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Main text
Agrochemicals, such as pesticides and fertilizers, have 
facilitated an unprecedented intensification of agriculture 
[1, 2]. However, the desired yield gains come at the cost 
of unwanted side effects on the environment. Pesticides 
have been demonstrated to contribute to the decline of 
non-target organisms, such as bees, birds and aquatic 
biodiversity [3–5], fueling the global biodiversity crisis. 
This runs contrary to global efforts to protect biodiver-
sity and, in particular, also to the aims of the European 
Union’s (EU) pesticide regulation [6]. Consistent exceed-
ances of regulatory thresholds [7] and revisions of 
authorizations of pesticides, such as of neonicotinoid 
insecticides in the EU by the Standing Committee on 
plants, animals, food and feed (PAFF Committee), also 
attest to deficiencies in regulatory pesticide risk assess-
ment and management.

Authorization along tiers
To authorize a pesticide, risk assessment in the EU [8], 
the United States of America (USA) [9] and most other 
countries, requires that the predicted environmental 
exposure concentration is below a concentration con-
sidered safe for non-target organisms (Fig. 1, for details 
see [10]). In the EU, in a first step (so-called first tier) of 
the risk assessment, this safe concentration is established 
by the European Food Safety Authority (EFSA) in coop-
eration with national agencies of the EU member states 
through a combination of:

• Standard toxicity tests, i.e., tests performed with sin-
gle chemicals and single species under laboratory 
conditions without additional stressors, and,

• Safety factors (also called assessment factors) that 
account for uncertainties in the extrapolation to real 
ecosystems.

If the predicted exposure exceeds the safe concentra-
tion (as is the case for 2/3 of insecticides [7]), a pesticide 
can still be authorized if the producer can show through 
further data that its environmental and human health 
impacts are acceptable [8]. This is formalized as a tiered 
framework that extends the standard toxicity tests (first 
tier) to more complex scenarios (higher tiers) [11]. Higher 
tiers integrate processes and characteristics occurring 
in natural ecosystems, such as multi-species semi-field 
test systems in the EU, as well as reduction of exposure 
through mitigation measures in risk management [8]. 
The tiered framework relies on two assumptions: (i) the 
first tier provides an overly protective measure of poten-
tial effects in the field; (ii) the higher tiers provide more 
ecologically relevant predictions of field effects or of 
concentrations that do not lead to unacceptable effects. 
Therefore, despite being rewarded with lower safety fac-
tors, they are assumed to still be sufficiently protective 
(Fig.  1). However, the widespread and well-documented 
occurrence of adverse effects in the field when authorized 
pesticides are applied (e.g., [3–5, 12–18]) questions these 
assumptions.

Lacking drivers of risks for ecosystems
This failure of the current regulation to protect biodi-
versity has been attributed to inaccurate predictions of 
both exposure [19, 20] and effects [5], which derive from 
generic and, essentially, inaccurate representations of 
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ecosystems. Improved predictions for specific, spatially 
explicit real-world scenarios would require consideration 
of the following factors in the test systems and models 
[21, 22]:

 (i) Ecological context, i.e., the ecological properties 
such as sensitivity and functions of organisms and 
the composition of organism communities of the 
whole ecosystem to be protected.

 (ii) Landscape context, i.e., the situation in which the 
ecosystem is embedded. This comprises general 
environmental conditions, e.g., habitat type and 
climate, and site-specific aspects such as the con-
nectivity to other sites and presence of additional 
stressors.

 (iii) Management context, including the farmers’ use 
patterns partly as prescribed by governmental risk 
managers, e.g., minimum spraying distance to field 
margin and sequence of pesticide use, that deter-
mines the potential occurrence of mixtures of com-
pounds in soils and water bodies, which may exac-
erbate risks.

Integrating these factors into test systems and models 
represents a formidable challenge—given that increasing 
the complexity of test systems comes at the cost of lower 
reliability and that the models are still in their infancy. As 
long as a scientifically validated prediction framework 

has not been established, we suggest procedural and 
institutional changes for the authorization of pesticides 
in the EU to narrow the current gap between the inten-
tion and reality of protecting biodiversity. The suggested 
changes are organized in stages (Fig.  1), the implemen-
tation of which requires increasing structural adaptation 
of the current framework and time frames. They are tai-
lored to the EU process but can also inform regulation in 
other regions.

Stage 1: short‑term corrections of the current system
We suggest an increase in safety factors by a factor of at 
least 10 for all tiers (cf. [7, 23, 24]) to cover uncertainties 
arising from the ecological, landscape and management 
context and to align predicted and observed effects in 
ecosystems. Moreover, the authorization process should 
be comparative, i.e., compare the risks of a pesticide 
product to already authorized products, and include 
a cost–benefit analysis. The comparative assessment 
would allow for weighing options, for example, author-
izing the product with the lowest environmental side 
effects [25]. The cost–benefit analysis would compare 
the costs of potential yield losses to environmental qual-
ity benefits. Although quantification may prove elusive 
for new compounds, minor reductions in yield losses at 
the cost of further deteriorating the environment would 
suggest that the product fails the cost–benefit analysis. 

Fig. 1 Simplified scheme of current and suggested future pesticide risk assessment in the EU. Currently, authorization is given as long as the 
predicted exposure concentration (PEC) does not exceed the predicted no‑effect concentration identified by single tiers, multiplied by the 
respective safety factor. Only substances that fail all tiers are not authorized
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Such developments could be complemented by novel 
insurance methods that protect farmers from crop fail-
ure to reduce the reliance of farmers on pesticides and 
to avoid that farmers carry the main burden of the sug-
gested changes in risk assessment main burden of the 
measures [26]. Implementation of these measures would 
only require relatively minor adaptation of national and 
European legislation, such as the Commission regula-
tions 1107/2009 and 546/2011, and related guidelines 
provided by EFSA (e.g., [27]), which should subsequently 
be adopted quickly by the European Commission (as 
an example for a slow adoption see [28]), and could be 
achieved within several months to years. If a pesti-
cide was authorized based on this framework, the rate 
of exceedance of regulatory thresholds would strongly 
decrease in most or all landscapes, enhancing environ-
mental safety [7].

Stage 2: supervised provisional authorization as new 
paradigm
Implementing stage-1 measures may result in risk 
assessment that is overprotective in some landscapes. 
Regulation that more efficiently balances the different 
ecosystem services (e.g., crop yield, pure drinking water, 
biodiversity) can be achieved by substituting higher tiers 
with a provisional authorization. This acknowledges the 
limitations in predicting (ecological) real-world effects 
and is guided by the principle of pharmaceutical regula-
tion stipulating that a general-use authorization is only 
granted after passing trials under real-world conditions. 
Calls for post-registration monitoring [25, 29, 30] and 
pesticide vigilance [31] point in a similar direction, but 
need to be tied to the concept of reserving landscapes 
and catchments for the purpose of pesticide risk assess-
ment. In these test landscapes and catchments, which 
should be selected to represent a range of typical land 
uses, information that is typically non-disclosed such 
as the farmers’ use patterns in terms of dates and doses 
should be available for the risk assessment. The provi-
sional authorization would require monitoring the fate 
and effects of pesticide products in these landscapes and 
catchments, and the final authorization decision would 
be made in light of the monitoring. Implementation 
would come at comparatively minor costs as the moni-
toring could be expanded from the environmental moni-
toring that is already mandatory in all European member 
states, and is also conducted in other regions, such as the 
Japan, Switzerland and USA. In addition, the applicant 
for an authorization could bear a major part of the costs 
for the expanded monitoring (but the economic impli-
cations particularly for small and medium enterprises 
should be borne in mind). In Germany, a network of 
demonstration farms for integrated pest management has 

been established that provides a starting point for farm-
scale real-world monitoring of the fate and effects of new 
pesticides, as well as of the consequences of risk manage-
ment measures such as field margins. This would need to 
be expanded to catchments and consequently consider 
ecological, landscape, and management contexts. The 
results would make it possible to validate chemical fate 
and ecological effect models for prospective risk assess-
ment. Once validated, the risk assessment would be 
based on these models, replacing the supervised provi-
sional authorization. Implementation of this authoriza-
tion procedure would require far-reaching adaptation of 
regulations and subsequently the development of EFSA 
guidelines with fast adoption by the European Commis-
sion, as well as the establishment of a European dem-
onstration farm network covering different climatic and 
land use scenarios, ideally under the auspice of EFSA (see 
previous section for examples of regulations and guide-
lines and see the draft guideline for veterinary pharma-
ceuticals as an example for the integration of monitoring 
[32]). EFSA‘s recent considerations on an improved envi-
ronmental risk assessment of pesticides, e.g., including 
the landscape and management context (see above), sup-
port our demand for a revision of guidelines [22]. Never-
theless, such adaptations may take years to a decade.

Stage 3: bridging legal frameworks, stakeholders, 
and institutions
Risk management decisions under the current framework 
are made with a narrow focus on poorly defined protec-
tion goals [25, 33]. In addition, an integration of differ-
ent policy frameworks, such as those related to nature 
conservation, water protection, climate protection and 
agricultural production, is missing [34]. We suggest that 
a future pesticide regulation framework be integrated 
into an overall environmental policy framework. Such a 
framework can build on the cross-compliance principle, 
which provides direct payments for farmers who main-
tain their land in good agricultural and environmental 
condition. A unified guidance and an authorization pro-
cess by governmental risk managers that consider the 
requirements of different regulations for biodiversity and 
populations of species are urgently needed. Irrespective 
of how the acceptable levels are set, enforcement of these 
levels would require management of regional domains, 
which might entail elements of conservation manage-
ment, such as land sparing, and stakeholder input [35]. 
For example, highly pesticide-intensive agriculture could 
be compensated for by setting aside land to buffer the 
overall toxic exposure in the domain. This means that 
some side effects would be accepted locally, while the 
biodiversity targets for the entire domain (landscape 
types including catchments) are still met. Managing the 
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side effects in these spatial domains could be organized 
analogously to successful other mitigation measures, 
such as cap and trade schemes, e.g., for sulphur dioxide 
in the USA and for carbon dioxide in California [36]. 
Farmers could trade the pesticide emissions, where total 
emissions of toxicity equivalents would be defined for the 
spatial domain in addition to maximum residue levels for 
the crop, ensuring that the ecological and human health 
targets are met. This requires the adoption of a novel 
framework and related institutional changes that may 
take at least a decade, where the implementation may be 
guided by agro-environmental indicator schemes (e.g., 
[37]).

Towards stakeholder‑driven cooperative land 
management
Adopting the suggested changes to current risk assess-
ment not only offers the option to substantially improve 
our understanding and mitigation of pesticide risks, but 
also would provide opportunities to combine different 
measures of land management, including crop rotation 
and field sizing. If agro-environmental indicators of risk 
for biodiversity and ecosystem services were defined 
clearly, stakeholders including industry, political authori-
ties, farmers, and conservationists, would be empowered 
to improve their local environment by means most suit-
able for them [38]. This could entail structural improve-
ments for ecosystem connectivity, reduced pesticide use, 
creation of refuges, and other measures [26, 39]. Even-
tually, a more realistic risk assessment process should 
include all stakeholders’ interests through cooperation 
to meet their common needs and values. No economic 
profit can be more valuable than sharing the responsi-
bility for sustaining society’s indispensable life support 
system while providing sufficient food, clean air, and 
drinking water. Key to this is healthy ecosystems—and 
the services provided by a diverse community of plants, 
animals and microorganisms.
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