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Abstract 

Background: Fecal indicator organisms such as Escherichia coli, enterococci, and coliphages are important to assess, 
monitor, and predict microbial water quality in natural freshwater ecosystems. To improve predictive modelling of 
fecal indicators in surface waters, it is vital to assess the influence of autochthonous and allochthonous environmental 
factors on microbial water quality in riverine systems. To better understand how environmental conditions influence 
the fate of fecal indicators under varying weather conditions, the interdependencies of environmental parameters 
and concentrations of E. coli, intestinal enterococci, and somatic coliphages were studied at two rivers (Rhine and 
Moselle in Rhineland-Palatinate, Germany) over a period of 2 years that exhibited contrasting hydrological conditions. 
Both riverine sampling sites were subject to similar meteorological conditions based on spatial proximity, but differed 
in hydrodynamics and hydrochemistry, thus providing further insight into the role of river-specific determinants on 
fecal indicator concentrations. Furthermore, a Bayesian multiple linear regression approach that complies with the 
European Bathing Water Directive was applied to both rivers’ datasets to test model transferability and the validity of 
microbial water quality predictions in riverine systems under varying flow regimes.

Results: According to multivariate statistical analyses, rainfall events and high water discharge favored the input 
and dissemination of fecal indicators in both rivers. As expected, concentrations declined with rising global solar 
irradiance, water temperature, and pH. While variations in coliphage concentrations were predominantly driven by 
hydro-meteorological factors, bacterial indicator concentrations were strongly influenced by autochthonous biotic 
factors related to primary production. This was more pronounced under low flow conditions accompanied by strong 
phytoplankton blooms. Strong seasonal variations pointed towards bacterial indicator losses due to grazing activities. 
The Bayesian linear regression approach provided appropriate water quality predictions at the Rhine sampling site 
based on discharge, global solar irradiance, and rainfall as fecal indicator distributions were predominantly driven by 
hydro-meteorological factors.

Conclusions: Assessment of microbial water quality predictions implied that rivers characterized by strong hydro-
dynamics qualify for multiple linear regression models using readily measurable hydro-meteorological parameters. 
In rivers where trophic interactions exceed hydrodynamic influences, such as the Moselle, viral indicators may pose a 
more reliable response variable in statistical models.
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Introduction
Besides their main anthropogenic functions as water-
ways, drinking water resources, and irrigation systems, 
rivers are widely used for a variety of recreational activi-
ties, including water sports such as swimming, water 
skiing, or canoeing. If microbial water quality is poor, 
human exposure to river water due to unintended inges-
tion during swimming or inhaling of spray can pose 
severe health threats. Among others, the health risks 
most closely associated with bathing are fecal–orally 
transmitted gastrointestinal diseases [1]. Not only partic-
ipants in water-contact sports are at high risk, also activi-
ties involving partial water contact such as boating and 
fishing carry an increased risk of gastrointestinal illnesses 
compared to other non-aquatic recreational activities [2].

Rivers can undergo rapid changes in microbial water 
quality driven by a wide range of factors including hydro-
logical, biological, hydrogeochemical, and meteorological 
conditions. In particular, parameters such as water dis-
charge, conductivity, pH, water temperature, dissolved 
oxygen  (O2), rainfall, turbidity, and global solar irradiance 
are related to fecal indicator organism (FIO) concentra-
tions in aquatic environments (e.g., [3–6]).

The European Bathing Water Directive (EBWD) 
(76/160/EEC 2006) states that the maximum of the 90th 
percentiles of the bacterial fecal indicators must not 
exceed 900 MPN/100 mL of E. coli and 330 CFU/100 mL 
of intestinal enterococci, respectively, based on the bath-
ing seasons of four consecutive years [7]. Maximum per-
missible values for viral fecal indicators are not included 
in the EBWD. However, somatic coliphages had been 
suggested as potential indicators for viral contamination 
[8]. For bathing waters known to be impaired by short-
term pollution (e.g., caused by combined sewer overflows 
or agricultural run-off during rainfall events), reliable 
early warning systems are demanded by the EBWD to 
reduce the risk of exposure. One major drawback is that 
the demands of the EBWD do not provide reliable short-
term bathing water quality assessments.

To overcome these challenges, statistical model 
approaches based on readily measurable environmen-
tal variables are frequently proposed as promising early 
warning systems for impairments of recreational water 
quality (e.g., [9–11]). Yet, the lack of a single sample 
threshold and the limited information provided by peri-
odic samples complicate the implementation of reli-
able models in compliance with the EBWD [12, 13]. In 
addition, mechanistic models are commonly used for 

long-term assessments of management practices or the 
understanding of underlying dynamics [14, 15]. Although 
several recently published models are capable of predict-
ing E. coli contamination levels in water bodies, more 
work is required to improve their accuracy and reliabil-
ity, especially with regard to pathogen fate and transport 
[15–17]. In particular, identification and selection of 
model input parameters are critical aspects when imple-
menting models for pathogen transport in water bodies. 
Modelling success is often limited by insufficient data 
sets or lacking knowledge of processes and parameters 
affecting microorganism behavior in water bodies [15, 
17].

Recently, an innovative assessment approach was 
developed which translates the probabilistic character 
of the EBWD to short-term (daily) water quality assess-
ments [13]. The approach interprets the existing bathing 
water threshold as a linear regression model with no pre-
dictors and extends the model by readily available hydro-
logical variables. Moreover, the approach is not solely 
restricted to these kinds of variables, but encourages the 
user to apply any reasonable and available data to build 
the model. The approach’s validity was demonstrated at 
a riverine bathing site in Berlin, Germany, and transfer-
ability to other riverine bathing sites was suggested [13]. 
Nevertheless, models as well as data availability are often 
site specific, which may hamper large-scale application 
[15, 18] and thus complicate their transferability to other 
sites. Further on, more frequently observed extreme or 
atypical meteorological and hydrological conditions at 
riverine sites might alter the influence of readily measur-
able environmental variables on FIO concentrations and 
diminish the predictive capabilities of existing models.

To study the influence of autochthonous and alloch-
thonous environmental factors on microbiological water 
pollution in riverine systems during highly contrasting 
flow regimes, relevant environmental parameters and 
FIO concentrations of E. coli, intestinal enterococci, and 
somatic coliphages were monitored over the course of 
1  year each in 2010/2011 and 2016/2017 at two sites at 
the Rhine River and its tributary the Moselle River (Ger-
many). Both sampling sites were located in the city of 
Koblenz, Germany, near the confluence of both rivers.

The aims of this study were

1. to determine riverine FIO dynamics dependence on 
specific environmental factors under contrasting flow 
regimes in distinct riverine habitats,

Keywords: Bathing water quality, E. coli, European Bathing Water Directive, Intestinal enterococci, Somatic 
coliphages, Trophic interactions, Water hygiene assessment
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2. to assess seasonal patterns of individual riverine FIO 
concentrations,

3. to study the effect of different river types and flow 
conditions on the assessment approach proposed by 
Seis et al. [13], and

4. to evaluate the effects of site-specific processes on 
model transferability and performance.

Results of this study will help to improve future mod-
elling approaches of pathogen occurrences in surface 
waters and enhance the capability to develop strategies to 
reduce human exposure risks during aquatic recreational 
activities. Moreover, results may allow conclusions on the 
validity of microbial water quality predictions in riverine 
systems under varying flow regimes.

Results
River characteristics and seasonality of environmental 
parameters
The flow regime of both rivers differed considerably 
(Fig.  1). Throughout sampling campaigns 1 and 2, the 
average discharge was 1502  m3/s and 1701  m3/s in the 
Rhine and 256 m3/s and 320 m3/s in the Moselle, respec-
tively (Table 1). The first sampling campaign was charac-
terized by remarkably low discharges during the months 
of March, May, and November 2011, whereas substan-
tially higher water levels were observed throughout sam-
pling campaign 2. Several flood events occurred during 
springtime and early summer months in 2016 (Fig. 1).

Conductivity levels in Moselle were twice as high as 
those observed in the Rhine (Table  1, Additional file  1: 
Figure S1), mostly owing to sodium carbonate produc-
tion in upstream sections of the catchment [19]. Over-
all, conductivity exhibited a distinct negative correlation 
with discharge in both rivers (Rhine: r = − 0.77, Moselle: 
r = − 0.65, p < 0.05), but showed much more variation in 
the Moselle (Table 1; Additional file 1: Figure S1A).

At both sampling sites, average chlorophyll a concen-
trations determined during campaign 1 (max. Rhine: 
62.5  µg/L, max. Moselle: 93.5  µg/L) exceeded those 
in campaign 2 (max. Rhine: 26.6  µg/L, max. Moselle: 
10.4  µg/L). On average, chlorophyll a concentrations 
in the Rhine were approximately 33% lower than in the 
Moselle (Table 1, Fig. 2). In both rivers, average pH val-
ues and  O2 concentrations ranged between 7.9 and 8.1, 
and 9.8 mg/L and 10.8 mg/L, respectively. Increased  O2 
concentrations were observed in the Moselle during phy-
toplankton blooms. In addition, enhanced phytoplankton 
production resulted in markedly higher pH values due to 
the binding of dissolved carbon dioxide from the aqueous 
phase (Fig. 2).

In sampling campaign 1, chlorophyll a levels were posi-
tively correlated with pH in both rivers (Rhine: r = 0.61, 

p < 0.05, n = 48, Moselle: r = 0.66, p < 0.05, n = 51) and 
with  O2 concentration in the Moselle (r = 0.52, p < 0.05, 
n = 51). This indicates a strong relation between pH,  O2 
content, and primary production, which was particularly 
pronounced under low-flow conditions.

Summer, fall, and winter samples from both sampling 
campaigns tended to cluster together in the PCA plots of 
the major hydrochemical and meteorological character-
istics, while spring samples clustered separately (Fig. 3). 
74.9% of the variance in the Rhine data was explained 
by selected environmental parameters (Fig.  3a). On the 
contrary, the selected major environmental parameters 
explained only 65.8% of the variance in the Moselle data 
set (Fig.  3b). Samples collected in summer were posi-
tively associated with global solar irradiance and ambient 
water temperature. At both sites and campaigns, win-
ter samples were positively associated with  O2 and to a 
lesser extent also with hydrology-related parameters. 
Spring samples, however, showed substantial differences 
among sampling campaigns. Variations in samples from 
campaign 2 can be explained by hydro-meteorologi-
cal parameters (i.e., discharge, rainfall, and turbidity), 
whereas those of campaign 1 were dominated by elevated 
pH values (Fig. 3).

Fecal indicator concentrations and seasonal patterns
The FIO E. coli, intestinal enterococci, and somatic 
coliphages were detected in all river water samples 
(Table 1). However, five samples of E. coli were below the 
method quantitation limit (one each during both cam-
paigns at the Moselle; three during the second campaign 
at the Rhine). Overall, highest concentrations of FIO were 
measured during high-flow events, while low FIO con-
centrations generally coincided with times of low water 
discharge and high global solar irradiance (Fig. 1). Except 
for somatic coliphages in the Moselle during the second 
sampling campaign (1004 PFU/100 mL), E. coli were the 
most abundant FIO on average in both rivers (Rhine: 
811 MPN/100  mL in 2010/11 and 941 MPN/100  mL in 
2016/17; Moselle: 928 MPN/100 mL in 2010/11 and 782 
MPN/100 mL in 2016/17).

PCA of indicator data revealed distinct seasonal pat-
terns in FIO concentrations across both years (Addi-
tional file  1: Figure S2). Overall, considerable overlap 
was observed among clusters. This was less pronounced 
for samples collected during the first sampling cam-
paign, where spring and winter samples clustered sepa-
rately. During times of increasing pH values in spring 
(Fig.  3), decreased FIO concentrations were observed 
(Additional file 1: Figure S2). The major part of variance 
(Rhine 43.1%; Moselle: 37.9%) is explained by principal 
component (PC) 1 in all cases. PC 2 explains 13.8% to 
22.1% of variance in Moselle, but less than 10% in Rhine. 
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The least proportion of explained variance was observed 
in Moselle during low-flow regime in 2010/2011 (Addi-
tional file 1: Figure S2C).

In general, correlation analysis indicated a positive 
correlation between all FIO. Correlations in the Rhine 
were of comparable strength (i.e., r = 0.75 to 0.79, 
p < 0.05, n = 103). Yet, weakest correlations occurred 
between E. coli and coliphages and strongest correla-
tions between enterococci and coliphages. In Moselle, 

correlations between the bacterial and viral indicators 
(r = 0.52 to 0.56, p < 0.05, n = 96) were considerably less 
pronounced than correlations among the bacterial indi-
cators themselves (r = 0.85, p < 0.05, n = 96).

Calculated ratios of enterococci:E. coli, E. coli:phages, 
and enterococci:phages indicated differences in the fate 
of bacterial indicators in both rivers depending on year 
(Additional file 1: Figure S3). Bacterial FIO abundances 
experienced a higher variability than coliphages. Nota-
bly, coliphage concentrations remained high during 

Fig. 1 FIO concentrations in relation to discharge and global solar irradiance in river Rhine (a) and Moselle (b) throughout sampling campaigns 
1 (2010/11) and 2 (2016/17). The blue and red dotted lines indicate 900 MPN/100 mL and 330 CFU/100 mL, respectively, corresponding to the 
percentile threshold for a sufficient water quality in the EBWD
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winter months irrespective of discharge. This was not 
observed for bacterial FIO (Additional file 1: Figure S4).

Fecal indicator dependence on environmental factors
All measured environmental parameters correlated with 
at least one FIO during Spearman’s rank correlation anal-
yses and can thus be considered as potentially relevant 
for the fate and transport of FIO in both rivers (Table 2). 
Negative correlations were established between FIO and 
water temperature, pH, conductivity, and global solar 
irradiance, while rainfall,  O2, turbidity, and discharge 
were positively correlated with FIO concentrations. More 

specific, somatic coliphages showed stronger correlations 
with water temperature, global solar irradiance, and  O2 
irrespective of sampling location compared to bacterial 
FIO. While conductivity played a minor role in Rhine, 
especially somatic coliphages were negatively correlated 
with conductivity at the Moselle site (Table 2).

Redundancy analysis (RDA) revealed differences in 
relations between FIO and multiple environmental vari-
ables during years of hydrologically different conditions 
(Fig.  4). Global solar irradiance, rainfall, and turbid-
ity were found to be explaining parameters in all cases 
except Moselle under low-flow conditions in 2010/11. 

Fig. 2 Changes in chlorophyll a content, pH and oxygen concentrations in river Rhine (a) and river Moselle (b) throughout sampling campaigns 1 
(2010/11) and 2 (2016/17)
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FIO concentrations increased with increasing rain-
fall, while they decreased with increasing global solar 
irradiance. This was in conformity to results of overall 
correlation analyses (Table 2). As mentioned earlier, con-
ductivity contributed to the explanation of FIO concen-
trations in both rivers solely under low-flow conditions 
(Fig. 4a, c).

Despite the overall correlations with water tempera-
ture, its importance as an explaining factor in the RDA 
models was limited to the Moselle sampling site during 
low-flow conditions (Fig.  4c). Temperature was nega-
tively connected to coliphages and to lesser extents to 

bacterial indicators. During both sampling campaigns, 
pH contributed to the explanation of FIO concentra-
tions in the Moselle-site RDA models. Bacterial FIO 
were more  strongly related to pH than coliphages 
(Fig. 4c, d).

For the Rhine, RDA models explained 74% (2010/11) 
and 72% (2016/17) of observed variance, respectively. 
In River Moselle, 81% of variance was explained by the 
RDA model for the 2016/17 sampling campaign. The 
Moselle site RDA model for 2010/11 data showed the 
least explained variance with only 55%, indicating that 
additional factors ruling FIO variation in 2010/11 were 
not considered.

Fig. 3 PCA biplots of measured environmental parameters in river Rhine (a) and river Moselle (b) grouped by seasons. Squares: observations of 
sampling campaign 1 (2010/11); triangles: observations of sampling campaign 2 (2016/17). Circles: correlation circles; ellipses: normal probability 
ellipsoids. 3d-Sum of global solar irradiance (GSI3), water temperature (WT), conductivity (COND), turbidity (TURB), dissolved oxygen  (O2), and 
5d-sum of rainfall (RAIN5)

Table 2 Spearman’s rank correlations between  environmental parameters and  FIO concentrations in  rivers Rhine 
and Moselle, respectively

Correlation analyses were performed on the z-standardized data of the overall dataset including both sampling periods. Significant correlations (p < 0.05) are shown in 
italics

Water temp pH Conductivity GSI(3d-sum) RAIN(5d-sum) O2 Turbidity Discharge

Rhine

 E. coli − 0.41 − 0.47 − 0.28 − 0.51 0.64 0.15 0.52 0.56

 Enterococci − 0.50 − 0.34 − 0.17 − 0.61 0.48 0.26 0.53 0.45

 Coliphages − 0.62 − 0.27 − 0.07 − 0.72 0.44 0.36 0.45 0.38

Moselle

 E. coli − 0.25 − 0.38 − 0.27 − 0.30 0.47 0.12 0.60 0.52

 Enterococci − 0.22 − 0.45 − 0.22 − 0.34 0.49 0.06 0.53 0.45

 Coliphages − 0.70 − 0.31 − 0.43 − 0.58 0.41 0.41 0.54 0.77
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Transferability of models and predicted microbial water 
quality
Statistically valid models able to predict bathing water 
quality and fulfilling the required percentage cover-
age criteria could be built for Rhine based on discharge, 
rainfall, and global solar irradiance as explanatory vari-
ables. A goodness-of-fit (R2) of 0.73 was achieved when 
models were fitted with all data including both sampling 
campaigns. An overview of model validation is provided 
in Additional file 1: Figure S5. When fitted with data of 
sampling campaign 1 (2010/11), the Rhine site models 

reached R2 = 0.76 and R2 = 0.65 when fitted with data of 
sampling campaign 2 (2016/17).

The goodness-of-fit for the Moselle site models fitted 
with all data was considerably lower (R2 = 0.55) compared 
to the Rhine site. When fitted with data of sampling cam-
paign 1 (2010/11), R2 reached 0.57 and 0.76 when fitted 
with data of sampling campaign 2 (2016/17). However, 
none of the Moselle site models did generate satisfactory 
results when validated against the data of the respective 
other year. They were not statistically valid as they did 
not fulfill model assumptions. Thus, despite their positive 

Fig. 4 RDA biplot of FIO and environmental parameters in river Rhine [a sampling campaign 1 (2010/2011); b sampling campaign 2 (2016/2017)] 
and in river Moselle [c sampling campaign 1 (2010/2011); d sampling campaign 2 (2016/2017)]. Environmental parameters are represented by black 
arrows and FIO by blue squares. 3d-Sum of global solar irradiance (GSI3), water temperature (WT), conductivity (COND), turbidity (TURB), dissolved 
oxygen  (O2), 5d-sum of rainfall (RAIN5), E. coli (EC), intestinal enterococci (ENT), and somatic coliphages (SC). Solely environmental variables that 
significantly explained variability in FIO concentrations were fitted to the ordination (arrows)
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correlation with FIO, discharge and global solar irradi-
ance provided only marginal improvements of the mod-
el’s explained variance to the Moselle site data, while the 
goodness-of-fit of the Rhine site models was enhanced by 
incorporating discharge and global solar irradiance.

For the Rhine site, it was neither the model with the 
highest R2 nor the one selected to be optimal by forward 
selection [based on the Akaike Information Criterion 
(AIC) as selection criterion] but a model less favorable, 
which was able to fulfill all percentage coverage criteria 
to satisfactorily predict microbial water quality.

Time series plots of predicted bathing water quality 
at the Rhine site in 2010/11 and 2016/17 are shown in 
Additional file  1: Figure S6. No plots are shown for the 
Moselle site as the applied criteria were not met.

Discussion
Seasonality and importance of environmental factors 
on fecal indicator concentrations
Environmental parameters affect pathogen abundances 
in aquatic systems in different ways under changing 
hydrological, biological, hydrogeochemical, and mete-
orological conditions. This study quantifies these vary-
ing environmental controls and provides a concept of 
how they can be used to predict bathing water quality in 
rivers.

In general, all FIO followed a similar pattern in both 
rivers. They showed strong intra- and inter-annual vari-
ations within the same river system due to various envi-
ronmental interactions and seasonality of ambient 
environmental conditions, including water temperature, 
pH, conductivity, global solar irradiance, rainfall,  O2, tur-
bidity, and discharge.

The Rhine is impounded only in its upper part, and else 
characterized by a free-flowing regime with considerably 
higher flow velocities compared to the Moselle at least 
under low-flow conditions. The average flow velocity of 
the Moselle, in contrast, is reduced through impound-
ments. This is reflected by statistical analyses, which 
implied that hydrological parameters have a more impor-
tant influence on FIO concentrations in the Rhine even 
under low-flow conditions.

The correlation of FIO and turbidity can be attributed 
to the capacity of the increased flow rate to re-suspend 
sediments [20], which can considerably increase fecal 
bacteria and pathogen levels [21–23].

As indicated by the results of the correlation and RDA 
analyses, conductivity is a more influential factor in the 
Moselle compared to the Rhine. As mentioned earlier, 
the Moselle is characterized by elevated chloride con-
centrations [19]. However, effects of salt concentration 
on the decay of fecal bacteria are disputed in the litera-
ture [24–26]. Changes in conductivity because of rainfall 

events and rising water levels were more pronounced in 
the Moselle due to the river’s smaller catchment, lower 
discharge, and elevated background conductivity lev-
els. Correlations of FIO with conductivity most likely 
illustrated the effects of hydrodynamics on indicator 
concentrations rather than conductivity being a direct 
environmental driver itself.

E. coli and enterococci
A comparative analysis can reveal differences in rela-
tive numbers between bacterial and viral FIO, but also 
between bacterial FIO themselves. Data from the Moselle 
site during sampling campaign 1 exhibited the high-
est annual variation of bacterial FIO ratios and clearly 
pointed towards differential concentration changes in E. 
coli and enterococci. E. coli concentrations dominated in 
spring, whereas dominance of enterococci was observed 
in late summer. Relative differences between concentra-
tions of E. coli and enterococci in aquatic environments 
have been described in previous studies. They were 
shown to be highly variable and depended on numerous 
factors, such as saline versus freshwater environments 
[27], the origin of the studied fecal indicator bacteria [28, 
29], as well as stress factors such as sunlight [30], or graz-
ing pressure [31].

Somatic coliphages
Variations in relative numbers further indicate a different 
behavior between fecal bacteria and phages. Phage repli-
cation or different sensitivities to environmental stresses 
were proposed as potential reasons [32].

As replication of somatic coliphages in surface waters 
is highly unlikely, it is not expected to influence the num-
bers of somatic coliphages detected in aquatic environ-
ments [33].

In contrast to previous findings, correlation analyses 
in this study pointed to a stronger negative relationship 
between phages and global solar irradiance compared to 
bacterial FIO. Moreover, phages were negatively corre-
lated with temperature. Sinton et al. [29] had shown that 
bacterial FIO are less sunlight resistant than coliphages. 
In our study, the observed distinct relationship of phages 
with global solar irradiance was most likely related to 
changes in temperature as both parameters were strongly 
correlated themselves. This is corroborated by a stronger 
relationship of somatic coliphages with high  O2 (Rhine: 
r = 0.36, Moselle: r = 0.41) concentrations compared to 
bacterial indicators (r = 0.26 for enterococci in the Rhine, 
others not significant). Despite decreasing water temper-
ature and rising discharge in winter, coliphage concentra-
tions (normalized to discharge) tended to remain high in 
both rivers, whereas bacteria concentrations declined. 
A direct effect of  O2 levels on concentrations of enteric 
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organisms in water environments is unlikely. Previous 
studies indicated almost no  O2 sensitivity of FIO [34].

As elevated  O2 contents occur particularly in winter 
based on the capability of cold water to dissolve more 
oxygen, the negative relationship between phage and  O2 
concentrations was mainly caused by water temperature, 
further strengthening the assumption that phage concen-
trations are less affected by low temperatures than those 
of bacteria.

Global solar irradiance and water temperature
Generally, a positive correlation of gastrointestinal bac-
teria with water temperature would be expected. Thus, 
negative correlations between FIO and water tempera-
ture point towards strong influences of other environ-
mental factors. The dependency is possibly masked by 
the opposing effect of global solar irradiance, consider-
ing that global solar irradiance and water temperature are 
interrelated themselves.

In spring and summer, solar irradiation causes a rise 
in water temperature and temperature in turn enhances 
predation rates by protozoa (e.g., grazing) [35–37]. This 
could have contributed to the negative interdependency 
of water temperature and FIO concentrations in this 
study.

pH and  O2 as a function of phytoplankton production
Phytoplankton fixes  CO2 for photosynthesis. Assimila-
tion of inorganic carbon by dense phytoplankton blooms 
can deplete the dissolved  CO2 concentration in surface 
waters, thus causing an increase in pH [38]. Elevated pH 
values were measured in particular in the Moselle under 
low-flow conditions during spring 2010/11. Distinct 
interdependencies of pH, chlorophyll a, and  O2 (due to 
 O2 production by photosynthesis) were observed in the 
Moselle, highlighting the strong connection between 
pH values and processes related to primary production 
at this site. Notably, phytoplankton abundance is gener-
ally higher in the Moselle compared to the Rhine [39]. 
Increased pH levels in the Moselle during the first sam-
pling campaign were more influenced by phytoplankton 
growth, linking losses in FIO concentrations to primary 
production processes. Although some impact of alkaline 
pH on the inactivation of bacterial FIO can be anticipated 
[40], it is unlikely that the variance in indicator concen-
trations is exclusively owed to a direct effect of pH alone.

Grazing
Besides more alkaline pH values, phytoplankton blooms 
are known to coincide with annual proto- and metazoo-
plankton peaks in both river systems [39]. However, pre-
vious research showed that the increase in zooplankton 
biomass is much more pronounced in the Moselle [39]. 

Protozoan grazing is known to be an important top-
down control of bacterial populations in aquatic environ-
ments (e.g., [25, 41, 42]).

Grazing is size selective [43] and most protists graze 
preferentially on medium‐sized bacterial cells [44]. 
Although there is evidence that some flagellates are able 
to feed on phages and viruses [45], they are likely grazed 
on to a lesser extent than bacteria and can, therefore, 
be described more precisely by hydrological and mete-
orological factors. This is further supported by the cal-
culated relative differences between viral and bacterial 
FIO (Additional file 1: Figure S3) as well as by correlation 
analyses among the different types of indicators. While 
behavior of E. coli, enterococci, and coliphages in the 
Rhine is quite similar, dynamics of coliphages and bac-
teria differ considerably at the Moselle site, particularly 
under low-flow conditions.

Conclusively, grazing instead of pH is most likely 
responsible for the loss of fecal bacteria in the Moselle 
based on the higher secondary productivity. Because 
grazing is not accounted for as an explanatory factor in 
the statistical analyses, the proportion of unexplained 
variance in the FIO data for sampling campaign 1 (with 
higher phyto- and zooplankton abundances) is higher 
than for sampling campaign 2, and linear regression 
models failed in the Moselle where zooplankton abun-
dance was higher than in the Rhine.

Model application, transferability, and implications 
for water quality predictions
Parameters such as global solar irradiance, water tem-
perature, discharge, and rainfall were shown to be influ-
ential and can be regarded as relevant input parameters 
for predictive modelling of microbial water quality. These 
relations have already been described for different envi-
ronments and were applied with varying success in multi-
ple modelling approaches for other aquatic settings (e.g., 
[15]). For example, discharge, rainfall, and global solar 
irradiance contributed significantly to explained variance 
in multiple linear regression models for the Lahn River 
[11] and proved to be suitable explanatory parameters in 
the Bayesian linear regression model predicting E. coli 
concentrations in the Rhine in this study.

It remains to be tested whether wastewater treatment 
plant discharge data as key explanatory variable further 
enhances model performance at the studied sites.

Not surprisingly, model accuracy and parameter selec-
tion were highly dependent on the study site. Contribu-
tions of key processes varied site specifically by season, 
year, and type of FIO. Therefore, relations of FIO and 
environmental factors cannot be applied unrestrictedly 
to spatially separated sites or different river systems.
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With regard to the overall model validation and assess-
ment approach, the applied test criteria were restrictive 
enough to avoid model overfitting. This prevents the 
application of predictive modelling for bathing water 
management at recreational water activity sites where 
environmental conditions are much more complicated 
than captured by model assumptions. Similar to the 
previously studied site in Berlin [13], it was neither the 
model with the highest R2 nor the one selected to be 
optimal by forward selection (based on the AIC as selec-
tion criterion) but a model less favorable which was able 
to fulfill all percentage coverage criteria to satisfactorily 
predict microbial water quality at the Rhine sampling 
site. This shows that the application of these validation 
criteria provides a reasonable additional criterion to be 
applied for model validation in water management situa-
tions with human health implications.

Considering the variations in the strengths of relations 
between environmental parameters and FIO concentra-
tions across various years, a model fitted only with data 
of low-flow conditions, for example, is not capable of 
generating the same predictive accuracy when applied 
for high-flow conditions and vice versa. However, this 
information can be used for targeted monitoring cam-
paigns aiming specifically at conditions for which reliable 
data are lacking. To account for changing conditions and 
variations in contributions of environmental factors, it 
is recommended to use more than 1 year of data includ-
ing a broad range of environmental situations for model 
calibration.

Due to the Rhine’s free flowing regime, models based 
on hydrological parameters provided more satisfactory 
estimates for this river. As FIO losses due to grazing most 
likely accounted for a large proportion of unexplained 
variance in the Moselle site models, incorporating graz-
ing related parameters into modelling approaches for 
specific river types where trophic interactions are more 
influential than hydrological dynamics could enhance 
modelling success.

Accounting for seasonality may also enhance model 
performance. Coliphages show a less overall variabil-
ity and represent a more suitable response variable in 
multiple linear regression models for rivers with pro-
nounced trophic interactions. Their concentrations can 
be sufficiently described by hydrological and meteoro-
logical variables alone. At the moment, no viral FIO is 
included in the EBWD [7]. Nevertheless, the findings of 
this investigation indicate that phages (as model organ-
isms for viruses) behave considerably different than bac-
teria under certain environmental conditions. Especially 
during spring and winter times, solely assessing bacte-
rial FIO can lead to an underestimation of virus loads in 
rivers with long water residence times and pronounced 

trophic interactions. Therefore, additional integration of 
indicators for viral contamination in water quality moni-
toring should be considered.

Conclusions

• High-flow conditions generally favor the deteriora-
tion of microbial water quality in rivers.

• Exceptionally low-flow conditions enhance loss rates 
of FIO in rivers, especially in rivers with already 
prolonged water residence times and high phyto-
plankton abundances. Viral indicators show less pro-
nounced loss rates than bacterial indicators under 
these conditions. Hence, viral contamination might 
be underestimated under such conditions (e.g., in 
spring and winter) if solely maximum permissible 
concentrations of bacterial indicators are considered 
as demanded by EBWD.

• High loss rates due to grazing activities impair accu-
racy of models based on hydro-meteorological 
parameters. Finding solutions for incorporating loss 
rates due to grazing may enhance model accuracy 
particularly for bacterial indicators as response vari-
ables in rivers with prolonged water residence time 
and strong trophic interactions.

• For rivers where trophic interactions prevail, viral 
indicators may pose a more reliable response vari-
able in multiple linear regression models. For rivers 
where FIO concentrations are predominantly driven 
by hydro-meteorological factors, the Bayesian linear 
regression approach represents a valuable tool for 
water quality prediction.

Materials and methods
Study sites and sampling
The rivers Rhine and Moselle differ considerably in 
size, trophic state, hydrological conditions, and hydro-
chemical characteristics. The Rhine has a total length of 
1230 km and a catchment area of about 200,000 km2, its 
major tributary Moselle a total length of 540  km and a 
catchment area of 28,000 km2, respectively. The sampling 
sites at the Rhine and the Moselle are located within a 
linear distance of approximately 3 km in the city of Kob-
lenz, Germany, near the confluence of both rivers. Hence, 
comparable meteorological conditions can be expected 
at both sites. The Moselle sampling site is located 4 km 
upstream to the Moselle permanent monitoring station 
(rkm 2) providing continuous readings of relevant hydro-
chemical water quality parameters. Rhine water samples 
were obtained at the Rhine monitoring station, 590  km 
downstream of Lake Constance (Fig. 5).
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At each sampling site, water samples (1 L volume) were 
collected once a week from October 19th, 2010 until 
October 19th, 2011 (sampling campaign 1), and from 
January 13th, 2016, until January 25th, 2017 (sampling 
campaign 2), according to standardized procedures [46]. 
All samples were processed immediately upon arrival in 
the laboratory (i.e., within 2–3  h after sampling). Sam-
pling period 1 was characterized by remarkably low 
discharges especially in March and May, as well as in 
November 2011 [47]. Sampling period 2 in contrast was 
characterized by heavy precipitation events resulting in 
rising water levels and floods during spring [48].

Analysis of fecal indicators
A total of 211 water samples were analyzed for E. 
coli, intestinal enterococci, and somatic coliphages as 
described in Herrig et al. [11]. In brief, concentrations of 
E. coli were estimated following the most probable num-
ber (MPN) approach [49]. All tests were performed using 
standardized microtiter plates according to the manu-
facturer’s instructions and product-specific MPN tables 
(Dr. Brinkmann Floramed, Nürtingen, Germany). Intes-
tinal enterococci were quantified via membrane filtra-
tion on Pall GN-6 Metricel mixed cellulose esters filters 
(ø 47 mm, porosity 0.45 μm), followed by cultivation on 
Slanetz–Bartley agar and subsequent colony confirma-
tion using bile esculin agar [50]. Depending on expected 
cell concentrations, sample volumes ranged from 1 to 
100  mL. Volumes < 10  mL were supported by the addi-
tion of sterile peptone salt solution.

Somatic coliphages were quantified via the phage 
plaque test for samples with expected low concentrations 
of phages [51]. Nalidixic acid (final concentration 250 μg/
mL) was added to minimize effects due to the micro-
bial background flora. The nalidixic acid-resistant E. coli 
strain ATCC 700078 (American Type Culture Collection) 
was used as the host.

Hydrochemical parameters and meteorological data
Daily mean water discharge data were derived from 
recorded water gauges at Cochem (Moselle) and Kaub 
(Rhine). Daily averages of continuously measured 
hydrochemical parameters including ambient water 
temperature,  O2 concentrations, pH, turbidity, and 
conductivity were obtained from nearby permanent 
monitoring stations operated by the Federal Institute 
of Hydrology (BfG). In addition, pH, conductivity, and 
water temperature were also measured in  situ during 
indicator sampling using portable field probes (MultiLine 
F/Set-3, WTW, Germany). Daily rainfall and global solar 
irradiance data derived from surrounding official weather 
stations (Valwig, Winningen, Mayen, Mülheim-Kärlich, 
Bingen-Gaulsheim, and Bacharach) were obtained from 
Agrarmeteorologie Rhineland-Palatinate (http://www.
wette r.rlp.de). Chlorophyll a concentrations were deter-
mined using German Standard Methods [52]. Briefly, 
phytoplankton was filtered on Whatman GF 6 glass-fiber 
filters and pigments were extracted with hot ethanol. 
Chlorophyll a concentration was determined photomet-
rically (DR 2800, Hach Lange, Germany).

Fig. 5 Location of the sampling sites at river Rhine and river Moselle (modified from Federal Agency for Cartography and Geodesy, 2019, and https 
://geopo rtal-wasse r.rlp-umwel t.de/servl et/is/2025/)

http://www.wetter.rlp.de
http://www.wetter.rlp.de
https://geoportal-wasser.rlp-umwelt.de/servlet/is/2025/
https://geoportal-wasser.rlp-umwelt.de/servlet/is/2025/
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Statistical analyses of environmental factors and FIO 
concentrations
Data were analyzed using the Statistical Software R 
[53]. Prior to statistical analysis, mean daily rainfall 
and global solar irradiance data of all six surround-
ing weather stations were combined. Subsequently, 
hydrochemical parameters as well as weather data 
were binned to account for variable time intervals in-
between weekly samplings. In detail, the daily mean 
values of water discharge, water temperature, pH, con-
ductivity, and  O2 were summed over the number of 
days (i.e., 1 to 7  days) preceding the day of sampling. 
For rainfall and global solar irradiance, sums were cal-
culated correspondingly, resulting in seven data sets for 
each of these variables. Missing values of hydrochemi-
cal parameters obtained from the permanent monitor-
ing stations (e.g., due to sensor failures) were replaced 
by data from in  situ measurements that accompanied 
each indicator monitoring campaign. Assignment of 
seasons (spring, summer, fall, winter) followed the 
astronomical beginning of seasons for the Central 
European Time Zone (UTC + 1).

For E. coli, levels below the detection limit of the 
MPN method (i.e., < 15 MPN/100 mL) were treated as 
half the detection limit during statistical analysis (i.e., 
7.5 MPN/100 mL). Intestinal enterococci values outside 
the quantification range (i.e., in cases where excessive 
growth did not allow counting of colonies) were omit-
ted for further statistical analyses.

Spearman’s rank correlation analyses were performed 
on the z-standardized data to investigate relationships 
between FIO and individual environmental variables.

Opposed to sampling campaign 2, the exact days of 
chlorophyll a and FIO samplings differed in campaign 
1. Hence, correlations of chlorophyll a with daily meas-
ured pH and  O2 were investigated separately.

Principal component analyses (PCA) and redun-
dancy analyses (RDA) were performed on normalized 
[y′ = log10(y + 1)] and z-standardized data, to account 
for different scales. PCA was calculated using the 
prcomp() command implemented in the stats pack-
age [53]. Results were visualized by use of the ggbiplot 
package [54]. Environmental factors explaining FIO 
concentrations with the best fit were identified in RDA 
by automatic stepwise model building applying the ord-
istep() command, which chooses a model by permuta-
tion tests (vegan package) [55]. Statistical significance 
of the final RDA model was tested by ANOVA. Models 
were checked for collinearity by calculating the vari-
ance inflation factor (VIF). A locally weighted scatter-
plot smoothing (LOESS) function was used to discern 
annual trends in FIO ratios using the geom_smooth() 
function in the ggplot2 package [56].

Bayesian linear regression approach
To evaluate the potential transferability of model assess-
ment and validation approaches between different river 
systems, a Bayesian approach for regression modelling 
by Seis et al. [13] was applied to the Moselle and Rhine 
site datasets. In this approach, a linear regression model 
is fitted on the  log10-transformed indicator data and the 
predicted mean and residual standard deviation are used 
to construct a lognormal probability density function to 
meet the demands of the EBWD. The constructed density 
function is referred to as the posterior predictive distri-
bution and the 95% prediction interval as the 95% cred-
ible interval of the posterior predictive distribution. After 
checking the model for normality and heteroscedasticity 
of residuals, model predictions are validated by percent-
age coverage, i.e., 95% of the validation data should fall 
within the 95% credible interval and below the 95th per-
centile of the posterior predictive distribution, and 90% 
of the validation data should fall below the 90th percen-
tile. If more than one valid model can be developed, pref-
erence is given to the model with the lower “leave one out 
cross validation information criterion” (LOO-IC). Models 
presented in this study were fitted with the 2010/11 data 
and validated against the data from 2016/2017 and vice 
versa. For rainfall as explanatory variable, a natural loga-
rithm transformation was applied. Explanatory variables 
were selected through forward selection allowing for 
interaction between variables and limiting the number 
of variables to (a) N/10, if the number of data points was 
below 100 and (b) 10, if the number of data points was 
larger than 100. Each model of the forward selection pro-
cess was saved and tested against the above-mentioned 
percentage coverage criteria. Valid models were tested 
for the most critical assumptions with the Shapiro–Wilk 
test for normality [57] and for constant variance (homo-
scedasticity) by the Breusch–Pagan test against hetero-
scedasticity [58]. In contrast to the study by Seis et  al. 
[13], wastewater treatment plant discharge data were not 
considered as explanatory variables, but additional pre-
diction variables such as pH and  O2 were incorporated.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1230 2-019-0250-9.

Additional file 1: Figure S1. Mean daily electrical conductivity in 
dependence of discharge in rivers Rhine (A) and Moselle (B) throughout 
sampling campaign 1 (2010/11) and 2 (2016/17). Figure S2. PCA biplots 
of FIO concentrations in river Rhine (A: sampling campaign 1 (2010/11), 
B: sampling campaign 2 (2016/17)) and river Moselle (C: sampling 
campaign 1 (2010/11), D: sampling campaign 2 (2016/17)) grouped by 
seasons. Circles: correlation circles, ellipses: normal probability ellipsoids. 
E. coli (EC), intestinal enterococci (ENT), somatic coliphages (SC). Figure 
S3. Ratios of FIO concentrations (circles) in river Rhine (A: sampling 
campaign 1 (2010/2011); B: sampling campaign 2 (2016/2017)) and river 

https://doi.org/10.1186/s12302-019-0250-9
https://doi.org/10.1186/s12302-019-0250-9
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Moselle (C: sampling campaign 1 (2010/2011); D: sampling campaign 2 
(2016/2017)). A locally weighted scatterplot smoothing (LOESS) function 
(lines) was used to discern annual trends. Red circles represent calculated 
ratios of E. coli: enterococci (EC:ENT), green circles E. coli: phages (EC:SC), 
and blue circles enterococci: phages (ENT:SC). Figure S4. Boxplots of 
seasonal fecal indicator concentrations normalized to discharge in river 
Rhine (A) and river Moselle (B) including observations of both sampling 
campaigns. Figure S5. Tests of model assumptions for the Rhine site 
model fitted with data of both sampling campaigns. Figure S6. Time 
series plots for the Rhine site Bayesian linear regression models with 
model equations. (A) Predicted  log10 E. coli concentrations for sampling 
campaign 1 (2010/2011) when trained with data from sampling campaign 
2 (2016/2017) and (B) Predicted  log10 E. coli concentrations for sampling 
campaign 2 (2016/2017) when trained with data from campaign 1 
(2010/2011). Grey area: posterior predictive distribution, green circles: 
validation data (not used for model fitting). White horizontal lines indicate 
the percentile threshold for sufficient bathing water quality of 900 
MPN/100 mL.
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