in urban area of Shang-
hai and no floor polishing liquids were applied during the 
sampling period. In total two batches of household dust 
were processed. Batch 1 consisted of dust from 10 pooled 
vacuum cleaner bags from 10 houses that were accumu-
lated in the period from January to April in 2017. Batch 2 
consisted of dust from four pooled vacuum cleaner bags 
that were collected from another four houses accumu-
lated during the same period as Batch 1. Both batches 
were processed to different size fractions as described 
below. Batch 1 is the origin of the fractions F1 (190–
390  µm), F2 (75–190  µm), F3 (25–75  µm), F4 (cyclone, 
4–25  µm) and F5 (respirable fraction, < 4  μm). Due to 
very low yield of F5 and hence too little material to carry 
out all the analyses, additional vacuum cleaner bags were 
collected that obtained Batch 2. Batch 2 is the origin to 
the extended respirable fraction (F5e).

Sieving of household dust
In order to separate the household dust to different size 
fractions, a two-step process of sieving was carried out 
which has been described elsewhere [10]. In the second 
step when obtaining the respirable fraction, the dust was 
stuck in the twilled weave mesh (25 µm) and could not be 
vacuumed out by the industrial vacuum cleaner, resulting 
in limited dust of the respirable fraction F5 for Batch 1. 
Therefore, step two was modified for Batch 2 to increase 
the yield for the respirable fraction that is the twilled 
weave mesh (25 µm) was substituted to the plain weave 
mesh (25 µm).

The dust samples, always kept in glass bottles, were 
after fractionation homogenized by rotation overnight 
prior to characterization and analysis. For all analyses 
only one replicate was used, except for determination of 
dry matter and loss of ignition and analysis of OPFRs, for 
which three replicates were used.

A batch of Stockholm household dust was collected in a 
previous study which has gone through the same sieving 
process as for Batch 1 [10]. The corresponding fractions 
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are referred to StF1 (190–390  µm), StF2 (75–190  µm), 
StF3 (25–75 µm), StF4 (cyclone, 4–25 µm) and StF5 (res-
pirable fraction, < 4 µm).

An overview of which batches and size fractions that 
has been used to each analysis is presented in Additional 
file 1: Table S1.

Size distribution of the household dust
The size distribution of the household dust was deter-
mined using a cascade impactor (Marple Andersen, 
EnVirREC AB, Sweden). The PreciseInhale system 
(Inhalation Sciences Sweden AB, Stockholm, Sweden) 
was used to measure the aerodynamic size distribution 
with the cascade impactor at a flow rate of 2 L/min fol-
lowing aerosolizing of the household dust as previously 
described in the articles by Selg et al. [15, 16]. The mass 
median aerodynamic diameter (MMAD) and the geo-
metric standard deviation (GSD) were calculated based 
on the mass of dust deposited on the nine stages in the 
impactor. Triplicate samples were analysed to test the 
particle size of the respirable fraction.

Scanning electron microscopy (SEM)
The household dust particle size, morphology and 
tendency to agglomerate were characterized by field 
emission SEM (Carl Zeiss Merlin) using a backscatter 
electron detector. Briefly, the household dust particles 
were added on an adhesive tape mounted on an alu-
minium stub and coated with 10  nm platinum (Q150T 
ES, West Sussex, UK). The specimens were analysed in 
an Ultra 55 field emission scanning electron microscope 
(Zeiss, Oberkochen, Germany) at 5 kV using a secondary 
electron detector. Duplicates were analysed for each dust 
sample.

Determination of specific surface area
The specific surface area of the household dust was 
determined with the Brunauer–Emmett–Teller (BET) 
method utilized by a Micrometrics ASAP2020 volumet-
ric adsorption analyser. The household dust sample was 
treated under vacuum condition at a temperature of 
60  °C for 10  h. The isotherms of nitrogen adsorption–
desorption were recorded at liquid-nitrogen temperature 
(77 K) for the dust sample. The specific surface areas of 
the adsorbent dust were then calculated, according to 
the BET method, from the recorded data in the range of 
P/P0 = 0.05–0.15. Duplicates were analysed for each dust 
sample to acquire the specific surface area.

Elemental composition determined by X‑ray powder 
diffraction (XRD)
The mineralogical composition of the dust was deter-
mined by XRD analysis. Briefly, XRD patterns were 

measured on a D-8 Advance X-ray diffractometer 
(Bruker-AXS, Germany) with Cu Kα radiation operated 
at a voltage of 40  kV and a current of 40  mA. Process-
ing of the spectra was accomplished with the X’Pert High 
Score Plus (version 3.0e) software. Triplicate samples 
were carried out for XRD analysis.

Elemental composition determined by X‑ray photoelectron 
spectroscopy (XPS)
The elemental composition of the outer surface layer of 
the dust was determined by XPS analysis. The descrip-
tion for XPS analyses on household dust has previously 
been described [10]. Briefly, a Kratos Axis Ultra DLD 
electron spectrometer using monochromated Al Kα 
source operated at 150  W was used to collect the XPS 
spectra. An analyser pass energy of 160 eV was used for 
acquiring wide spectra and a pass energy of 20  eV for 
individual photoelectron lines. A spectrometer charge 
neutralization system was used to stabilize the surface 
potential. The binding energy scale was referenced to the 
C 1s line of aliphatic carbon, set at 285.0 eV. Processing of 
the spectra was accomplished with the Kratos software. 
Duplicates were conducted for each dust sample to XPS 
analysis.

Metal determination by inductively coupled plasma mass 
spectrometry (ICP‑MS)
Dust was analysed for Al, Fe, Ba, As, Cd, Cr, Co, Cu, Pb, 
Mn, Ni, Tl, U, Ga, V and Zn. The mass of 10 mg dust was 
added to 10  mL nitric acid (2% v/v). After centrifuga-
tion the metal concentrations were determined in peak 
jumping mode by ICP-MS (iCAP Q, Thermo Scientific, 
Bremen, GmbH) in collision cell mode with kinetic 
energy discrimination using helium as collision gas. For 
each dust sample, triplicates were analysed. The detec-
tion limits were calculated as three times the standard 
deviation of the blank and were 0.01 μg/L (Cd, Co, Tl, V, 
U), 0.02 μg/L (As, Cr, Ni), 0.05 μg/L (Pb), 0.14 μg/L (Cu), 
0.22 μg/L (Al) and 0.35 μg/L (Zn).

The enrichment factor (EF) has been used to differenti-
ate anthropogenic sources from natural origin, as well as 
to assess the degree of influence by human activity, which 
is calculated as Eq. (1) [17]:

where Cdust
element

 or Cdust
reference

 is the concentration of a target 
element or reference element in one dust sample; Ccrust

element
 

or Ccrust
reference

 is the background concentration of a target 
element or reference element in the crust from the same 
region. In this study, Mn is a conservative element and 
was selected as the reference element. The background 
concentration of reference element in crust in Shanghai 
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was derived from China National Environmental Moni-
toring Center [18].

Determination of organic matter content and water 
content
The dry matter residue and organic matter content were 
determined by ignition residue, conducted according to 
standardized procedures in “Determination of dry matter 
and ignition residue in water, sludge and sediment” (SS 
028113) [19]. Triplicates for each sample were analysed 
for the test of organic matter content and water content.

Determination of microorganisms in the household dust
The determination of microorganisms was performed 
according to standard procedures by Eurofins Pegasuslab 
AB (Uppsala, Sweden). Briefly, the taxonomical deter-
mination (PSMB12B) of both bacteria and fungi species 
were done according to Arx and Bergey’s systematics 
[20, 21]. The proportion of cultivable bacteria and fungi 
(colony-forming unit [CFU]/g) were determined accord-
ing to the method by Jensen [22]. The total number of 
bacteria and fungi (PSMB13) was determined with some 
modification based on the methods found in the papers 
[23–25]. For each dust sample, duplicates were analysed.

OPFRs determination in the household dust from Shanghai 
and Stockholm
All organophosphate ester individual standards, including 
tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroiso-
propyl) phosphate (TCIPP), tris(1,3-dichloroisopropyl) 
phosphate (TDCIPP), tris-(butyl) phosphate (TBP), 
tris(2-butoxyethyl) phosphate (TBOEP), tris(phenyl) 
phosphate (TPhP) and tris(methylphenyl) phosphate 
(TMPP) as well as four internal standards (IS; TCEP-d12, 
TDCIPP-d15, TBP-d27 and TPhP-d15) were purchased 
from TRC Chemicals (Toronto, Canada). Hexane, ace-
tone, ethyl acetate and methanol were purchased from 
Sigma Aldrich (Germany).

Dust samples were extracted by ultrasonication and 
purified by Florisil cartridges. Instrumental analysis was 
performed on a Waters UPLC–MS/MS system. Detailed 
information on the sample preparation, instrumental 
analysis, quality assurance and quality control, limit of 
detection and limit of quantification is provided in Addi-
tional file 1: OPFRs determination and Table S2–S3.

Statistical analysis
Statistical analysis of the data was performed using 
Microsoft Excel 2013 and IBM SPSS Statistics (version 
23). Nonparametric test was performed for testing dif-
ference between OPFRs in the analysed household dust 
from Shanghai and Stockholm. A p value < 0.05 was taken 
to indicate statistical significance.

Results and discussion
The collection of vacuum cleaner bags is beneficial to 
obtain large quantity of dust compared to passive sam-
pling methods [26]. This method is particularly use-
ful for the isolation of the respirable particle fraction 
of household dust, as large quantities of household 
dust are required to be successful in isolation of mate-
rial for the analyses performed herein. Still, this tech-
nique has certain disadvantages, such as not properly 
collecting some fine and ultrafine dust particles from 
the vacuum cleaning bags and further, contamination 
from inner parts of commercial vacuum cleaner bags 
and vacuum cleaners may occur [26]. In addition, there 
were no prescribed instructions to the users of the vac-
uum cleaners regarding the models for the sampling of 
the residences, hence there might be slight deviation 
regarding the characterization of the fraction contain-
ing the smallest particles isolated in this experiment.

Yield of each size fraction
A total of 10 vacuum bags containing 1.1  kg crude 
household dust and four vacuum cleaner bags con-
taining 0.3 kg crude household dust were collected for 
Batch 1 and Batch 2, respectively. The relative distribu-
tion of the content of mass isolated in each size fraction 
for the two batches of household dust from Shanghai is 
presented in Fig.  1, and compared to the correspond-
ing result from the previous study of dust from Stock-
holm [10]. The yields showed a bimodal distribution, 
with the mass percentage peaked in fraction 25–75 μm 
for Batch 1 or cyclone 4–25  μm for Batch 2 and frac-
tion > 2000 μm. As stated above, there was a significant 
loss of material in the second step during the sieving of 
Batch 1, resulting in a very low yield (0.05%) for the res-
pirable fraction. An increased yield (3.3%) for the res-
pirable fraction of Batch 2 was obtained which may be 
attributed to method modifying and different sample 
pools.

The relative mass distribution of the content isolated 
for each size fraction is rather similar for Batch 1 from 
Shanghai and Stockholm (Batch 3) while Batch 2 (Shang-
hai) is significantly different from Batch 1 and 3. The 
processing of dust for Batch 2 resulted in an increased 
yield for the four size fractions below 190 μm compared 
to Batch 1. For the respirable, cyclone, 25–75  μm and 
75–190  μm fractions the yields were 68 times, 4 times, 
1.6 times and 1.2 times higher, respectively, in Batch 2 
compared to Batch 1. The higher yield in Batch 2 com-
pared to Batch 1 in respirable fraction was probably 
the method of generating this fraction, and in cyclone, 
25–75 μm and 75–190 μm fractions the reason might be 
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more high-density material i.e. minerals was collected in 
Batch 2.

Particle size distribution of the respirable fraction
The respirable size fraction consists of the inhaled air-
borne material that penetrates to the lower gas exchange 
region of the lung [27]. Particles with a diameter below 
4  µm were defined as respirable fraction [28]. In this 
study, the particle size of the respirable fraction (F5e) 
was measured as 2.22  µm mass median aerodynamic 
diameter (MMAD) with a geometric standard deviation 
(GSD) of 2.04 µm (Additional file 1: Figure S1). The parti-
cles were slightly smaller compared to dust particles from 
Stockholm that were obtained by the unmodified method 
(3.73 ± 0.15  µm MMAD with a GSD of 2.29 ± 0.03  µm) 
[10].

Morphology and agglomeration
Differences in size, morphology and agglomeration was 
observed by SEM. Figure 2A shows that dust fraction F1 
contained flake-like and fibrous particles, while dust frac-
tions F2 and F3 contained rod-like and spherical particles 
(Fig.  2B, C). The morphology was different compared 
with a similar particle size fraction (20.2 ± 17.9  µm) 

reported from Beijing offices dust, where flaky parti-
cles were described [29]. The author speculated that this 
particle fraction was weathered fragments of polymer 
matrix. Little agglomeration for the three larger partic-
ulate fractions was observed in the present study. In F4 
and F5e, crystalline particles in angular shape and floc-
cules were agglomerated to form larger particles (Fig. 2D, 
E). According to Yang and colleagues [30], the angular 
particles might result from outdoors and might not have 
experienced long-term abrasion. In the respirable par-
ticle size from Sweden that was obtained by the same 
method, SEM pictures showed similarities in the agglom-
eration, but different particle shape [10]. It is reasonable 
to have differences in both morphology and agglom-
eration potentials of the particulates from Shanghai and 
Stockholm due to the environmental differences between 
the sites.

Specific surface area and pore volume
The specific surface area and pore volume for the parti-
cle fractions F2, F3, F4 and F5e are listed in Table 1. For 
comparison, silica particles in sizes of < 75  µm and the 
respirable fraction are also presented in Table 1. The sur-
face area for fractions F2 and F3 were similar, with values 
of 0.6  m2/g. The surface area increased with decreasing 

Fig. 1 Relative yield (mass percentage) of household dust for each size fraction from Shanghai (Batch 1 and 2). A comparison with the previously 
characterized Stockholm household dust (Batch 3) is also included [10]
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particle size, as confirmed by other studies [12, 29]. Rel-
evant data was reported on a composite dust from Bei-
jing offices where they separated the dust to thirteen 
size fractions of which the smallest size fraction was 
5.64 ± 6.78  µm and the surface area was 4.9  m2/g [29]. 
The surface area for the respirable fraction of Swedish 
household dust was reported 2.5 m2/g [10]. The surface 
area in the respirable fraction of Shanghai household 
dust in the present study was about the same as that in 
Beijing office dust, and surface areas of both Chinese dust 
samples were higher compared to the Swedish dust.

Fig. 2 SEM images of Shanghai household dust fractions: A F1, 190–390 µm; B F2, 75–190 µm; C F3, 25–75 µm; D F4, cyclone, 4–25 µm; and E F5e, 
2.22 ± 2.04 µm

Table 1 Specific surface area and pore volume in fractions 
of Shanghai household dust and silica

F2: 75–190 µm, F3: 25–75 µm, F4: cyclone 4–25 µm and F5e: 2.22 ± 2.04 µm

Particle size Surface area  (m2/g 
dust)

Pore volume 
 (cm3/g dust)

F2 0.60 2.13 × 10−3

F3 0.61 2.13 × 10−3

F4 0.99 3.27 × 10−3

F5e 4.48 2.21 × 10−2

Silica < 75 µm 0.60 1.13 × 10−3

Silica respirable fraction 2.50 5.86 × 10−3
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The pore volume for fractions F2 and F3 was meas-
ured the same value of 2.13 × 10−3 cm3/g, then pore vol-
ume was observed to increase with decreasing particle 
size. In contrast, there was no inverse relation between 
pore volume and particle size in one study reported from 
Shanghai [31]. In that study, a pooled dust sample from 
air conditioner filters from dining halls in Shanghai Uni-
versity was separated into five sizes and the pore volume 
was comparable in all the fractions [31].

Mineralogical composition
The most abundant minerals of particle fraction F1 
(190–390 µm), as determined by X-ray diffraction, were 
silicon dioxide (quartz) and barium succinate, while in F2 
(75–190 µm), no commonly reported minerals could be 
identified. In F3 (25–75 µm) the major components were 
quartz and dolomite, whereas the most abundant miner-
als of both particle fractions F4 (cyclone, 4–25 µm) and 
F5e (2.22 ± 2.04  µm) were found to be quartz and cal-
cite. The presence of quartz and calcite has earlier been 
demonstrated in residential household dust from Sweden 

[10, 32] and dust from Danish offices [32]. In a Canadian 
household dust study, it was found that quartz and feld-
spar dominated, followed by lithic fragments and carbon-
ate minerals (including calcite, dolomite and chalk) in all 
six cities studied [33].

Surface elemental composition
Elemental analysis of the particle surface in F2, F3 and 
F4 revealed that it consisted mainly of carbon (73–77%), 
oxygen (17–20%) and nitrogen (1.6–2.0%) (Fig.  3). The 
respirable fraction F5e contained less carbon (57%), more 
oxygen (29%) and similar amounts of nitrogen (1.5%), 
compared to the larger fractions. Carbon was the most 
abundant as aliphatic compounds (C–H) in all size frac-
tions but also carbon compositions of C–O, C–N, C–S 
and –COOH were present. Thiol groups were also pre-
sent in lower concentrations, close to detection limit of 
XPS (0.1 at.%). The main inorganic element found in all 
four size fractions was silicon, and its binding energy 
was characteristic for silicates or aluminosilicates. Other 
inorganic elements included sodium, calcium, potassium, 

Fig. 3 Surface elemental composition in Shanghai household dust fractions presented as relative atomic concentration (%). F2: 75–190 µm, F3: 
25–75 µm, F4: cyclone 4–25 µm and F5e: 2.22 ± 2.04 µm
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silica, sulfate, aluminium and chlorine. The respirable 
dust fraction F5e contained more of aluminium com-
pared to the other fractions analysed, and in addition the 
two fractions F4 and F5e contained a small amount of 
iron on their surface.

The elemental composition at the surface of the dust 
from Shanghai and Sweden were similar [10]. Still, some 
differences were observed in the respirable fraction. The 
Swedish dust consisted of 78% of carbon whereas the 
Shanghai dust consisted of 57% of carbon. Another dif-
ference was the presence of sulfonate groups in Shanghai 
dust samples, which might come from washing powder 
or detergents. Further, Shanghai dust contained more 
iron at the surface.

Metals
The concentrations of 16 metals in household dust sam-
ples from Shanghai were measured (Table  2). The met-
als were not uniformly distributed among size fractions. 
For the majority of the metals (except Ni, Pb and Cd), the 
concentrations increased as the particle size decreased. 
For the metals Ni, Pb and Cd, the maximum concentra-
tions were determined in fraction F3. Similar results were 
found in an Austrian household dust, showing that the 
concentrations of metals decreased with increasing size 
[34]. Size dependence of metal concentrations is pre-
sented in Additional file 1: Figure S2.

Metal concentrations in the present study were close to 
the concentrations measured in Japanese residences [35]. 

The respirable fractions from our study (F5e) and from 
Stockholm dust (StF5) [10], both contained Al as the 
most abundant metal, while the levels of Zn, Cu, Mn, Pb, 
Ni and Cr were generally higher in Shanghai dust com-
pared to dust from Stockholm [10].

Cesari et  al. proposed that a specific element is likely 
of crustal origin if EF < 10, and likely of anthropogenic 
origin if EF > 20. If 10 < EF < 20, it is likely of mixed origin 
[36]. In the present study, the EF values of Ba, V, Cr, Ni, 
Co, U, As and Tl in all size fractions were below 6, indi-
cating their natural origin, e.g. soil re-suspension. The EF 
values for Al, Fe and Ga in all size fractions were greater 
than 20, suggesting that these metals were more likely 
from anthropogenic origin (Fig. 4). EF values in the four 
particle sizes for Cd, Zn, Cu and Pb were not all in the 
same range, indicating the mixed origin for different dust 
size.

Organic matter
Organic matter declined with decreasing particle size. 
The organic matter measured by the loss on ignition of 
dry matter was 75.8 ± 0.3%, 66.2 ± 0.2%, and 27.6 ± 0.3% 
for particle fractions F2, F3 and F4, respectively. The 
water content also declined as the particle size decreased 
and it was determined to 3.69%, 2.18% and 1.71% for F2, 
F3 and F4, respectively. The organic matter and water 
content for the respirable fraction F5e in our study was 
42.4 ± 0.2% and 2.42%, respectively. In the respirable frac-
tion from the Swedish household dust, the organic matter 
was 69% and the water content was 4% [10]. Organic mat-
ter content in household dust may vary greatly between 5 
and 95%, as was reviewed by Butte et al. [5].

Microorganisms
The total number and cultivable number of fungi and 
bacteria in each size fraction are shown in Additional 
file  1: Table  S4. The total concentration of cultivable 
fungi in floor dust varied between non-detectable and 
 106 CFU/g dust (colony-forming unit [CFU]/g), and the 
total fungal cell counts reported to be 10- to 100-fold 
higher than the cultivable counts assessed in parallel [37]. 
In the present study, the concentrations of total fungi and 
cultivable fungi from Shanghai floor dust were quite high. 
All dust samples were kept in refrigerator after fractiona-
tion. However, it is unknown to which extent the time of 
transport of crude dust and storage in room tempera-
ture before fractionation contribute to microorganism 
growth. Among the fungi, Cladosporium, Streptomyces, 
Ulocladium, Eurotium, Wallemia, Penicillium, Chrys-
ogenum, Alternaria, Ochraceus grp, Bacillus mycoides, 
Trichoderma, Aspergillus niger, Aspergillus spp, Dema-
tiaceous hyphomycetes and yeast were detected in most 
of the samples. Similar result was observed, detecting 

Table 2 Metal concentrations in  various size fractions 
of household dust from Shanghai

F2: 75–190 µm, F3: 25–75 µm, F4: cyclone 4–25 µm and F5e: 2.22 ± 2.04 µm

n.d. not detected

mg/kg dust F2 F3 F4 F5e

Al 1.65 × 103 2.93 × 103 3.81 × 103 1.04 × 104

As 3.50 5.60 8.28 9.47

Ba 276 315 352 367

Cd 2.15 2.80 2.70 1.01

Co 1.78 2.72 4.05 6.46

Cr 16.0 20.9 23.0 26.2

Cu 175 181 206 269

Fe 1.62 × 103 2.92 × 103 3.73 × 103 6.06 × 103

Ga 244 283 319 346

Mn 125 192 242 340

Ni 41.1 54.1 39.0 42.0

Pb 63.1 146 143 134

Tl n.d. n.d. n.d. n.d.

U 0.09 0.20 0.26 0.84

V 5.70 9.76 12.6 23.5

Zn 695 701 840 955
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mainly Aspergillus, Wallemia sebi, Cladosporium as set-
tled fungal species in household dust from Shanghai [38]. 
Our result was also consistent with the findings that Pen-
icillium, Aspergillus, Cladosporium and about 20 other 
fungal genera were the most commonly isolated genera 
from household dust [37]. Concentrations of cultivable 
bacteria ranged from 1.1 × 104 to 2.1 × 107  CFU/g dust 
with a mean value of 3.4 × 106 CFU/g dust in floor dust 
from Finland households [39]. Cultivable bacteria con-
centrations in the present floor dust from Shanghai were 
within the same range.

OPFRs
OPFRs concentrations and distribution among particle 
size fractions from Shanghai and Stockholm household 
dust samples are shown in Fig.  5 and Additional file  1: 
Table  S5. The sum of the analysed OPFRs concentra-
tions in Shanghai household dust ranged from 5.34 to 
13.7  µg/g (median: 7.21  µg/g). The concentrations in 
Stockholm household dust measured in the present study 
ranged from 16.0 to 28.3 µg/g (median: 26.6 µg/g), which 
is significantly (p = 0.002) higher than the value meas-
ured in Shanghai household dust. One thing noted is that 
OPFRs concentrations may be underestimated, e.g. des-
orption of OPFRs from dust particles may occur under 
the reduced pressure in the vacuum process and fine and 
ultrafine dust may be missed collecting during the vacu-
uming [40].

The levels of OPFRs in household dust from Shang-
hai and Stockholm were comparable to some studies 
reported from Europe (Sweden, Spain, Belgium, Roma-
nia and Germany), New Zealand and USA (median lev-
els ranging from 3 to 38 µg/g) [41–47]. Higher levels of 
OPFRs were reported from Japan (median: 577  μg/g) 
[48], whereas lower levels of OPFRs have been reported 
from Egypt, Philippines and Pakistan (median levels 
ranging from 0.19 to 0.58 µg/g) [49–51].

For the composition, the chlorinated OPFRs (TCIPP 
and TCEP) dominated in Shanghai household dust, 
while TBOEP was the most abundant in Stockholm 
household dust. The distribution patterns were similar 
to the reports from other studies. Chlorinated OPFRs 
including TDCIPP, TCEP and TCIPP have previously 
been found to dominate in Shanghai household dust in 
particles below 500 µm [52], and TBOEP has previously 
been identified as the most abundant compound in 
Swedish household dust [53, 54]. The difference of dis-
tribution pattern in Shanghai and Stockholm is possibly 
that TBOEP is frequently added in floor polish and as 
a plasticizer in rubber and plastics [55]. The low lev-
els of TCEP in Swedish dust could be explained to the 
prohibition of production in Europe since 1990s, while 
no general ban on production and usage of any kind 
of OPFRs is issued in China [56]. Chlorinated OPFRs 
are of special concern due to their toxicity. They are 
suspected carcinogens with observed tumour growth 

Fig. 4 Enrichment factors (EFs) of metals in household dust fractions. F2: 75–190 µm, F3: 25–75 µm, F4: cyclone 4–25 µm and F5e: 2.22 ± 2.04 µm
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in kidney, liver and thyroid for TCEP and TCIPP, and 
in brains and testes for TDCIPP [7, 57]. The levels of 
TDCIPP in household dust has been associated with 
altered hormone levels and decreased sperm concen-
tration [58].

Generally the concentrations of OPFRs increased 
with the decrease of particle size in household dust 
samples from both Shanghai and Stockholm (Fig.  5). 
Other studies have reported that the correlation 
between the concentrations of OPFRs and parti-
cle sizes are inconsistent. Indoor dust collected from 
offices, public microenvironments and cars in Nanjing 
China were separated into five fractions, and OPFRs 
concentrations in all three types of dust reported the 
same correlation with particle size as the present study 
[12]. In dust from offices in Guangzhou China, the 
levels of OPFRs levels in fractions 1000–2000  µm and 
50–100  µm were higher compared to the fractions in 
between (500–1000 µm, 250–500 µm and 100–250 µm) 
[59]. The distribution of OPFRs among particle sizes 
may depend on multiple factors, which include the 
migration pathways of OPFRs into dust, compound 
property and surface area of dust. OPFRs are a group 
of SVOCs and tend to volatize into air and dust sur-
face area was probably the main influencing factor for 
the adsorption onto dust instead of total organic mat-
ter [12]. As stated above, in the present study Shanghai 
household dust has an increased surface area follow-
ing the decrease of particle size, which may explain the 

increase of OPFRs concentrations with the decrease of 
particle size.

Conclusion
Household dust serves as a recipient for both inorganic 
and organic chemicals as well as for biological compo-
nents and hence, is a good matrix to study for human 
external exposure to indoor pollutants. This study 
reported for the first time the physical, chemical and bio-
logical characterization of household dust from Shanghai 
by particle size.

In this study household dust from Shanghai and Stock-
holm were compared by applying the same procedures 
and methodologies which makes the comparison strong. 
It is observed that the particle size present in the respir-
able fraction of one composite household dust sample 
from Shanghai was 2.22 ± 2.04 µm, compared to that of 
3.73 ± 2.29 µm in one composite Swedish household dust 
sample. The ΣOPFRs concentrations in household dust 
from Shanghai and Stockholm measured in this study 
were comparable to most of the studies reported from 
Europe, New Zealand and USA. The pattern of OPFRs 
in the present study showed that chlorinated OPFRs 
(TCIPP and TCEP) dominated in the analysed household 
dust from Shanghai while TBOEP was the most abundant 
in the studied Stockholm household dust. Both metal and 
OPFRs concentrations increased with decreased particle 
size.

Fig. 5 The distribution of OPFRs levels (µg/g dust) in particle size fractions of Shanghai household dust (F1: 190–390 µm, F2: 75–190 µm, F3: 
25–75 µm, F4: cyclone 4–25 µm and F5: respirable fraction) and Stockholm household dust (StF1: 190–390 µm, StF2: 75–190 µm, StF3: 25–75 µm, 
StF4: cyclone 4–25 µm and StF5: respirable fraction)
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The selection of a relevant size fraction is of great 
importance when using dust as a matrix to study expo-
sure of indoor air pollution. The respirable fraction 
presented in this paper is correlated with inhalation expo-
sure. Considering higher metal concentrations, OPFRs 
concentrations and microorganism numbers in this frac-
tion, it is important to use relevant fraction for exposure 
assessment to avoid an underestimation of the risk.
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