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Abstract 

Background:  In the past, cases of PCDD/F and PCB contamination exceeding limits in food from animal origin (eggs, 
meat or milk) were mainly caused by industrially produced feed. But in the last decade, exceedances of EU limit values 
were discovered more frequently for PCDD/Fs or dioxin-like(dl)-PCBs from free range chicken, sheep, and beef, often 
in the absence of any known contamination source.

Results:  The German Environment Agency initiated a project to elucidate the entry of PCBs and PCDD/Fs in food 
related to environmental contamination. This paper summarizes the most important findings. Food products from 
farm animals sensitive to dioxin/PCB exposure—suckling calves and laying hens housed outdoor—can exceed EU 
maximum levels at soil concentrations that have previously been considered as safe. Maximum permitted levels can 
already be exceeded in beef/veal when soil is contaminated around 5 ng PCB-TEQ/kg dry matter (dm). For eggs/
broiler, this can occur at a concentration of PCDD/Fs in soil below 5 ng PCDD/F–PCB-TEQ/kg dm. Egg consumers—
especially young children—can easily exceed health-based guidance values (TDI). The soil–chicken egg exposure 
pathway is probably the most sensitive route for human exposure to both dl-PCBs and PCDD/Fs from soil and needs 
to be considered for soil guidelines. The study also found that calves from suckler cow herds are most prone to the 
impacts of dl-PCB contamination due to the excretion/accumulation via milk. PCB (and PCDD/F) intake for free-range 
cattle stems from feed and soil. Daily dl-PCB intake for suckler cow herds must in average be less than 2 ng PCB-TEQ/
day. This translates to a maximum concentration in grass of 0.2 ng PCB-TEQ/kg dm which is less than 1/6 of the cur-
rent EU maximum permitted level. This review compiles sources for PCDD/Fs and PCBs relevant to environmental 
contamination in respect to food safety. It also includes considerations on assessment of emerging POPs.

Conclusions:  The major sources of PCDD/F and dl-PCB contamination of food of animal origin in Germany are (1) 
soils contaminated from past PCB and PCDD/F releases; (2) PCBs emitted from buildings and constructions; (3) PCBs 
present at farms. Impacted areas need to be assessed with respect to potential contamination of food-producing ani-
mals. Livestock management techniques can reduce exposure to PCDD/Fs and PCBs. Further research and regulatory 
action are needed to overcome gaps. Control and reduction measures are recommended for emission sources and 
new listed and emerging POPs to ensure food safety.
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1 � Background
Polychlorinated dibenzo-p-dioxins, polychlorinated 
dibenzofurans (PCDD/Fs), and polychlorinated biphe‑
nyls (PCBs) are widely recognized environmental and 
food contaminants [1, 2]. The use of PCBs and their weak 
life-cycle management have resulted in a widespread 
contamination of the technosphere and the environment. 
Former open applications such as sealants are still con‑
tributing to environmental release and human exposure 
[3]. Similarly, the release of PCDD/Fs over the last two 
centuries’ industrial emissions and one-century chlorine/

organochlorine production has impacted and contami‑
nated soils and sediments, generating contaminated sites 
and hot spots [4–9].

Humans are exposed to dioxins and PCBs mainly via 
food, especially through consumption of animal-derived 
foods such as meat, dairy and eggs, and fishery products 
(BMU) [10]. Fruits, vegetables, nuts and cereals have nor‑
mally low levels of PCDD/PCDFs and PCBs [11], but due 
to high consumption they also contribute to the food-
borne uptake of these pollutants [12].

In 2002, the EU set maximum levels for PCDD/Fs in 
certain foodstuffs, and set maximum levels for the sum 
of PCDD/Fs and dioxin-like PCBs (dl-PCBs) in 2006 [13]. 
The regulation was amended in 2011, introducing new 
EU maximum levels for PCDD/Fs and the sum of PCDD/
Fs and dl-PCBs, based on World Health Organization 
(WHO) toxicity equivalency factors derived in 2005 (TEF 
2005), and establishing maximum levels for non-dioxin-
like PCBs (ndl-PCBs) [14].

Average PCDD/F and PCB levels have decreased in 
many countries compared to levels in the 1990s, which 
is also reflected in decreasing PCB and PCDD/F levels in 
human milk [15]. Most of the meat and milk samples on 
the European market meet the regulatory limits (EFSA) 
[16].

However, in the past 10  years, PCB contamination of 
meat and eggs has been detected more frequently [17], 
following the inclusion of dl-PCBs in the EU regulation 
in 2006.

Animal feeds and feed additives are major sources of 
dioxin and PCB contamination for food of animal ori‑
gin. Feed incidents have traditionally been the main 
reason for exceeding maximum levels of PCDD/Fs and 
PCBs in food of animal origin [1], such as the Belgian 
PCB and dioxin incident in 1999 [18, 19], the citrus pel‑
let case from Brazil [20, 21], the Irish pork scandal [22, 
23], the Chile pork contamination [24] and the bio-diesel 
incident in Germany [25], which mainly impacted large 
agroindustry farms [2, 26]).

In recent years, sheep (in particular sheep liver) and 
beef [27–29] from free-range production have also 
exceeded the EU maximum limits for the sum of PCDD/
Fs and dl-PCBs, even without specific contamination of 
feedstuffs. Eggs from laying hens housed outdoors are 
particularly sensitive indicators of PCDD/F and PCB 
contamination in soil and can also be a relevant expo‑
sure pathway for humans [17, 30]. This has increasingly 
been recognized in the last decade, resulting in a growing 
number of reports of PCDD/F and PCB contamination 
of eggs [30–34]. The contemporary relevance of this con‑
tamination has recently been demonstrated in a monitor‑
ing study, which found that more than 50% of the eggs 
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from 60 small flocks in the Netherlands exceeded the EU 
maximum limit [31].

In a study initiated by the German Environment 
Agency we assessed the impact of environmental 
PCDD/F and PCB contamination on products of animal 
origin, and evaluated the significance of various sources 
[17]. The study surveyed contaminated soils and feed‑
stuffs linked to food from animal origin that exceeded 
EU maximum PCDD/F and PCB levels, and established 
critical limits for soil contamination. The assessment 
revealed that free-range broiler/eggs and beef cattle from 
extensive farming may get contaminated with dioxin-
like PCB and PCDD/F even when soils display relatively 
low levels previously considered as safe. Therefore, more 
stringent soil standards and emission source control are 
needed. This paper gives an overview of the key findings, 
including a compilation of pollution sources identified in 
surveys and food safety incidents in Germany regarding 
cattle herds or chicken flocks with PCDD/F or PCB levels 
above EU maximum limits. It also reviews the literature 
reporting cases and practical experiences of PCDD/F and 
PCB exposure sources.

The Food and Agriculture Organization of the United 
Nations (FAO) and the Intergovernmental Technical 
Panel on Soils (ITPS) have recently identified soil pollu‑
tion as one of the ten major soil threats listed in the 2015 
Status of the World’s Soil Resources report [35]. Persis‑
tent organic pollutants (POPs) including PCDD/Fs and 
PCBs are among the most relevant soil pollutants [36]. 
There is an urgent need to eliminate pollution sources 
and to control, secure and remediate contaminated sites 
and reservoirs, to reduce exposure and guarantee food 
safety. This compilation of the major PCDD/F and PCB 
sources and their potential pathways to contaminated 
soils and food-producing animals can inform the devel‑
opment of appropriate source monitoring and reduction 
measures.

2 � Results and discussion
2.1 � Relevance of dietary intake to human exposure
Dietary intake is the predominant exposure pathway to 
PCDD/Fs and PCBs. For PCDD/Fs, more than 90% of 
daily intake is due to consumption of food from animal 
origin. For PCBs, indoor dust and air also constitute a 
significant risk to sensitive subpopulations [37, 38]. Dif‑
ferent organisations have undertaken risk assessments 
of dioxins and dl-PCBs and developed a range of health-
based guidance values (HBGV) [39]. In 1998, the World 
Health Organization (WHO) proposed a TDI for PCDD/
Fs and dl-PCBs of 1–4  pg toxic equivalents (TEQ)/kg 
body weight (bw) per day [40]. In 2001, the Scientific 
Committee on Food (SCF) of the EU established a toler‑
able weekly intake (TWI) of 14 pg TEQ/kg bw per week. 

This TWI is in line with the provisional tolerable monthly 
intake (PTMI) of 70  pg TEQ/kg bw per month set by 
the Joint FAO/WHO Expert Committee on Food Addi‑
tives (JECFA) in 2001. For total PCBs, the World Health 
Organization (WHO) derived a tolerable daily intake 
(TDI) of 20 ng PCB/kg bw per day in 2003 (WHO) [41]. 
Currently the European Food Safety Authority (EFSA) 
is reassessing the human health risk related to the pres‑
ence of PCDD/Fs and dl-PCBs in food. The TWI is being 
revised and will likely be reduced [42].

A part of the German adult population still exceeds 
both the current valid TWI of 14 pg TEQ/kg bw for the 
sum of PCDD/Fs and dl-PCBs, and the tolerable daily 
intake (TDI) for total PCBs of 20 ng/kg bw [43]. For chil‑
dren, PCB intake is about 2.5-fold, and for breast-fed 
infants about 50–100 times the adult intake [44], which is 
similar for PCDD/Fs.

2.2 � Exposure of food‑producing animals1 
and accumulation of PCDD/Fs and PCBs

Some types of livestock farming are prone to accumu‑
late PCDD/Fs and PCBs. Kamphues and Schulz [45] 
categorised food-producing animals according to their 
exposure risk to PCDD/Fs in soils. Due to similar phys‑
ico-chemical properties, the environmental exposure 
to PCBs from soils and vegetation (including feeds like 
grass and hay) is similar to that of PCDD/Fs. However, 
the bioaccumulation of PCDD/Fs and PCBs depends on 
congener, species, and tissue. As a result, bioaccumula‑
tion from feed/soil to food of animal origin changes the 
congener patterns considerably [2]. It is possible to deter‑
mine congener-specific rates for the transfer (carry-over 
rates) from soil/feed to livestock products (meat, eggs, 
milk). For congeners critical to EU maximum limits (i.e., 
the TEQ-relevant congeners with major contribution 
from PCB-126 and non-dioxin-like PCB-138, -153, and 
-180), comparable carry-over rates have already been 
determined [46, 47].

This project developed exposure assessments for beef 
cow herds and free-range hens, and further assessed 
exposures for other food-producing animals, depending 
on feeding and housing [17].

To elucidate why maximum levels in livestock prod‑
ucts are exceeded, it is necessary to know the critical 
total daily dioxin/PCB intake for each species that makes 
a specific livestock product (e.g., egg, milk, meat) exceed 
the EU maximum levels. From this information, it is pos‑
sible to derive the dioxin and PCB contamination in the 

1  Exposure and contamination of fish and other aquatic food‑producing 
animals were addressed in the assessment study [34] and will be described 
in another paper, but are not addressed in this publication.
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soil and feed that leads to non-compliance with the EU 
maximum level for the respective livestock product.

Depending on the animal (and the exposure pathway 
and source), PCDD/Fs or dl-PCBs can contribute in vari‑
ous ratios to TEQ. dl-PCBs are often the main contribu‑
tor. For example, in the German federal monitoring plan 
for beef from suckler cow herds, more than 90% of the 
regulatory TEQ exceedances in meat were from dl-PCBs. 
On the other hand, in 60 investigated small free-range 
chicken flocks in the Netherlands, the TEQ contribution 
from PCDD/Fs and dl-PCBs was similar, with a slightly 
higher impact from PCDD/Fs [31].

2.2.1 � Free‑range chickens and eggs
Free-range chickens are particularly prone to environ‑
mental contamination. They take up more soil than other 
farm animals per body weight. A PCDD/F content in the 
feed of 0.4 ng TEQ/kg dry mass (dm), which is at about 
50% of the EU maximum level for feed (0.75 ng PCDD/F-
TEQ/kg 88% dm), is already sufficient to exceed the EU 
maximum level for PCDD/Fs in eggs [46].

Free-range laying hens and broilers ingest on aver‑
age about 11 g and up to 30 g soil per day [46, 48]. Some 
recent studies have shown that dioxin and dl-PCB levels 
in eggs from free-range chickens frequently exceed EU 
food standards of 2.5 pg TEQ/g fat for PCDD/Fs or 5 pg 
TEQ/g fat for the sum of PCDD/Fs and dl-PCBs at soil 
concentrations around 2–4 ng PCDD/F-TEQ/kg dm [17, 
31, 32, 34]. For hens ingesting approx. 30 g soil per day, 
models indicate that soil levels around 2–4 ng PCB-TEQ/
kg can be high enough to reach or exceed the EU stand‑
ards. This is particularly important for flocks of chick‑
ens spending a lot of time outside, given their higher soil 
intake [32]. The average exposure depends on the size 
of the chicken flock, because flock size is related to the 
time chickens spend outside. Flocks with fewer than 500 
hens spend 40% or more of their time outdoors, while in 
farms with more than 10,000 hens the animals are out‑
doors less than 10% of the time [32]. A second variable 
is the strength of bound PCDD/Fs. For sources where 
PCDD/Fs in soils are bound to, e.g., activated carbon, the 
extractability is lower and, therefore, the problematic lev‑
els would be higher.

Therefore, soil—chicken egg is probably the most sen‑
sitive exposure pathway for PCBs and PCDD/Fs from 
soil to humans. People—and especially young children—
consuming contaminated eggs can easily exceed health-
based standards and may be subject to high exposure 
levels. With the consumption of a single hen’s egg (avg. 
7  g fat) per day, a 4–5-year-old child (weighing 16  kg) 
would exceed the TDI of 2 pg TEQ/kg bw, even if the egg 
complied with the EU regulatory limit for eggs of 5  pg 
PCDD/F–PCB-TEQ/g fat. The current regulatory limit 

for soil for residential areas and private estates in Ger‑
many or Netherlands, for example, is 1000 ng PCDD/F-
TEQ/kg dm. Eggs from chickens kept on land with these 
levels of contamination could contain approx. 800  pg 
TEQ/g fat. In this case, a single egg would exceed the 
TDI for a 16-kg child by approximately 175 times. There‑
fore, it is clear that consuming contaminated eggs can 
easily lead to exceeding health-based standards—espe‑
cially for young children. Levels of > 5  ng TEQ/kg  dm 
would certainly be too high and would require either 
that production is stopped or access to free-range areas 
is restricted. Therefore, it has been suggested that soil 
used for the production of free-range eggs should ideally 
contain less than 2 ng TEQ/kg dm both for PCDD/Fs and 
for dl-PCBs. These levels are below all current national 
soil standards but are critical for the safe production of 
free-range eggs and chicken meat. Other pathways also 
need to be considered when assessing PCB and PCDD/F 
exposure sources, including chicken feed and bedding in 
the henhouse (Fig. 1).

2.2.2 � Cattle: in particular beef and veal from suckler cow 
herds

Cattle are particularly sensitive to exposure from envi‑
ronmental PCB contamination [17, 49]. Cattle take up 
PCBs and PCDD/Fs from feed, including from feed con‑
taminated with soil particles (e.g., grass, grass silage or 
hay). Grazing cattle are also exposed to contaminated soil 
during grazing. The amount of soil intake depends on the 
quality of the meadow and amount of grass available. For 
a high-yielding meadow, soil constitutes a minimum of 
3% of the ingested grass mass [10, 50]. A total daily intake 
of a beef cow of approx. 2  ng PCB-TEQ/day from both 
feed and soil might be sufficient for exceeding the maxi‑
mum/upper limits for beef and veal (Fig.  2; [51]), par‑
ticularly when calves are allowed to suckle their mother’s 
milk for several months to a year. Considering an average 
consumption of 10 kg dm of grass/hay with a minimum 
soil content of approx. 3%, meat from these suckling 
calves can exceed the EU regulatory limits at relatively 
low soil levels, below 5 ng PCB-TEQ/kg dm (Fig. 2), com‑
bined with grass/feed levels around 0.15  ng PCB-TEQ/
kg dm. These critical grass levels are considerably below 
the EU regulatory limits for feed of plant origin of 1.25 ng 
TEQ/kg (moisture content of 12%) for the sum of PCDD/
Fs and dl-PCBs [3, 17].

This was confirmed in practice with herds with dl-PCB 
levels that exceed TEQ limits for meat, where no point 
sources could be identified. Thus, relatively low soil lev‑
els (below 5  ng PCB-TEQ/kg  dm) in combination with 
feed levels around 0.15 ng PCB-TEQ/kg dm seem to be 
responsible for non-compliance with EU limits in meat.
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25 beef samples from one herd that exceeded the EU 
regulatory limit for meat were analyzed for PCDD/Fs 
and dl-PCBs ([52]; Fig.  3). dl-PCBs were the main TEQ 
contributor (86% of total TEQ on average). The herd 
was grazing on a former military area with soil levels 
up to 5.6 ng PCB-TEQ/kg dm. Meat samples from beef 
cows (number of samples: 2) had PCDD/F–PCB-TEQ 
levels around the EU maximum level of 4 pg TEQ/g fat, 
whereas most samples from calves and other beef cat‑
tle clearly exceeded the maximum level (Fig. 3). Figure 4 
shows the PCDD/F–PCB-TEQ levels in meat according 
to the age of the slaughtered animal. Samples from suck‑
led calves (age 6–12 months) had about two–three times 
the levels of beef cattle after weaning and feeding on 
grass for several months (Fig. 4). This suggests PCDD/F 
and PCB levels in beef cows are reduced by lactation, 
transferring these contaminants to the calf (similar in 
humans).

2.2.3 � Sheep/goat
For sheep and goat, in principle, the same applies as for 
beef cattle production. The critical levels in feed [53] and 

soil are of the same order of magnitude as for suckler cow 
herds.

Sheep are considered among the most sensitive animals 
[27]. Grazing sheep nip closer to ground surface, and the 
share of ingested soil may be high, up to 20% of forages. 
For dairy sheep, Brambilla et al. [54] computed the carry-
over of PCDD/Fs and dl-PCBs from soil to milk for dif‑
ferent soil intake scenarios. They found that for high soil 
intake, sheep milk may not comply with the EU maxi‑
mum limit for milk (5.5  pg PCDD/F–PCB-TEQ/g fat) 
when the contamination of soil is above 4 ng PCDD/F–
PCB-TEQ/kg dm [54].

Sheep may be exposed to more highly contaminated 
soils because they often graze on areas near rivers or 
industrial sites, along streets, or on former industrial or 
military areas. However, in a German survey [55] the 
percentage of sheep meat above EU maximum levels was 
lower than that of beef from beef cow herds, and criti‑
cal PCB/PCDD/F levels in the soil and grass/feed seem 
to be slightly higher for sheep than for the offspring of 
beef cows. One possible reason for the lower levels in 
sheep meat might be the high accumulation of PCDD/

Fig. 1  PCB and PCDD/F exposure sources for chicken/egg
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Fs and some dl-PCB congeners in sheep liver. Prior to 
the amendment of the EU maximum levels for liver of 
terrestrial animals in 2013, over 90% of sheep livers in 
Germany exceeded the EU maximum levels [55], and 
the Federal Institute for Risk Assessment (BfR) warned 
against consumption [56]. After the amendment of the 
EU maximum limit, only approx. 10% of German sheep 
livers exceed the EU limit.

To protect human health, it is not sufficient to be 
below EU maximum levels for dioxins and dl-PCBs, 
human consumption must also comply with the TWI of 
14 pg TEQ/kg bw. For children in southern Italy, 38% of 
the dietary exposure to dioxins and dl-PCBs is via dairy 
products. For high soil intake of sheep, Brambilla et  al. 
[54] calculated that the TEQ concentration in soil has to 
be as low as 0.74 ng TEQ/kg dm to ensure protection of 
children’s health.

PCBs and PCDD/Fs have also been detected in goat 
products (milk, meat) due to environmental contamina‑
tion [57, 58].

2.2.4 � Pigs
Kamphues and Schulz [45] listed wild boars and pigs 
housed outdoors in the highest PCDD/F exposure cat‑
egory of food-producing animals, together with chicken 
[45]. Because of their feeding behavior, pigs housed out‑
doors and wild boars are at high risk of PCDD/F exposure 
via soil, as they find a large part of their feed on and in 
the soil. However, while there are data showing elevated 
PCDD/F and PCB levels in wild boar (see below), there 
are no reported cases of pigs housed outdoors exceed‑
ing regulatory limits for PCDD/Fs or PCBs. On the other 
hand, cases of pork meat with PCDD/Fs and/or dl-PCBs 
exceeding the EU maximum levels are known from indus‑
trial pork contamination scandals due to industrial feeds 
produced using contaminated materials or ingredients 
[18, 22–25]. In a recent case of PCB contamination in 
pigs, the source was not the soil but an old tank on the 
farm painted with PCB paint flaking off into the area 
where the pigs were housed [59]. Soil PCDD/F or PCB 
levels that may lead to exceedances of EU limits in pork 
meat have not been derived yet.

Fig. 2  Cumulative impact of grass and soil contaminated with dl-PCBs on exceedance of EU maximum levels for the sum of dioxins and dl-PCBs in 
beef and veal from suckling calves. Concentrations above the solid line are critical for beef and concentrations above the dashed line are critical for 
veal from suckling calves [17]
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2.2.5 � Game
It is well known that deer, like sheep and goats, eat the 
grasses and plants very close to the soil, resulting in 
increased uptake of soil particles. Therefore, for deer—
similar to cattle and sheep—the soil next to the feed can 
serve as a relevant PCDD/F and PCB exposure pathway. 
In addition, forest soils, especially in populated areas, 
have a higher PCDD/F and PCB content than grasslands 
due to the adsorption of pollutants via leaves and transfer 
to the topsoil [60]. PCDD/F and dl-PCB levels in liver of 
deer and wild boar in central Europe are generally high 
and are elevated in some meat [17, 61, 62]. In Germany 
the livers of deer (median 45.2 pg PCDD/F–PCB-TEQ/g 
fat) and wild boar (median 50.8 pg PCDD/F–PCB-TEQ/g 

fat) showed very high levels, well over the EU maximum 
level of 12  pg TEQ/g fat applicable to bovine or ovine 
livers up to 2011. The EFSA Panel on Contaminants in 
the Food Chain (CONTAM Panel) concluded that “fre‑
quent consumption of deer liver, especially for high con‑
sumers may be of health concern” and that “frequent 
consumption of sheep liver, particularly by women of 
child-bearing age and children, may be a potential health 
concern” [27]. For wildlife, however, there are no regula‑
tory PCDD/F or dl-PCB limits in the EU.

Critical PCDD/F or PCB levels in soils or vegetation 
have not been derived for game and cannot be related 
to regulatory limits, which are absent for wild animals. 
However, limits exist for meat from deer breeding.
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2.3 � Background levels in German soils and pasture grass
The German EPA [63] analyzed 500 background soil sam‑
ples in Germany. The dl-PCB levels in grassland topsoils 
were a factor of 10–20 below the critical dl-PCB level of 
approx. 5 ng PCB-TEQ/kg dm for free-range beef, and a 
factor 5–10 below critical levels (2–4  ng  dl-PCB-TEQ/
kg dm) for free-range hen eggs.

PCDD/F levels in background farmland soils are higher, 
with a median of 0.5–1.1  ng TEQ/kg  dm depending on 
the carbon content [63]. Nevertheless, they are a factor of 
3–8 below critical levels (2.5–5 ng PCDD/F-TEQ/kg dm) 
needed to contaminate eggs above EU regulatory limits.

dl-PCB background levels in grass in German rural 
areas (median 0.06  ng PCB-TEQ/kg 88% dm) are on 
average a factor of 2–3 below the critical dl-PCB levels 
for beef cow herds of 0.15–0.2 ng PCB-TEQ/kg 88% dm 
(Table  1). The dl-PCB (and PCDD/F) concentrations in 
grass increase with population density. In more popu‑
lated areas (median 0.13 ng PCB-TEQ/kg 88% dm) they 
approach critical levels, while in a city like Munich the 
dl-PCB levels are around 0.4 ng PCB/kg dm (see below; 
[64]).

Thus, levels of PCDD/F or dl-PCB in background soils 
or feed in Germany (a country with high use of PCBs in 
open application) are below critical levels even for expo‑
sure-sensitive animals (chicken/egg or beef cow herds). 
Therefore, specific PCB or PCDD/F contamination of soil 
and/or feed is needed to contaminate food from animal 
origin above regulatory limits. In densely populated areas 
in West Germany the PCB levels in grass already contrib‑
ute a considerable share of the problematic PCB intake 
for beef via feed.

The following sections summarize PCB and PCDD/F 
contamination sources and the levels found in the Ger‑
man survey, and briefly describe the experience of Ger‑
man federal state governments. Additionally, relevant 
information from scientific literature and studies in other 
countries are included, to provide an overview of PCB 
and PCDD/F contamination sources for food-producing 
animals. The study does not address specific contamina‑
tion sources for feed incidents, which have recently been 
addressed in another publication [1].

2.4 � PCB sources with potential relevance 
to food‑producing animals

2.4.1 � Use of PCBs in Germany and air emissions from open 
applications

Germany possesses one of the most detailed assessments 
of past use of PCBs and can, therefore, be used as a case 
study for the use and management of PCBs. In Germany, 
85,000 tonnes of PCBs was marketed in various applica‑
tions: 72,500 tonnes in West Germany and 12,330 tonnes 
in East Germany [65, 66]. The amount of PCB-TEQ can 

be estimated as approx. 425–1000  kg TEQ. This shows 
the potential for environmental and food contamination 
with dl-PCBs, when compared, for instance, with the 
current release rate of PCDD/Fs of approx. 68  g TEQ/
year in Germany and approx. 100 kg TEQ for the yearly 
entire world emission today [67].

In West Germany, 48,000  t of PCBs was used in closed 
applications mainly in capacitors (13,000  t), transformers 
and other electrical equipment (23,000  t), and hydraulic 
fluids (12,500 t) [65]. 24,000 t of PCBs produced by Bayer 
(Clophen mixtures) was used not only in open applications, 
in sealants/caulking, but also in paints/varnishes, cable 
sheaths, adhesives, and other products, and as lubricating 
oil [65]. Of this amount, 20,000 t was used as plasticizer in 
sealants in the construction sector by the Thiokol company 
[68]. Since Thiokol had also imported Aroclor from Mon‑
santo for sealant production, the total PCB amount in open 
applications must be even higher than 24,000 t [68].

In the former East Germany, about 11,000  t of PCBs 
was used in capacitors. 1000  t of PCBs was added as 
plasticizers to PVC paints and PVC sheathing of power 
cables in open application [65].

Considering the estimated stock of 12,000–19,000  t of 
PCBs in buildings and constructions in West Germany and 
an annual evaporation rate of 0.06%, this results in an esti‑
mated 7–12 t of PCB per year emitted from the remaining 
PCBs in open applications [17]. Other PCB emission esti‑
mates, for instance in Switzerland, are also in agreement: 
using air measurements, Bogdal et al. [69] calculated PCB 
emissions for Switzerland of approx. 1.5 t per year. Recal‑
culating the population of West Germany, this would cor‑
respond to an annual PCB emission of approx. 11.4 t. The 
per capita consumption of PCBs in open applications in 
West Germany (375 g/person) was one-third higher than 
in Switzerland (280  g/person) [70]. Therefore, the actual 
West German PCB emissions is expected to be slightly 

Table 1  Levels of  PCDD/Fs and  dl-PCBs in  feed samples 
(grass, hay, grass silage), results of  the  monitoring 
programme in the German State of Baden-Württemberg

Feed/grass
Location of sampling

PCDD/Fs (1996–
2012)

dl-PCBs (2005–2012)

Range Median Range Median

(ng WHO 
(2005)-PCDD/F-TEQ/
kg 88% dm)

(ng WHO 
(2005)-PCB-TEQ/
kg 88% dm)

Rural area 0.03–0.26 0.06 0.05–0.18 0.07

Rural area 0.02–0.31 0.08 0.04–0.21 0.06

Slightly populated area 0.03–0.33 0.09 0.05–0.18 0.10

Populated area 0.03–1.04 0.12 0.07–0.47 0.13

Populated area 0.02–0.42 0.11 0.07–0.37 0.13
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higher, approx. 15 t, and in the order of magnitude of the 
estimated desorbed 7–12  t PCB per year and far higher 
than the official German PCB inventory of 220 kg [71].

Furthermore, PCB-containing buildings and other 
constructions (e.g., bridges, swimming pools, pylons, 
pipelines, dams, ships) from the 1950s to 1970s increas‑
ingly need repair and maintenance work. If mainte‑
nance, repair or demolition measures are not carried 
out in a professional manner, larger quantities of PCBs 
are released uncontrolled into the environment within 
a few days than in the previous decades by desorption. 
In particular, when removing PCB-containing paint and 
anticorrosion coating or cleaning facades with joint seal‑
ants by abrasive blasting, large amounts of PCBs can be 
released and contaminate soils, sediments, water bodies 
and plants [70, 72–77]. This release might even be larger 
than the annual 7–12 tonnes of desorbed PCBs [76].

The German PCB inventory (release of 220  kg/year) 
only considers the emission of unintentionally formed 
PCBs from combustion plants and other thermal sources 
[71] neglecting the PCB release from remaining open 
application. Environmental matrices (soil, air and grass) 

contain almost exclusively PCB–congener profiles of 
industrially produced PCBs. This demonstrates the dom‑
inance of industrially produced PCBs emission sources 
and the low relevance of thermally unintentionally 
formed PCBs, and supports the emission estimate.

Overall, PCB emission and contamination of the envi‑
ronment, including vegetation, e.g., grass or spruce nee‑
dles, have decreased in the last 20 years in Germany [64].

The sources of PCBs for food-producing animals can 
be divided into local sources at the farm or pasture and 
regional sources impacting larger areas (also impacting 
the pasture areas). The PCB sources impact soil to vary‑
ing degrees as exposure pathways (in particular, historic 
contaminations). Contemporary PCB emission sources 
impact grass/feed via atmospheric deposition.

Figure  5 illustrates the life cycle of PCBs [PCB pro‑
duction–use in production (e.g., production of paints or 
transformers)–product use–recycling–end of life] and 
gives information for identifying PCB sources and poten‑
tial entry routes of PCBs into animal products for the 
individual stages of the PCB life cycle (Fig.  5), which is 
detailed in the following paragraphs.

Fig. 5  Life cycle of PCBs showing environmental release sources and exposure pathways for food-producing animals [17]
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2.4.2 � PCB production sites and related contamination 
and exposure

Animals and humans have been exposed to PCBs around 
production sites. The contamination and exposure via 
animal products have been documented for the PCB 
production sites in Anniston/US [78] and Brescia/Italy 
[79]. At the former PCB production site in Michalovce/
Slovakia, high environmental contamination [80] and ele‑
vated human exposure were found up to 70 km in wind 
direction of the plant, with food animals as likely major 
human exposure pathways [81].

For some sites, no information on contamination is 
available at all. At the East German PCB production site 
(Deutsche Solvay Werke, Westeregeln), the factory was 
destroyed by a major fire on 15 January 1961 [82, 83]. The 
PCB and PCDF releases from this fire could have been 
substantial and contamination might be relevant, but no 
assessment has been reported. Also for the large produc‑
tion of the Bayer Company in Leverkusen in West Ger‑
many no documentation of associated impact has been 
published.

2.4.3 � Industries having used PCBs and related 
contamination

Some manufacturing industries used PCBs for the pro‑
duction of transformers, capacitors, paints, sealants, 
flooring, paper or textiles. Such companies have used 
PCBs in the 100–1000 tonne range, with associated 
releases and contamination. In two factories in East 
Germany, manufacturing capacitors containing PCBs, 
approx. 580  t of PCBs from the 11,243  t used in pro‑
duction has been lost during handling [65]. A company 
producing PCB-containing carbonless copy paper has 
released more than 50  t of PCBs into the environment 
[84]. These released or disposed tonnes of PCBs at such 
sites impact the surrounding.

Hen eggs sampled from two private chicken holders 
(Teningen/southwest Germany) close to a capacitor fac‑
tory producing PCB containing capacitors for some time 
were highly contaminated with dl-PCBs. PCB levels in 
eggs were approx. 25  pg PCB-TEQ/g fat at both loca‑
tions  and thus five times above regulatory limits. Soil 
levels in these areas were six–ten times above German 
background levels of approx. 0.5  ng PCB-TEQ/kg  dm 
[63]. Also, fish were analyzed in the receiving water from 
the capacitor company, which was used by the local fish‑
ing association. One eel sampled contained a high dl-PCB 
level of 259  pg TEQ/g fresh weight [85]. With a 200  g 
portion of the eel, an adult would ingest a PCB-TEQ dose 
equal to the tolerable intake for 1 year. For a child (16 kg), 
a 100-g portion contains as much TEQ equal to a toler‑
able intake for 2.2 years. Despite the known contamina‑
tion potential of the factory and the consumption of fish 

from the direct receiving waters, no assessment of food-
producing animals has been conducted for more than 
30 years.

In Switzerland, another capacitor factory disposed 
capacitors to a landfill. The capacitors corroded, released 
PCBs over decades, and contaminated a river and its fish 
up to a distance of approx. 40  km downstream of the 
landfill [86, 87].

These cases highlight the need for monitoring current 
pollution from factories that used tonnes of PCBs in the 
past, as well as determination of  contaminant levels in 
animal-derived foods in the surrounding area.

2.4.4 � Industries having used PCB‑containing equipment 
and related contamination

A range of industries have used PCB-containing equip‑
ment or PCB oils. This includes, for example, companies 
operating the electricity grid and high-energy-consum‑
ing industries such as steel/metal production and power 
plants. Contamination can occur where transformers are 
operated or receive maintenance and where old trans‑
formers, equipment with hydraulic fluid and other PCB-
containing equipment are stored.

The inventory of a primary steel plant in Austria 
revealed that 106 t of PCBs has been used in transformers 
and capacitors at this location [88]. At another large steel 
plant in Italy, 1000 transformers were in operation. Such 
PCB containing transformers have an estimated average 
yearly leakage rate of 0.06–0.3  kg/t [9, 89]. Around the 
Italian steel plant, PCB (and PCDD/F) contamination of 
cattle (meat, milk) above EU regulatory limits had been 
discovered, which led to 1600 sheep/goats needing to be 
destroyed. The PCB soil contamination (average 3.3  ng 
PCB-TEQ/kg dm within the 5 km zone; maximum 25 ng 
PCB-TEQ/kg dm) [90–92] stems mainly from the historic 
fugitive PCB emissions of the PCB-containing equipment 
on-site [93]. Grazing cattle are now banned on a radius of 
20 km around the steel plant [90–93].

Also, industries treating, cutting or pressing metals 
have used PCB-containing metal working fluids such as 
cutting oils [94]. PCBs have been released from this open 
application and metal residues containing such oils have 
most likely ended up in sinter plants that recover metal 
waste, leading to further environmental releases.

Secondary smelters release PCBs not only from operat‑
ing equipment but also from metal scrap containing PCB 
paints and anticorrosion coatings, (small) capacitors or 
other metal scrap contaminated with PCBs. A secondary 
metal smelter in Switzerland was responsible for the con‑
tamination of a river and its fish [87].

Egg monitoring conducted by the International POPs 
Elimination Network (IPEN) detected high TEQ levels 
(dl-PCB and PCDD/F) in eggs around metal industries, 
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with more than 90% of eggs exceeding the EU regulatory 
limits for food [30, 34, 95].

PCBs have also been used in military applications 
(hydraulic oils, transformers, paints for equipment/vehi‑
cles and sealants) [17, 73, 96–98]. One of the contami‑
nated beef herds in the German monitoring study was 
grazing on a rehabilitated military area [17, 29]. PCB con‑
tamination has also been reported from US/NATO bases 
[96, 97].

PCBs were also used in large volumes in the mining 
industry as hydraulic oil. In Germany, from the approx. 
12,500 tonnes of PCB used in mining, only 5% has been 
managed appropriately, and the remainder has been 
released into the mines [65, 99]. PCBs leak into riv‑
ers from pumped water. In the German mining areas in 
North Rhine-Westphalia and Saarland, high levels of 
PCBs in fish have been documented, and eel was deemed 
unfit for human consumption [100, 101]. Beef and 
sheep on some flood plains in North Rhine-Westphalia 
exceeded the EU regulation limit [17, 49]. These PCBs 
in sediments and flood plains originate also from other 
sources in addition to mining, including large chemical 
industries [102, 103], metal industries (most likely), and 
open applications impacting grass and other fodder via 
atmospheric deposition [17].

2.4.5 � PCB use in open applications and related 
contamination

2.4.5.1  Direct exposure to PCBs in stables and on farms  PCBs 
have been used also on farms in paints, coatings and sealants. 
Open use of PCBs in fodder silos was a major food contami‑
nation pathway of cattle/milk detected in the 1970/80s [99, 
104]. However, cases of meat and egg2 contamination above 
EU regulatory limits from open PCB uses on farms were 
recently discovered in Europe:

•	 PCB paint in silos, on asbestos roofs and PCBs in a 
rubber conveyor belt have contaminated chicken/
eggs and beef [17, 105, 106].

•	 PCB paint/coating on a metal surface has contami‑
nated pork meat [59].

•	 PCB paints on the walls of a stable contaminated a 
beef herd [107].

This demonstrates that PCBs in open applications, in 
particular in paints, are still present in stables and in the 
surrounding area and are of contemporary relevance to 
food-producing animals.

2.4.5.2  PCB release from  open application during  con-
struction/maintenance work  PCBs can be released 
into the environment due to improper handling of PCB-
containing materials, during demolition, removal, refur‑
bishment or maintenance of buildings and construc‑
tions, in particular when surfaces are treated by abrasive 
(sand) blasting. In 2015, PCB contamination of the river 
Elbe was caused by the inappropriate removal of paints. 
Despite enclosure of the working area, approx. 330  kg 
PCBs was released into the river Elbe. PCB-contaminated 
sediments moved downstream and reached the Port of 
Hamburg (distance of 500 km) [75]. In Norway, the sand‑
blasting of PCB paint on a bridge released 1650 kg PCBs 
to the marine environment and heavily contaminated the 
sediments [73].

Releases from paints and sealants are also contaminat‑
ing the terrestrial environment. Releases from buildings 
[Herrick et al. 2007; 76], pylons [108] and road marking 
[73] have also resulted in soil contamination [17].

The Swiss experience revealed that, even though the 
working area during removal of anti-corrosive coatings 
was securely enclosed, 5–10% of the coating was lost [70, 
72].

2.4.6 � Recycling of PCB‑containing oils and wastes 
and related exposure

PCB-containing oils in transformers and capacitors were 
not always properly handled and disposed. For Ger‑
many, it was estimated that 30–50% of PCBs in closed 
applications were not appropriately managed [65]. PCB 
oil can enter oil recycling cycles and has in some cases 
contaminated feed and related meat and other animal 
products. The largest and most costly PCB/dioxin food 
scandal (approx. 1 billion US$) occurred in Belgium in 
1999, when PCB oil was accidentally added to a stock of 
recycled food fat used in the production of animal feeds. 
Meat and eggs from more than 1500 farms were impacted 
[18, 19]. Another large meat contamination case resulted 
from thermal recovery of PCB-contaminated oil for dry‑
ing of animal feed. Irish pork meat got contaminated and 
had to be recalled, with an associated damage of 100 mil‑
lion US$ [22, 23].

Still, 14 million tonnes of PCB-contaminated oil and 
equipment exists worldwide, in particular in developing 
countries [109]. Such oils are partly recycled in an uncon‑
trolled manner [110], leading to high-exposure risk.

2.4.7 � Exposure of food‑producing animals to PCBs from 
waste treatment and contaminated soils

At the end of life of PCB-containing products and mate‑
rials, considerable amounts of PCBs have been released 
and have contaminated the environment, especially soils 
[9, 65]. Our survey in Germany discovered contamination 

2  If an egg is above the EU regulatory limit, also the chicken meat is above 
the regulatory limit.
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of beef or sheep meat from a range of sources related to 
soil contamination [17]:

•	 Application of sewage sludge in the 1960s–1970s 
contaminated with PCBs.3 Sites where such sludge 
was disposed can have elevated PCB (and PCDD/F) 
levels [111]. At a German reference site, sew‑
age sludge has been applied on soil yearly since the 
1950s. In the 1950s, PCB levels were low (< 0.5  ng 
PCB-TEQ/kg  dm). PCB-TEQ strongly increased at 
the end of the 1960s/early 1970s to around 4.5  ng 
PCB-TEQ/kg  dm [111], when PCBs in open appli‑
cations were at their peak use. At a German pasture 
that had been treated with sewage sludge up to the 
1960s  and  1970s, soil levels were up to 33  ng PCB-
TEQ/kg dm, causing elevated dl-PCB levels in sheep 
liver in a herd grazing on that meadow as well as on 
uncontaminated pastures [112].

•	 Contaminated sediment deposits on agricultural 
land: at a pasture land where sediments were dis‑
posed in the past, dl-PCB levels were 3.9–6.4  ng 
TEQ/kg dm and meat of a beef cattle herd grazing on 
the land exceeded the EU regulatory limit [52].

•	 Construction debris from buildings can be contami‑
nated with PCBs and is partly used for landscaping. 
Such debris was also used on farm land (e.g., for farm 
tracks), scattered and incorporated into soil of pas‑
ture area, contaminating the cattle [17].

•	 Scrap yards are potentially PCB-contaminated areas 
[113]. Highest contamination can be expected for 
sites used to store PCB equipment. However, “nor‑
mal” scrap yards are also impacted to some extent 
by PCB-contaminated scrap. In the German study, 
one beef herd was contaminated by PCBs transferred 
from the former scrap yard by horse dung stored at 
the site, leading to PCB contamination of the pasture 
land and the cattle [17].

•	 Shredder plants: the release of PCBs from metal 
shredders remains high. Biomonitoring of rye grass 
around three shredder plants in Bavaria/Germany 
showed high levels, up to 130 ng TEQ/kg dm close to 
the shredder and up to 20 ng TEQ/kg dm outside the 
plant area. All samples were considerably above EU 
regulatory limits for feed (1.25 ng TEQ/kg dm) and, 
therefore, unfit for food-producing animals [114].

•	 Landfills where partly PCB-containing waste had 
been disposed: a considerable share of PCBs has been 
disposed to landfills, in Germany and elsewhere. 

Areas around landfills can have elevated PCB levels. 
Chicken eggs from two herds (pooled egg samples) 
close to the hazardous landfill Eyller Berg had twice 
the regulatory limit (10.4 and 8.7 pg TEQ/g fat), with 
major contribution from dl-PCBs. dl-PCBs in soils 
around the landfill were between 3.1 and 6.6 ng PCB-
TEQ/kg dm [115]. This is six–ten times above back‑
ground dl-PCB levels of German pasture land soil 
[63], and is sufficiently high to explain the contami‑
nation levels in the eggs (see above).

•	 River floodplains: in the past, PCBs and other POPs 
have been deliberately released into rivers as a means 
of “waste management”, leading to sediment contam‑
ination [102, 103, 116, 117]. During flooding events, 
contaminated sediments are translocated to river 
floodplains [118, 119]. In recent years, floodplains of 
rivers with historic industrial inputs were identified 
as a possible PCB and PCDD/F exposure pathway for 
dairy cows and beef in Germany and the UK [120–
122]. dl-PCB levels in soils of floodplains of several 
rivers in Germany were unfit for cattle grazing or for 
chicken/egg production [3], and caused contamina‑
tion of beef and sheep meat [17, 120].

•	 Open burning: in the Campania region in Italy, large 
amount of wastes have been dumped and burned in 
the open. Concentrations of the six indicator PCBs in 
milk from sheep in the region exceed the European 
maximum residue limit [123], indicating that the 
dump sites partly contained PCB oils.

2.5 � Sources and entry routes for PCDD/Fs and other 
unintentional POPs

Article 5 of the Stockholm Convention requires to reduce 
and, where feasible, eliminate releases of unintentional 
POPs, including PCDD/Fs, polychlorinated naphtha‑
lenes, PCBs, and hexachlorobenzene. Since PCDD/Fs are 
formed in most processes together with the other unin‑
tentionally formed POPs (UPOPs), they are used as indi‑
cators for inventories and release reduction efforts for all 
UPOPs [9]. However, some processes of the organochlo‑
rine industry form specific unintentional POPs such as 
PCBs, PCNs or HCB (see below).

Article 6 of the Stockholm Convention requires the 
Parties to the Convention to develop an inventory of 
potentially POP-contaminated areas. Due to this require‑
ment and due to the relevance of historical pollution of 
soils, sediments and other reservoirs, the UNEP “Toolkit 
for Identification and Quantification of Releases of Diox‑
ins, Furans and Other Unintentional POPs under Article 
5 of the Stockholm Convention on Persistent Organic 
Pollutants” [9, http://toolk​it.pops.int/] contains a chapter 

3  PCB contamination in sewage sludge decreased in the last decades [34, 
107]. Today PCB-TEQ concentration is around 6 ng TEQ/kg dm in Switzer‑
land and less in Spain and Germany [107] which has minor relevance to soil 
contamination.

http://toolkit.pops.int/
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for inventory development of PCDD/F and other unin‑
tentional POP-contaminated sites and hot spots (http://
toolk​it.pops.int/Publi​sh/Main/II_10_HotSp​ots.html).

2.5.1 � Historic and current release of PCDD/Fs in Germany 
and impact on soils

In Germany, over the last 200 years, PCDD/Fs in quanti‑
ties of several 100 kg to tonnes PCDD/F-TEQ have been 
released into the environment, with the largest releases 
in the 1940s–1980s from the chlorine and organochlo‑
rine industry [6, 8, 124, 125]. For one pesticide factory 
with a detailed PCDD/F inventory of disposed waste, the 
PCDD/F-content in waste deposits to landfills was esti‑
mated as 333–856 kg TEQ in 53–102 tonnes total sum of 
PCDD/PCDF [6], which can be compared to the global 
release of approx. 100  kg TEQ/year from 196 coun‑
tries today [67]. As early as the nineteenth century, the 
first chemical factories producing soda (Na2CO3) from 
sodium chloride via the Leblanc process, along with 
bleaching powder from waste HCl, had high PCDD/F 
releases. For a single Leblanc factory operated from 
1840s to 1893, soil assessments indicated a contamina‑
tion reservoir of 1–10 kg TEQ in the soils [126].

Dated sediment cores from Central European lakes show 
that the largest amounts of PCDD/Fs were released into 
the environment in the 1960s and 1970s, and decreased 
by more than 80% until the 1980s [124, 127–129]. A simi‑
lar time trend has been observed in Japan, with highest 
PCDD/F release in the 1960s and 1970s [130] and peak 
contamination in ocean sediment cores in the 1980s due to 
a lag of more than a decade for the migration of PCDD/Fs 
from agricultural soils to ocean sediments [131].

This is confirmed by a German long-term soil study 
(over a period of 42  years) of PCDD/F and PCB levels 
in test fields that were continuously treated with sewage 
sludge or mineral fertilizer [111]. In the 1960s, 1970s and 
into the early 1980s, the PCDD/F levels in the soil treated 
with sewage sludge continuously increased and remained 
at about the same level without further increase since the 
early 1980s up to 2001 [111]. The PCDD/F levels of the 
soil treated with sewage sludge were about 8–12 ng TEQ/
kg dm and approximately 10–20 times the present back‑
ground levels in arable soils in Germany [63].

These legacies are now stored in soil, sediments and 
other reservoirs, such as landfills and contaminated sites 
[8, 116, 132]. The PCDD/F (and PCB) pollution is ubiq‑
uitous in soil and sediments. Soil contamination levels 
highly depend on historical deposition (e.g., industrial 
point sources, flood plains, agglomeration areas, sludge 
entry areas, special contaminated sites). PCDD/F levels 
in soil range from less than 0.5  ng TEQ/kg dm  (lower 
background pollution level) to 100,000  ng TEQ/kg  dm, 

(e.g., contamination from the Leblanc processes) [126], 
and up to several million ng TEQ/kg dm  where waste 
containing residues from chloralkali industries that used 
graphite electrodes in the production process was dis‑
posed [133].

After 30 years of release reduction, today’s atmospheric 
emission of PCDD/Fs in Germany is estimated at about 
68 g TEQ/year [10]. This emission level is of minor rel‑
evance, since it lies in the sub-percent range of the stored 
PCDD/F soil load and thus contributes little to the total 
dioxin inventory and leads to no significant air pollution. 
The same is true for other industrial countries, which 
have reduced PCDD/F release from industrial sources 
over the last decades.

Re-emission/secondary emission rates of PCDD/Fs 
from soil and other reservoirs into the air seem to be low 
compared to the current primary emission of 68 g TEQ/
year. This can be derived from the annual seasonal cycle 
of the atmospheric PCDD/F concentration: PCDD/F lev‑
els in the air are highest in winter resulting mainly from 
increased heating. However, desorption from soils and 
other reservoirs into the atmosphere would be expected 
to be highest in the warm summer months when atmos‑
pheric levels are the lowest [134, 135].

For livestock with outdoor access, soil is the main 
exposure pathway to environmental PCDD/F. Compared 
to the PCDD/F reservoirs in soils, which largely reflect 
the high historic contamination, the current atmospheric 
PCDD/F release and deposition in Germany and other 
countries with emission regulations in place is of minor 
importance for the exposure of livestock and humans 
via food consumption. In addition, feed and bedding can 
lead to PCDD/F contamination for all livestock [1, 18, 
136]; Fig. 1).

As described above, free-range hens and broilers 
are sensitive to PCDD/Fs exposure from soil, and low 
PCDD/F levels in historically impacted soil (from about 
3 ng TEQ/kg dm) may lead to exceedance of the EU regu‑
latory limits for chicken/egg. The critical soil contamina‑
tion is only about three times higher than the PCDD/F 
background content [63] and is well below the German 
regulatory limits for soil (100  ng TEQ/kg dm for play‑
grounds and 1000  ng TEQ/kg  dm for residential areas; 
BBodSchV), and even below the 5 ng TEQ/kg dm in soil 
suggested by the former  Bund/Länder Working Group 
DIOXINE [137] as safe level.

For dairy cows, a higher threshold for PCDD/Fs in soil 
may be set. The critical level for milk production can 
be estimated to be between 17 and 5.3  ng TEQ/kg  dm, 
depending on the cow’s soil intake (3–10%), which in 
turn depends on the quality of the pasture and the con‑
tamination of grass silage by soil [17].

http://toolkit.pops.int/Publish/Main/II_10_HotSpots.html
http://toolkit.pops.int/Publish/Main/II_10_HotSpots.html
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The sources of PCDD/Fs for food-producing animals 
can be divided into local sources at the farm or pasture 
and regional sources impacting larger areas (also impact‑
ing pasture areas).

The following sections provide an overview of the main 
PCDD/F emission/exposure sources that have resulted 
in contamination of food products from animals. The 
relevance to the exposure of food-producing animals is 
demonstrated by practical examples. Systematic assess‑
ments of these source categories at most sites have not 
been conducted and contamination is often detected by 
chance.

PCDD/F contamination sources are structured accord‑
ing to the list in the UNEP “Toolkit for Identification and 
Quantification of Releases of Dioxins, Furans and Other 
Unintentional POPs under Article 5 of the Stockholm 
Convention on Persistent Organic Pollutants”, starting 
with the most important sources for the historically high‑
est burdens that have often led to PCDD/F-contaminated 
sites [9].

2.5.2 � Chlorine‑producing industries (UNEP Toolkit category 7)
2.5.2.1  Chloralkali electrolysis  The production of chlo‑
rine by chloralkali electrolysis using graphite electrodes, 
which started in the 1890s, has generated large amounts 
of PCDD/Fs in waste sludge [9, 133, 138, 139]. Since the 
1970s’ graphite electrodes have largely been superseded 
by metal electrodes, PCDD/F releases have greatly been 
reduced [9]. The detailed assessment of a chloralkali plant 
operating since 1890s in Rheinfelden/Germany revealed 
an inventory of 8.7 kg TEQ in landfills and soils [133]. The 
historic deposits have been partly remobilized and dis‑
tributed during city development over nearly a century, 
resulting in the need for detailed mapping of PCDD/F 
pollution in the entire city [133]. Studies of eggs in the 
1990s showed the highest levels ever reported (up to 
514 pg I-TEQ/g fat) [140]. The eggs were 200-fold above 
the current EU maximum level of 2.5 pg PCDD/F-TEQ/g 
fat. Eggs produced 2.5 km from a chloralkali and pesticide 
production site had PCDD/F levels 16 times above EU 
regulatory limits [30].

2.5.2.2  Leblanc process and related processes  The Leb‑
lanc process was used to make soda from 1790 until the 
beginning of the twentieth century. These facilities pro‑
duced large amounts of HCl that led to environmental pol‑
lution [4, 126]. The HCl was recovered in some factories 
and chlorine/bleaching was produced via the Deacon or 
manganese process. In Lampertheim/Germany, high lev‑
els of PCDD/Fs, polychlorinated naphthalenes and heavy 
metals were found on the grounds of a former Leblanc 

facility [126, 141]. The PCDD/F reservoir in Lampertheim 
is estimated at 1–10 kg TEQ. The people living on the site 
had elevated levels of PCDD/Fs in the blood, with the 
typical PCDD/F profile of the contaminated site [126]. It 
was not determined whether PCDD/Fs were taken up via 
livestock or vegetables or another pathway.

There were about 15 Leblanc production sites in Ger‑
many and at least 70–100 Leblanc factories were oper‑
ated in Europe during the nineteenth century, mainly in 
Great Britain, France and Germany [4]. An investigation 
of the potential PCDD/F contamination of the former 
production sites and surrounding areas, including live‑
stock, has not been conducted or documented.

2.5.3 � Production of organochlorines (UNEP Toolkit category 7)
The highest PCDD/F emissions and reservoirs stem from 
the (former) organochlorine production. Releases from 
the production and landfilling of waste from the organo‑
chlorine industry were partly in the kg TEQ range, and 
up to 100 kg TEQ for individual productions [6, 8, 133, 
142–145]. A detailed inventory of such waste has only 
been developed for a few factories. The landfilled chemi‑
cal waste from a pesticide factory in Hamburg contains 
333–854 kg TEQ, mainly from the production of 2,4,5-T 
and HCH recycling (decomposer process) [6]. Another 
inventory has been established for the pentachlorophe‑
nol (PCP) production in Rheinfelden, with an estimated 
7.7 kg TEQ in disposed residues. An inventory of PCDD/
Fs has also been developed for a major landfill of wastes 
from the Basel Chemical Industries, with an estimated 
content in the 10-kg TEQ range [143, 146]. Soils in the 
cities of Hamburg and Rheinfelden were contaminated 
to a considerable extent [133, 147]. In Brazil, organochlo‑
rine production has led to the contamination of a larger 
area, including soils and food [148]. Eggs produced close 
(2.5 km) to an organochlorine production facility in Rus‑
sia were 14 times above the EU limit [30]. Contamination 
of food-producing animals has been documented also for 
some other organochlorine production sites [20, 21, 30, 
133, 140, 149].

PCDD/Fs and other UPOPs are formed in the pro‑
duction of PVC (especially in ethylene dichloride (EDC) 
synthesis) [9, 21]. PCDD/F contamination, including 
environmental pollution, has been documented at some 
production sites [150–152]. Chicken eggs sampled close 
(2  km) to a petrochemical industrial facility producing 
vinyl chloride monomer/EDC and PVC in Mexico had 
PCDD/F levels six times above the EU limit [30]. Lime 
recovered from an organochlorine industry landfill  in 
Brazil, highly contaminated by PCDD/Fs from EDC 
catalyst, contaminated citrus pulp pellets sold as animal 
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feeding stuffs to the European Union, thus contaminating 
cow milk [20, 21].

The production of chlorinated solvents (e.g., tetra‑
chlorethylene, trichlorethylene, carbon tetrachloride) 
has contaminated numerous sites with UPOPs [153–
156]. Solvent production waste contains high levels of 
several UPOPs, including hexachlorobenzene (HCB), 
hexachlorobutadiene (HCBD), polychlorinated naph‑
thalenes (PCNs) as “HCB waste” [9, 156–158]. PCDD/
Fs are rather a minor contaminant in these wastes [159]. 
The recent treatment of such “HCB waste” in a cement 
kiln at too low temperature released part of the HCB 
and contaminated 332 farms and humans in Austria, 
resulting in the destruction of approx. 300 cattle, 800  t 
of milk and 40,000  t of contaminated fodder [160–162]. 
The unsound management of “HCB” waste from Ukraine 
at a Polish waste incinerator, including disposal of ash, 
likely resulted in environmental contamination [163]. An 
assessment of the impact on the environment and food-
producing animals has not been conducted or published.

In industrialized countries, wastes that are highly con‑
taminated with PCDD/Fs and other UPOPs have been 
burned by some companies since the 1950s, and by most 
companies since the 1970s. However, in the last 30 years 
organochlorine industries have moved to developing and 
transition economies, such as China and India, where 
companies often face major challenges in managing 
wastes and environmental contamination [164–167].

2.5.4 � Use of PCDD/F‑contaminated organochlorines (UNEP 
Toolkit category 7)

The use of pesticides and other organochlorines con‑
taining PCDD/Fs (e.g., chloranil, PCP, PCBs, 2,4,5-T, 
chloronitrophen (CNP) [168–170] has led to PCDD/F 
contamination of the environment and livestock [8, 18, 
171, 172].

The agricultural use of pesticides that contained 
PCDD/Fs as an impurity [e.g., 2,4-D, 2,4,5-T, PCP, CNP, 
pentachloronitrobenzene (PCNB)] was one of the most 
important PCDD/F release sources to the environment. 
Due to the use of contaminated PCP (pentachlorophe‑
nol) and CNP (chloronitrophen) in the 1950s–1980s, 
approx. 460 kg TEQ has been released into rice fields in 
Japan, resulting in soil dioxin levels of 30–330 ng TEQ/
kg dm [173, 174], considerably above safe levels for rais‑
ing cattle or producing milk. Some pesticides previously 
used in agriculture in Germany were also contaminated 
with PCDD/Fs, however, at lower levels [170] compared 
to those used in Japan [130, 169]. A survey of PCDD/Fs 
and PCBs in agricultural soils in Germany shows rela‑
tively low levels [63], indicating low-PCDD/F input on 
agricultural land from pesticide use. However, PCDD/F 

levels in garden soils in a survey in south Germany (e.g., 
up to 74  ng TEQ/kg  dm) indicated that PCDD/Fs have 
been released to these soils. In addition to pesticides, 
other likely sources include PCP use on wood in gardens, 
ashes from uncontrolled waste incineration in domestic 
heating systems, and backyard burning. The  PCDD/F 
congener profile in soils and chicken eggs is similar to 
the PCDD/F congener profile in technical grade PCP [17, 
111, 124].

The use of PCP for the treatment of wood, leather 
or textiles and in agriculture is likely one of the largest 
dioxin reserves in the technosphere and in the environ‑
ment. The release of PCDD/F from PCP use in rice fields 
in Japan was approximately 460  kg TEQ [8, 130]. The 
Swedish historical dioxin inventory indicates that the 
amount of dioxin input by impregnation with the wood 
preservative PCP was 200 kg TEQ in treated woods and 
5–50  kg TEQ in soils at the treatment sites [175]. The 
PCDD/F burden in Queensland/Australia (above all 
OCDD) arising from the historical use of PCP is also in 
the tonne range [5]. This shows the order of magnitude 
of the former applications and the potential current res‑
ervoir. The relevance of PCDD/F release from PCP use 
can also be deduced from the congener profiles in sew‑
age sludge and soils. For example, until the 1990s sewage 
sludge in Germany, Switzerland or Spain had a PCDD/F 
congener profile almost identical to that of PCP dem‑
onstrating the high impact from PCP [124, 176, 177]. 
Also, the PCDD/F congener profile in soil and sediment 
was characterized by PCP [111, 124]. A large amount of 
OCDD was additionally formed from PCP by condensa‑
tion in the environment [178, 179].

The impact of PCP-treated wood in stables on dioxin 
exposure of cattle was demonstrated in a study led by 
the US Department of Agriculture (USDA) in 2004: out 
of 158 cattle examined, about 20% had PCDD/F levels 
in meat above 4 pg TEQ/g fat (8–58 pg TEQ/g fat). All 
of these cattle where housed in stables with PCP-treated 
wood, and the PCDD/F profile in the meat correlated 
with that in PCP [172, 180]. Also, chicken eggs in farms 
in Germany and Poland were recently contaminated from 
PCP-treated wood or contaminated soil [17, 181]. In 
Italy, eggs were contaminated above the regulatory limit 
due to wood shavings from PCP-treated wood used for 
animal bedding [171]. The incineration of PCP-treated 
wood for drying of feed also resulted in contaminated 
feed and food [18].

In recent years, PCDD/F contamination levels in 
2,4-D used in industrial countries seem low (0.12–1.8 ng 
TEQ/kg) to moderate (160 ng TEQ/kg) [168]. However, 
there are large differences in the PCDD/F concentra‑
tion in 2,4-D, depending on the quality of production. 
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Concentrations up to 18,500 ng TEQ/kg have been docu‑
mented [9]. Therefore, developing countries using low-
grade pesticides might still be impacted.

2.5.5 � Industries using chlorine (UNEP Toolkit categories 2 
and 7)

Chlorine-using or formerly chlorine-using industries, 
such as industries producing paper, magnesium, alu‑
minium or titanium dioxide, have a high PCDD/F emis‑
sion potential. For example, the historical emission 
inventory of a single Norwegian magnesium production 
plant was estimated at 50 to over 100 kg TEQ [182]. For 
the German magnesium/titanium productions in Bit‑
terfeld, Staßfurt and Aken, high historical emissions 
have been documented, which have led to contamina‑
tion of the Mulde, Bode, Saale and Elbe river basins, the 
Port of Hamburg, and a corridor in the North Sea [116, 
183–185]. Alluvial soil on flood plains along 400  km of 
the Elbe river has been contaminated with high levels 
of PCDD/Fs. Levels in topsoil were frequently approx. 
1000 ng TEQ/kg dm and livestock grazing on flood plains 
were contaminated with PCDD/F above regulatory limits 
[122, 186–190]. Soil core layers had levels up to 7000 ng 
TEQ/kg dm [191].

Titanium dioxide production via titanium chloride 
using elemental chlorine also has a PCDD/F and PCB 
emission potential [9, 192], and has led to unintentional 
PCB pollution in the Delaware River [193, 194].

Paper production with elemental chlorine has his‑
torically led to significant PCDD/F pollution [9, 138, 
195]. PCDD/F releases were mainly via wastewater and 
sludge. Sludge residues from paper production have con‑
taminated soils [195, 196]. In one case in Germany, the 
application of sludge from paper production resulted in 
PCDD/F levels in the soil up to 150 ng I-TEQ/kg dm, and 
up to 5165 ng I-TEQ/kg dm in the applied paper sludge 
material [195].

The historical burden due to polluted sludge disposal 
and waste from the (former) chlorine industries has not 
yet been systematically investigated in Germany and 
other countries [8].

2.5.6 � Waste incineration (UNEP Toolkit category 1)
Waste incineration plants were another important dioxin 
emission source. Before appropriate air pollution con‑
trol and best available techniques (BAT) were required, 
individual incinerators had an annual PCDD/F release of 
up to 100 g TEQ/year [197]. These high PCDD/F emis‑
sions from waste incinerators in the 1970s to 1990s led 
to contamination of meat and milk in their surroundings 
[198, 199]. For soils in the vicinity of a hazardous waste 
incineration plant in Great Britain, the levels were up to 
58  ng TEQ/kg  dm [200, 201] and for a US incinerator 

up to 450 ng TEQ/kg dm [202]. The PCDD/F release of 
a French incinerator contaminated 365 farms and 6875 
livestock, which needed to be destroyed along with 
2230 t of milk and 9000 t of hay [203].

After the introduction of emission limits and air pol‑
lution control in industrial countries  in the 1990s, BAT 
waste incinerators are no longer significant sources of 
atmospheric PCDD/F emission [10]. For instance, in 
Germany, the dioxin release from waste incinerators into 
air  was reduced from 400  g TEQ/year in 1990 to about 
2 g TEQ/year today.

In developing and transition countries, standards and 
monitoring capacity are often lacking and PCDD/F emis‑
sions from waste incinerators continue to increase with 
increasing overall incineration capacity. In a recent moni‑
toring of eggs sampled close to incinerators in an Asian 
country, PCDD/F levels were 4 and 11 times above EU 
maximum limit [95, 204].

The total PCDD/F emissions from incinerators are 
sometimes underestimated by short-term measurements 
normally conducted during stable operation. However, 
during the start-up and unstable combustion periods, 
even state-of-the-art incinerators emit PCDD/Fs in stack 
gases at concentrations that are up to 1000 times higher 
than under  normal operation [205–207]. Therefore, 
incinerators and other continuous sources with variation 
in PCDD/F release into air are better assessed and con‑
trolled by long-term sampling [206].

Furthermore, large quantities of dioxin-contaminated 
ashes (in particular filter ashes) in the order of kg TEQ/
year are still generated in Europe. In central Europe, 
these ashes are disposed mostly in former  salt mines in 
Germany but also on a Norwegian island. (Historical) 
improper use of such filter ashes has led to PCDD/F con‑
tamination of soils unfit for livestock [208, 209]. In devel‑
oping and transition economies, ash management is a 
challenge. A recent study has documented environmen‑
tal pollution and food contamination from incineration 
ashes in developing countries [210].

2.5.7 � Metal industries (UNEP Toolkit Category 2)
In addition to incinerators, the metal industry is the 
most important historic thermal source of PCDD/F 
emissions [211]. In the IPEN survey, eggs sampled 
near metal industries in developing countries were 
frequently several fold above EU regulatory limits [30, 
95]. The most contaminated eggs in the IPEN survey, 
42 times above the EU regulatory limit, were detected 
in an industrial area in Egypt with various metal indus‑
tries [95]. The atmospheric deposition from metal 
industries and waste incinerators was recently been 
identified as a main source of PCDD/F in 84 soil sam‑
ples in Taiwan. With a median content of 10 ng TEQ/
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kg dm and higher levels in industrial areas [212], soils 
were unfit for raising free-range chicken/egg.

Sinter plants and copper industry are categorised 
into Annex II of the Convention as having the highest 
PCDD/F release risk, while other metal industries are 
listed in Annex III (Stockholm Convention 2001).

2.5.7.1  Sintering plants  Sintering plants can release 
high levels of PCDD/F and other UPOPs. Before the 
introduction of regulatory limits [e.g., 0.4  ng TEQ/
Nm3, with a target value 0.1 ng TEQ/Nm3 in Germany 
(according to TA Luft 2002)], the sintering plants had 
high emissions, up to 100 g TEQ/a for individual facili‑
ties [125]. Such high (historic) releases can have resulted 
in elevated PCDD/F levels in the surrounding soil. The 
PCDD/F levels in soil within a radius of 5 km from an 
Italian sinter plant averaged 3.1  ng TEQ/kg  dm, with 
a maximum concentration of 10.3  ng TEQ/kg  dm; dl-
PCB levels were in the same range [91]. The PCDD/F 
and PCB contamination from this sinter plant resulted 
in sheep (meat and liver) exceeding the EU maximum 
limits and in the destruction of 1600 cattle (see also 
Sect. 2.4.4) [90, 91, Esposito et al. 2014]. In 2010, graz‑
ing was prohibited within a 20 km radius of this sinter 
plant [92].

2.5.7.2  Copper production 

I. Secondary copper production Copper smelters have 
a high PCDD/F formation potential because copper is 
the best catalyst for dioxin formation. High levels in the 
environment, cattle and milk were found nearby a plant 
in Austria [213, 214]. The PCDD/F soil content was up to 
330 ng TEQ/kg dm.

II. Primary copper production Although primary cop‑
per production is not classified as a significant PCDD/F 
source [9], certain processes in primary copper produc‑
tion have resulted in extremely high PCDD/F releases 
and have generated PCDD/F-contaminated slags. A well-
documented case is the 400,000 t of “Kieselrot” ash from 
a German copper production, which was used on sports 
fields in Germany in the 1950s and 1960s [215, 216].

2.5.7.3  Electric arc furnace  Electric arc furnace (EAF) 
can also have high PCDD/F releases, which depend on the 
air pollution control system and the quality of the scrap 
used [9]. High releases can be caused by PCB-containing 
feed stocks (PCB-coated steel parts or PCB-contaminated 
scrap). For one EAF, PCB emissions resulted in the con‑
tamination of fish above EU maximum level in the affected 
river [87].

2.5.7.4  Aluminum production 

I. Secondary aluminum production Compared to primary 
aluminum production, the production of secondary alu‑
minum was a much more important source of PCDD/
Fs. For Germany, the annual PCDD/F emission was esti‑
mated to be between 25 and 50 g TEQ for the period of 
1985–1990 [125].

II. Primary aluminum production In primary aluminum 
production, high loads of unintentionally formed POPs 
[HCB, PeCBz and octachlorostyrene (OCS)] were gener‑
ated in the purification process of aluminum with chlo‑
rine or other chlorine sources (e.g., hexachloroethane or 
tetrachloroethane) [217]. Emissions from this process 
have resulted in high HCB, PeCBz and OCS releases into 
a river and contamination of fish [217, 218]. The flood 
plains of this river have not been assessed for potential 
impact on livestock.

2.5.7.5  Zinc production  Extremely high PCDD/F 
releases have been detected in the secondary zinc indus‑
try during the processing of zinc-containing residues and 
filter dusts in the roller tube, as well as during hot briquet‑
ting [125, 219]. Emissions of up to 194 ng TEQ/Nm3 were 
measured in a plant in Taiwan [220]. Pollution in the soil 
or livestock around secondary zinc plants have not been 
published, indicating a lack of assessment of these sites. 
However, the contaminated zinc oxides from these pro‑
cesses have been used as feed additive, leading to food/
meat contamination [24].

Overall, a systematic assessment of PCDD/F contami‑
nation in the vicinity of metal industries in respect to 
food-producing animals has not been done. Heavy met‑
als are likely even more critical emissions from the metal 
industry compared to UPOPs. In particular, lead pollution 
has caused serious health impacts, including the death 
of children in some cases [221–223]. But also cobalt and 
nickel pollution needs more attention with increasing 
global use and smelting. PCDD/Fs should become part of 
a more holistic assessment of pollution and related human 
exposure and health impacts around metal smelters.

2.5.8 � Power plants and small combustion plants (UNEP 
Toolkit category 3)

2.5.8.1  Power plants  Overall, power plants using oil or 
gas have low PCDD/F emissions, without a significant 
impact on surrounding soils. However, burning of coal 
with high chlorine content in coal power plants can result 
in emissions above 1  ng TEQ/Nm3. Furthermore, expe‑
rience in Poland has shown that the use of copper salts 
for improved burnout in coal-fired power plants increases 
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PCDD/F emissions 80-fold. In one coal power plant, 
PCDD/F emissions increased from 0.06 to 4  ng TEQ/
Nm3, or 2.9 to 972 g TEQ/a [224]. Egg samples near a large 
coal power plant in Bulgaria had PCDD/F levels 21 times 
above the EU regulatory limit [95], indicating that some 
power plants can have high release rates.

Waste wood boilers/incinerators can also lead to high 
PCDD/F releases due to the use of PCP and copper salts 
as wood preservatives4 [226, 227]. A recent study in Tai‑
wan revealed PCDD/F levels in fly ash from two waste 
wood incinerators of 99,000 and 38,000  ng TEQ/kg ash 
[228]. PCDD/F levels were considerably higher than 
in fly ash from municipal  waste incinerators, which are 
normally below 5000 ng TEQ/kg. Therefore, waste wood 
must be kept out of biomass boilers that use ash as ferti‑
lizer on soils.

The use of waste wood or waste oils for drying ani‑
mal feed is a source of food contamination. If the feed is 
directly dried by the flue gas, PCDD/Fs can be deposited 
onto it. For example, in the Irish pork scandal, PCB-con‑
taminated mineral oil was burnt to dry old bread, which 
was processed into pig feed [23]. In Brandenburg/Ger‑
many, animal feed was dried in the off-gas from the com‑
bustion of PCP-contaminated waste wood and was thus 
contaminated by PCDD/Fs [18].

2.5.8.2  House heating and  small combustion plants  
After implementing BAT/BEP (best available tech‑
niques/best environmental practices) in large thermal 
PCDD/F sources in industrial countries, the emissions 
from domestic heating and small combustion plants 
have become major PCDD/F air emission sources in 
industrial countries [10, 229, 230]. For instance, this 
source category accounts for approximately 42% (29  g 
TEQ/year) of annual dioxin emissions in Germany. 
Stoves or small wood boilers using exclusively natural 
wood generally have a low PCDD/F formation/release, 
which does not result in significant emissions or con‑
tamination of ash [226, 231]. However, emissions and 
ash from small combustion plants in which waste wood 
or other wastes are incinerated or co-incinerated can 
have elevated PCDD/F release [226, 231]. Over time, 
this can lead to soil contamination, and might be a rea‑
son for the elevated levels in highly populated areas. 
For instance, garden soils in densely populated areas in 
Germany had between 5 and 20  ng TEQ/kg [17, 232] 
and, therefore, exceeded levels appropriate for raising 
chicken/eggs.

Furthermore, in recent years, copper salts are com‑
mercially marketed in Poland, Germany and other 
European countries for the “cleaning” of stoves from 
soot deposits [17, 224]. In a study in Poland, the addi‑
tion of commercial copper salt to a wood stove has 
resulted in an increase in PCDD/F emissions by a fac‑
tor of 1000–10,000, with air emissions of 350 ng TEQ/
Nm3 and ash above the high Basel Convention “low 
POPs content” of 15,000  ng TEQ/kg [224]. In Poland, 
this use is estimated to lead to an increase of PCDD/F 
air emission from private stoves from 0.04 g TEQ/a to 
74 g/a. This can result in locally high dioxin emissions 
and, if more widely marketed and used, to a significant 
increase in the PCDD/F emissions of these sources.

The open drying of plants or feed and the smoking of 
food in the exhaust stream of combustion processes are 
particularly prone to PCDD/F contamination.

2.5.9 � Cement plants and other mineral industries (UNEP 
Toolkit category 4)

Modern cement plants with preheaters are not a sig‑
nificant PCDD/F source [9, 233]. In the past, however, 
cement plants with high PCDD/F emissions were also 
measured, with releases of up to 136  ng TEQ/m3 and 
40 g TEQ in a year [234]. PCDD/F levels in egg slightly 
above EU regulatory limits were measured in Mozam‑
bique and Uruguay [30].

The PCDD/F emissions from the glass or ceram‑
ics industry are considered irrelevant and have small 
PCDD/F emission factors in the UNEP Toolkit [9].

2.5.10 � Transport and transport sector (UNEP Toolkit 
category 5)

Dioxin emissions from the transport sector were high 
at the time of leaded gasoline use. Chlorinated and bro‑
minated aliphatic compounds were added to leaded 
gasoline to volatize the lead. This resulted in the forma‑
tion and release of chlorinated, brominated and bromi‑
nated–chlorinated PXDD/F [235]. The dioxin emission 
factors for unleaded petrol and diesel are small. Since 
the ban on leaded gasoline, PCDD/F emissions from 
the transport sector have been insignificant [9]. For 
instance, the estimated release from the transport sec‑
tor in Germany was 50 g TEQ/year in the 1980s [125], 
while only 3  g TEQ was released from transport in 
2010, after the end of leaded gasoline [10]. PCDD/F lev‑
els in soils along streets were elevated (3.3–52 ng TEQ/
kg dm) within the first 2 m, but decreased to 0.9–3.3 ng 
TEQ/kg at a distance of 10 m [232]. PCDD/F contami‑
nation along streets might impact grazing sheep when 
they move to other grazing areas.

4  Including chromated copper arsenate (CCA), one of most frequently used 
wood preservatives, which contaminates the ash with heavy metals [225].
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2.5.11 � Fires and open burning (UNEP Toolkit category 6)
2.5.11.1  Fires  Landfill and dumpsite fires and major 
building or vehicle fires can release significant amounts of 
PCDD/Fs [9]. Large fire events can contaminate feed on 
fields with PCDD/Fs far beyond the EU maximum level of 
0.75 ng TEQ/kg 88% dm. After a fire at a metal recycler, 
levels up to 219 ng PCDD/F-TEQ/kg 88% dm and 37 ng 
PCB-TEQ/kg 88% dm were detected in vegetation in the 
neighborhood of the company. At a distance of 800 m, lev‑
els of 2.2 ng PCDD/F-TEQ/kg 88% dm were still consider‑
ably above the EU maximum limits for feed [236].

In 2011, a fire started at the Chemie-Pack Moerdijk 
Company in the Netherlands. Large quantities of chem‑
icals were involved in the fire and an enormous cloud 
of smoke arose and drifted over the surroundings. At 
a distance of 10  km, the PCDD/F levels in the grass/
vegetation were still at 1.1–2.4 ng TEQ/kg 88% dm, and 
thus significantly above the EU maximum level for feed. 
This can lead to exceedance of EU maximum levels in 
food from animal origin (see above and [31, 136]).

A single fire event will usually not lead to signifi‑
cant soil contamination. However, fires at landfill sites 
and dumpsites have the potential to contaminate the 
nearby soils and population with PCDD/Fs and PCBs 
[237]. Landfills and dumpsites frequently burned in 
the 1960s and 1970s in industrial countries, and are 
still frequently burning in developing countries, having 
the highest overall contribution to PCDD/F release in 
developing country inventories. Eggs sampled around 
dumpsites exceeded the EU regulatory limit in Kenya 
(7.6 times), Pakistan (1.5 times) and Senegal (11 times) 
[30]. The best documented case of large-scale contami‑
nation from frequent fires from waste dumps that lead 
to PCDD/F contamination of the environment, food-
producing animals and humans is the Campania region 
in Italy [238– 240].

2.5.11.2  Open burning (backyard)  Open burning (e.g., 
in gardens, backyard or along streets) can lead to local 
PCDD/F contamination, especially when using materi‑
als that have a PCDD/F formation potential. These are, 
for example,

•	 Incineration of waste wood (PCP treated or treated 
with copper salts).

•	 Co-incineration of PVC waste (e.g., agricultural foil/
irrigation pipes).

•	 Co-incineration of pesticide containers.
•	 Open burning of e-waste or end-of-life vehicle waste.

(Former) open burning is considered a major source 
for the contamination of free-range eggs above EU 

regulatory limits detected in the Netherlands [31] and 
Italy [241].

Sites where e-waste or waste from end-of-life vehicles 
is burned have high levels of PCDD/F and brominated 
and brominated–chlorinated PXDD/F [242–245]. Eggs 
sampled in Thailand at sites where e-waste was recy‑
cled involving open burning had PCDD/F levels 33 times 
above EU regulatory limit and 20  pg TEQ/g fat bromi‑
nated PBDD/F [33].

2.5.11.3  Forests as a sink for PCDD/Fs and the role of for-
est fires  Through atmospheric deposition and the abil‑
ity of leaves and needles to filter PCDD/Fs and PCBs 
before being deposited to soil, forests function as a sink 
for PCDD/Fs and PCBs [246]. The background levels of 
PCDD/Fs and dl-PCBs in German forest soil (16.9  ng 
PCDD/F-TEQ/kg  dm and 8.5  ng PCB-TEQ/kg  dm in 
organic layer) are higher than those of arable land or 
grassland areas by a factor of 20 for PCDD/Fs and 40–60 
for dl-PCBs [63]. These elevated PCDD/F and PCB levels 
in the organic layer of forest soils are probably the reason 
for the elevated PCDD/F and PCB levels of game liver and 
meat (see above).

The PCDD/F emission factors for forest fires and burn‑
ing of agricultural biomass in the UNEP Toolkit have 
been reduced by almost a factor of 10 for the 2013 edi‑
tion, after recent research studies have shown that few 
PCDD/Fs are formed in forest fires and emissions result 
rather from the remobilization of adsorbed PCDD/Fs 
[247]. However, in recent forest fires in California and 
Australia, hundreds of houses and vehicles burned down 
leading to high releases of PCDD/Fs considering emis‑
sion factors for fires of vehicles and buildings [9].

2.5.12 � End‑of‑life treatment and landfilling of waste (UNEP 
Toolkit category 9)

2.5.12.1  Sewage sludge  One factor influencing the 
PCDD/F and PCB levels of soils is the (historical) input 
of sewage sludge. PCDD/F levels in sludge-amended soils 
were 10–100 times higher compared to background soils 
[112, 248]. In the 1970s to the 1980s, sewage sludge had 
partly extremely high dioxin loads of several 100 ng TEQ/
kg dm up to several 1000 ng TEQ/kg dm. The few sewage 
sludge data from the 1970s are from Spain, with average 
values of 620 ng TEQ/kg dm (up to more than 8000 ng 
TEQ/kg  dm) [176]. In the mid-1980s, sewage sludge in 
Germany still had dioxin concentrations of 200 ng TEQ/
kg dm on average [249], which declined to an average of 
50–60 ng TEQ/kg dm by the end of the 1980s [250]. Soil 
that had been amended with sewage sludge up to the 1960s 
and 1970s  had up to  52.7  ng PCDD/F-TEQ/kg  dm and 
caused PCDD/F contamination of the liver of sheep graz‑
ing there and on uncontaminated pastures [112].
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The PCDD/F contamination in sludge-amended soils 
depends on the time sewage sludge had been applied (for 
municipal sludge, 1960s to 1980s) and on specific indus‑
tries with high (former) dioxin contamination in effluent 
discharge. Especially the sludge from the pulp and paper 
industry, the chemical industry (production of chlorine 
and chlorinated organics) and leather and textile produc‑
tion have had high PCDD/F contamination, leading to 
potentially significant concentrations in sludge-treated 
soils [9, 195] that should be assessed.

Today, the dioxin contamination of sewage sludge with‑
out specific industry impact is generally below 10  ng 
TEQ/kg dm in Europe [177, 251]. PCDD/F levels in sew‑
age sludge in Australia were also low, with an average of 
approx. 6 ng TEQ/kg dm [252]. Municipal sewage sludge 
in industrial countries seems to largely comply with the 
German fertilizer regulation for pasture land (8 ng TEQ/
kg dm) and other agricultural land (30 ng TEQ/kg dm). 
In a first screening in Nigeria, levels in municipal sewage 
sludge were between 9 and 23 ng TEQ/kg dm and 48.2 ng 
TEQ/kg  dm in industrial sludge [253] and, therefore, 
above the German limit of 8  ng TEQ/kg  dm for ferti‑
lizer for pastureland and the German regulatory limit for 
sludge/fertilizer in agricultural applications (30 ng TEQ/
kg dm).

2.5.12.2  Disposal of  sediments on  pastureland  In the 
past, sediment from river dredging was partly applied to 
grassland and arable land. Pasture areas contaminated 
with sediment from the Rhine in the 1990s were identified 
as contamination source for a cattle herd in 2011/2012, 
resulting in increased dioxin and dl-PCB levels in the 
meat of grazing animals (8 pg TEQ/g fat) above EU maxi‑
mum limit [17, 52].

2.5.12.3  Compost and  fertilizer  In the 1980s, compost 
occasionally had PCDD/F content of more than 100  ng 
TEQ/kg dm, largely due to PCDD/Fs in pesticides, such 
as PCP, or additional formation from PCP or other pre‑
cursor pesticides during the composting process [9, 254, 
255]. Therefore, the levels were relatively  low compared 
to sewage sludge and, overall, a moderate contamination 
potential for soils through historic application of com‑
post can be assumed.5 PCDD/F levels were around 10 ng 
TEQ/kg in early 2000 in Switzerland [256]. In a German 
monitoring study in 2009, green waste and bio-waste 
composts from eleven composting plants were found to 
contain PCDD/F levels averaging 5.3 ng TEQ/kg dm, and 
showed a decreasing trend compared to 2002 and 2006 

[112]. The PCDD/F concentrations in the compost were 
therefore below the general regulatory limit for fertilizer 
(30 ng TEQ/kg dm for the sum of PCDD/Fs and dl-PCBs) 
and in the range of the maximum level stipulated by the 
Fertilizer Regulation for use on grassland for forage pro‑
duction and on arable land with non-tilling soil cultiva‑
tion (8 ng TEQ/kg for the sum of PCDD/Fs and dl-PCBs).

A series of commercial garden fertilizers were tested 
in Germany for contaminants including PCDD/Fs 
(Öko-Test 2013). Two guano fertilizers contained 5.3 ng 
TEQ/kg. The PCDD/F profiles were identical to known 
PCDD/F patterns of clays/kaolinites [257]. Therefore, 
the dioxins in this sample most likely stem from the clay/
mineral part of the fertilizer.

2.5.12.4  Open dumping of  wastewater (“Sewage 
farm”)  Prior to the use of sewage treatment plants, sew‑
age from large cities was partially sprinkled on open areas 
(sewage farms). In total, more than 30,000 hectares were 
used as sewage farms in Germany, [258]. Areas used in 
particular between 1950 and the 1980s may be contami‑
nated with PCDD/Fs and PCBs.

2.6 � Footprint of respective PCDD/F and PCB sources 
and the need for assessment

As mentioned above, a systematic assessment of soil con‑
tamination in the vicinity of pollution sources has not 
been conducted in industrial and developing countries.

A key assessment for individual PCDD/F or PCB emis‑
sion sources is the area where contamination in soils and 
grass/feed exceeds the critical levels for food-producing 
animals, in particular the PCDD/F and dl-PCB levels 
(< 5 ng TEQ/kg dm) for the most exposure-sensitive live‑
stock (chicken, beef cattle).

The contamination footprint of areas affected by large 
sources can be substantial. The former PCB production 
in Slovakia, for example, has been shown to have caused 
increased human PCB exposure up to a distance of 70 km 
windward, with food from animal origin considered the 
most important exposure pathway [81]. Because of high 
PCB emissions from a large steel plant in Italy, cattle 
grazing is prohibited within a 20 km radius [90–93]. At 
two copper smelters treating cables in Germany, high 
PCDD/F contamination was detected in soil, with lev‑
els above 100 ng TEQ/kg dm and up to 10,000 ng TEQ/
kg dm within approx. 500 m from the company, and up 
to 600,000  ng TEQ/kg  dm on the company premises 
[232]. Concentrations decreased to background levels at 
approx. 2 km distance [232].

The PCDD/Fs released from magnesium/titanium 
production and chlorine use in the 1940s in Bitterfeld/
Germany have contaminated the Elbe River and are 
transported with sediment into the North Sea. Over 5  The area-related application rates need to be taken into account which are 

up to six times higher than sewage sludge.
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400 km from Bitterfeld towards Hamburg, soil on flood‑
plains has levels of approx. 1000  ng TEQ/kg [116]. In 
Switzerland, a landfill containing waste from a former 
capacitor production releases PCBs and contaminates 
fish in a river over approx. 40 km [86, 87].

In 2015, the removal of PCB paint from a bridge in 
the Czech Republic released 330 kg of PCBs to the Elbe 
River. Impacted sediments were moving towards the port 
of Hamburg, 500 km downstream. This became a matter 
of concern because sediments contaminated with PCB 
above a certain limit were no longer allowed to be relo‑
cated. As the disposal of these sediments on land was not 
feasible, access to the Port of Hamburg for seagoing ves‑
sels would have been jeopardized [75].

Historic use/disposal of smaller volumes such as scrap 
yards, substations/transformers or shredder plants can 
lead to PCB contamination and should be assessed for 
their pollution footprint and for potential exposure of 
food animals. Normally, the impact of such sites is mainly 
localized to possibly a few 100  m radius. However, cer‑
tain mechanisms can enlarge the polluted area even of 
such smaller use/disposal sites. A former PCB-contami‑
nated scrap yard in northern Germany was used for stor‑
ing horse dung before dispersing on pasture. The pasture 
area was used for beef cows, resulting in dl-PCB meat 
contamination above EU maximum limits [17].

These examples give a first insight into the footprint 
of some sources. However, for most PCB or PCDD/F 
sources, the contamination in the vicinity has not been 
assessed, and often sources have not even been identified. 
Relevant sources (e.g., PCDD/F sources listed in Annex II 
and III of the Stockholm Convention; PCB sources along 
the life cycle) should be assessed, as well as areas where 
PCP and other PCDD/F-containing pesticides have been 
applied in significant amounts.

2.7 � Management measures for selected livestock
For farms where point sources of PCDD/Fs or PCBs 
caused contamination of food, the management measure 
consists of removing the source or excluding or restrict‑
ing access for livestock. This is what was done in the 
1980s following the discovery that PCB paints in feed 
silos caused the PCB-contamination of milk exceeding 
the former German regulatory limit for ndl-PCBs [3, 99]. 
At that time, a great number of farms were screened and 
the PCB-painted silos were removed [29]. In the case of 
cattle contamination on a Swiss farm by PCB-containing 
wall paints [107], the paints were professionally removed 
and the levels in meat decreased [259].

For herds grazing on areas where the soil or vegeta‑
tion is the cause for the exceeding of the limit in meat 
or milk, soil removal is normally not an option due 
to the high cost. In highly contaminated areas, the 

production of food might need to be stopped. How‑
ever, in the German survey, 90% of veal calves from 
beef cows not complying with the EU maximum level 
exceeded the regulatory limit for the sum of PCDD/
Fs and dl-PCBs only by less than 20% [17]. Therefore, 
management measures to reduce exposure in impacted 
areas might be sufficient for further livestock farming. 
Management measures have been developed [260] for 
the highly contaminated floodplains of the Elbe River 
[122, 186]. Studies have shown that it is possible to 
decrease PCDD/F levels in beef by feeding non-con‑
taminated feed in the fattening phase before slaughter‑
ing [261]. A similar approach was found for reducing 
PCBs in pigs [59] and PCDD/Fs and PCBs in sheep 
[53]. For a suckler cow herd it has been found that TEQ 
values in the meat decrease after weaning (Fig. 4; [52]). 
Extending the duration between weaning and slaugh‑
tering might, therefore, be a relevant factor for reduc‑
ing the PCB and TEQ levels in meat from beef cattle. 
Another option is the reduction of the suckling time, 
which has already been applied on the Elbe flood plains 
[261]. These reductions are mainly due to the increase 
in body mass diluting the load from the higher PCB 
intake when suckling milk (Fig.  4) or from the high 
exposure to PCDD/Fs on contaminated land before fat‑
tening in the stable [261].

The selection of appropriate feed and cultivation 
methods on impacted fields can reduce exposure for 
livestock. For example, it is possible to grow maize 
(whole plant; high cut technique) on contaminated soils 
with low transfer of pollutants to the feed [45]. Opti‑
mizing the harvesting technique (e.g., cutting heights) 
of fodder on contaminated soils can also reduce the 
dioxin contamination of grass/green fodder from soil 
[45]. Free-range areas should have a continuous soil 
vegetation cover to reduce exposure to PCDD/Fs via 
soil while foraging [10]. Additional concentrate feed 
can also reduce the grass/soil intake and therefore the 
overall exposure.

With these moderate management measures, for the 
vast majority (90%) of the slightly impacted offspring 
from suckler cow herds it seems feasible to bring TEQ 
levels below the analytically guaranteed EU maximum 
limits.

These are encouraging examples for further assess‑
ing what management measures might be applicable 
for other contaminated areas and what type of livestock 
can be addressed by which management measures. 
Further research is needed on the suggested criti‑
cal dl-PCB (and PCDD/F) levels in soil and feed with 
regard to the resulting levels in meat and other animal 
products. Some initial assessments have been made for 
sheep and goats [53, 58]. However, there are no studies 
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on pigs housed outdoors or fed with feedstuff with a 
high soil content.

Due to the increasing demand for animal products 
from sustainable species-appropriate livestock farm‑
ing, there is an increasing trend of housing farm animals 
outdoors. Unless measures are taken to reduce exposure 
(e.g., by monitoring soils), there will likely be a number of 
instances of animal-origin food exceeding EU maximum 
contaminant levels.

More experimental data are needed for solid 
recommendations.

For farms producing chicken/eggs with levels above 
regulatory limits, a guidance for assessment and man‑
agement has been developed in Germany. Based on the 
BMU Guide for Poultry, Cattle, Sheep and Pig Keepers 
(chapter 8 of BMU [10]), a project group led by the Lower 
Saxony Ministry of Food, Agriculture, Consumer Pro‑
tection and Rural Development developed a leaflet with 
recommendations for affected chicken/egg farms [262]. 
This material is used by the competent food control 
authorities and by farmers for the identification of possi‑
ble sources and, when regulatory limits are exceeded, for 
exposure source identification and mitigation.

If applicable, the following measures should be taken 
into account [48, 262]:

•	 Visual inspection of stables and free-range areas 
(assessment of possible exposure to PCDD/F and 
PCB sources on the basis of a questionnaire for farm 
analysis for chicken keepers).

•	 Removal of possible point sources and hot spots on 
the site.

•	 Expert examination of the soil and, if necessary, 
proper replacement of contaminated soil.

•	 Whole-quality feeding (full supply of feed including 
minerals).

•	 Feeding in stables or on paved areas.
•	 Covered outside area.
•	 Restricted access to free-range areas.
•	 Closed vegetation cover on free-range areas.

Since farmers do not normally have the knowledge and 
experience for assessing PCDD/F or PCB sources and 
reducing exposure, support from authorities, institutions 
or consultants is needed. In some parts of Germany, fed‑
eral state-level task teams have been established to sup‑
port affected farmers. The following possible supporting 
measures should be evaluated by the authorities and 
offered, as appropriate, to farmers:

•	 Provision of practical examples of potential sources 
of contamination and general advice for preventive 

measures for farmers—and in particular for holders 
of backyard poultry flocks.

•	 Provision of elaborated instructions for affected 
farmers (for example, leaflet of the Chamber of 
Agriculture of Lower Saxony).

•	 Advice for farmers with food products (eggs, meat, 
milk) above the EU maximum level.

•	 Support in the review of farming practice.
•	 Support for the expensive PCDD/F and PCB moni‑

toring of affected farms (animals and environment/
sources).

The cost for the management measures should be 
covered by the polluter considering the polluter pays 
principle and the extended producer responsibility (see 
below).

2.8 � Some further relevant considerations to appropriately 
address the exposure of food‑producing animals

2.8.1 � Impact of climate change on POP‑related 
contamination

In the previous chapters it has been shown that grass/
feed growing on flood plains can lead to POP expo‑
sure for livestock. But also, the quality of the pasture is 
a relevant factor for the contamination of livestock and 
livestock products. Both factors are related to weather 
conditions, and change in precipitation and increased 
flooding can be impacted by climate change:

2.8.1.1  Change in precipitation and increase in ingestion 
of soil by cattle during grazing  As described above, cattle 
have a certain intake of soil when grazing. The amount of 
soil ingested by cattle during grazing is closely related to 
the condition of the soil and the grass cover. For areas with 
good grass cover, a minimum share of 3% soil in ingested 
pasture grass (88% dm) is expected (the share of soil intake 
refers to the weight of ingested grass recalculated to 88% 
dry mass) [10, 50]. Soil uptake during grazing can increase 
at low vegetation coverage. 10–20% of total ingested dry 
matter may consist of soil. Dry weather and droughts, 
therefore, have a significant impact on soil intake and lead 
to higher exposure to soil contaminants. Wet weather can 
also lead to an increase in soil intake. When grazing areas 
become wet and muddy a higher share of soil/mud parti‑
cles is transferred to vegetation due to splashing water and 
trampling damage caused by grazing livestock. Higher 
soil intake already results in exceedance of regulatory lim‑
its at lower levels in soil. Therefore, with climate change, 
exposure to soil will increase due to droughts and high 
precipitation, and livestock will become more exposed to 
soil pollution in future. Extensive livestock farming with 
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elevated soil uptake in climate-impacted areas will likely 
need even more stringent soil limits.

2.8.1.2  Increased pollutant release during flooding events 
and increased transfer to floodplains  In rivers contami‑
nated by former industrial emissions, more frequent 
and extensive flooding [263] increases the distribution 
of contaminated sediments to floodplain soils leading 
to increased exposure risks for grazing livestock [264]. 
Increased flooding can also result in the release of POPs 
and other pollutants from reservoirs like landfills [265, 
266] and increase exposure of food-producing animals in 
the vicinity.

Furthermore, increased sea level rise and erosion of 
coastal areas result in pollutant releases from landfills 
located next to the shoreline. Damage resulting in pollu‑
tion was recently revealed for more than 1000 landfills in 
the UK [267, 268] and likely increased contamination of 
fish and seafood.

2.8.2 � POP input and degradation in soils over time
The half-lives of PCDD/Fs and PCBs in soils are decades 
to more than a century in the Central European climate 
[126, 269]. Therefore, PCDD/F and PCB contamination 
in soils will be relevant for decades to come and must be 
appropriately addressed and managed. For tropical soils, 
PCDD/F degradation, in particular of lower chlorinated 
congeners, might be faster.

More robust data on the soil half-lives of PCDD/Fs and 
PCBs are needed for predicting future development and 
for modeling future levels in soils considering ongoing 
deposition of PCDD/Fs and PCBs.

2.8.3 � Compilation of fingerprints of PCDD/F and PCB sources
An important aspect in the identification of PCDD/F and 
PCB sources is the assignment of source profiles (“fin‑
gerprint”, congener pattern) [270, 271]. The PCDD/F or 
PCB fingerprint in environmental media or feed and food 
can help identify contamination sources and pathways 
[21, 25]. Congener profiles differ in emissions from cer‑
tain industries, in specific chemicals or other sources that 
cause, for example, the contamination of feed. The fin‑
gerprint also allows environmental contaminants in soils, 
sediments, or feed and food to be assigned to specific 
processes or chemicals. This requires a comprehensive 
database of source profiles. The German EPA had devel‑
oped a database, initially launched for PCDD/Fs, with 
a wide range of environmental matrices (soil, air, sedi‑
ments), food and a few processes from the technosphere. 
Within the scope of the R&D project of the German Envi‑
ronment Agency, current available source patterns in the 
database were assessed, and relevant PCDD/F and PCB 

source patterns from the technosphere were compiled 
and entered to the POP–dioxin database. These include 
for instance industrial thermal sources, other industrial 
processes with high formation potential, chemicals and 
mixtures such as pesticides and color pigments [17].

2.8.4 � Contemporary developments
In recent years, biogas production has strongly increased. 
The residues from biogas production are often distrib‑
uted on agricultural land. To some extent, industrial 
sludge is added/used in biogas production such as sludge 
from pulp and paper [272, 273]. Depending on the pro‑
duction process, pulp and paper sludge can be contami‑
nated with PCDD/F (if elemental chlorine is used) or 
with per- and polyfluorinated alkylated substances (from 
specific surface-treated papers) [195, 274, 275]. This can 
lead to large contaminated areas, as recently demon‑
strated for a PFAS-impacted pulp and paper mill sludge 
added in a composting plant [274, 276].

2.8.5 � Possible future change of TEF values for PCBs 
and reduction of the TWI for the TEQ

The TEQ from dl-PCBs is driven by one congener (PCB-
126) representing normally > 80% of the PCB-TEQ in 
food. Data from human-cell systems from the EU-SYS‑
TEQ project indicate the possible re-evaluation of the 
toxic equivalency factor (TEF) for PCB-126 (0.1). The 
TEF expresses the toxicity of individual PCDD/F and 
PCB congeners in terms of the most toxic dioxin com‑
pound, 2,3,7,8-TCDD, and is derived from mouse and 
rat experimental data for dioxin intake. In studies on 
selected human cells, PCB-126 had a systemic TEQ 
activity lower by a factor of 10 or more compared to the 
current TEF of 0.1. Since the TEQ contribution of PCB-
126 in beef from suckled cows is usually greater than 80% 
of the TEQ, a PCB-126 TEF by a factor of 10 would have 
a decisive influence on the overall PCDD/F-PCB-TEQ 
(reduction by approx. 50%). For example, for beef meat 
sampled in Germany, most non-compliant samples had 
levels only slightly (< 25%) higher than the EU maximum 
limit. A reduction of the TEF for PCB-126 by a factor of 
10 would result in a significant reduction in the number 
of meat samples above the EU maximum limit. Thus, fur‑
ther assessment of PCB-126 is needed.

On behalf of the European Commission, EFSA estab‑
lished a Working Group to assess the risks to human 
and animal health related to the presence of PCDD/Fs 
and dl-PCBs in food and feed [42]. All available toxico‑
logical, epidemiological and toxicokinetic studies in the 
open literature were evaluated. Adverse effects of PCDD/
Fs and dl-PCBs in humans were assessed and the TWI 
was revised [42]. The EFSA scientific opinion will be 
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published during 2018 and the TWI for PCDD/Fs and dl-
PCBs will likely be reduced.

In PCB risk assessments, it should also be considered 
that in 2013 the International Agency for Research on 
Cancer (IARC) has categorized PCBs in the highest can‑
cer class (Group 1, carcinogenic to humans) [277, 278], 
with a need for minimizing exposure. PCBs are immuno‑
toxic and neurotoxic at very low levels [41], which should 
be taken into account.

3 � Conclusions and recommendations
According to FAO and the Intergovernmental Techni‑
cal Panel on Soils (ITPS), soil pollution is one of the ten 
major soil threats identified in the 2015 Status of the 
World’s Soil Resources report [35] and subsequently 
addressed in the FAO Voluntary Guidelines for Sustain‑
able Soil Management (VGSSM) [279]. PCDD/Fs and 
PCBs are only two of the pollutant groups—however, two 
of the best assessed with respect to release sources and 
contamination.

Within the framework of the R&D project, the research 
and regulatory action needs regarding the problem of live‑
stock products contaminated with PCDD/Fs and PCBs 
and the reduction of emission and exposure were com‑
piled [280]. Some priority action needs are mentioned 
here. More details can be found in Weber et al. [280].

3.1 � Need for regulatory activities
3.1.1 � Upper levels for contaminated soil and feed
In general, soil pollutant levels are assessed in Germany 
using the precautionary, assessment and action/restric‑
tion values of the Federal Soil Protection Ordinance 
(BBodSchV) [50]. For PCDD/Fs, the BBodSchV gives 
only action/restriction limits for the soil–human path‑
way. To prevent children’s exposure, the BBodSchV gives 
an action/restriction limit of 100  ng I-TEQ/kg  dm for 
children’s playgrounds and of 1000 ng I-TEQ/kg dm for 
all residential areas. The critical PCDD/F levels for laying 
hens are thus approx. 300 times lower than the values for 
residential areas, where chickens are kept mostly in back‑
yard with associated consumption of eggs. Currently, 
the BBodSchV is being revised and will be extended to 
the so-called “Mantelverordnung”. In the ministerial 
draft of the “Mantelverordnung” from February 2017 
the action values for children’s playgrounds and residen‑
tial areas now refer to the sum of PCDD/Fs and dl-PCBs 
(PCDD/F–PCB-TEQ (2005)) but numerical values will 
remain unchanged [281].

In the ministerial draft for the amendment to the 
BBodSchV, an assessment value of 15  ng PCDD/F-TEQ 
(2005)/kg  dm for grassland was set for the soil–plant 
pathway [281]. For laying hens, this value would be about 
three–five times too high.

The former German Bund/Länder  Working Group 
DIOXINE published guidance values for soil. For soil 
with levels below 5  ng I-TEQ/kg  dm, it suggested no 
restrictions for agricultural and garden use [282]. Use of 
soil with 5–40 ng I-TEQ/kg dm for food and field crops is 
unrestricted, but a restriction of grazing or abandonment 
of free range is recommended for subsistence farming. 
Above 40 ng I-TEQ/kg dm, soil-based livestock farming 
and cultivation of near-surface growing crops, fruit and 
vegetables are to be avoided [282]:

The maximum value for PCDD/Fs of 40  ng I-TEQ/
kg  dm for livestock farming recommended by the for‑
mer working group AG DIOXINE is also too high for 
beef production via beef cow herds. Critical levels in 
the meat are expected at PCDD/F soil levels of about 
7–20 ng TEQ/kg dm [17]. For dairy cows, a critical soil 
level has been established by Hoogenboom [136]: Con‑
sidering 3–10% soil intake, the EU maximum level for 
PCDD/Fs in milk might be reached at PCDD/F levels of 
17–5.25 ng PCDD/F-TEQ/kg soil, respectively. Since it is 
important that soil levels below the existing guidance val‑
ues for soil should not lead to exceedance of maximum 
limits for the production of food from animal origin, 
there is a need for updated regulations.

The current action value for dl-PCBs in feed of plant 
origin (e.g., grass, hay, silage) is 0.35  ng PCB-TEQ/kg 
88% dm. This is too high for calf from beef cow herds 
already reaching dl-PCB limits at 0.2 ng TEQ/kg dm or 
below, given additional PCB input from soil (Fig. 2). The 
PCDD/F–PCB-TEQ maximum level for feed (1.25  ng 
TEQ/kg 88% dm) is approx. six times higher than dl-PCB 
levels critical for suckler cow herds.

Parts of the European population are exceeding the 
TWI for the sum of PCDD/Fs and dl-PCBs as well as the 
tolerable daily intake (TDI) for PCBs via consumption of 
food (see Sect. 2.1). Guidance values for soil should not 
only guarantee compliance with EU maximum limits for 
food but should also provide protection in accordance 
with the TDI/TWI. The pathway “soil–(feedstuffs)–live‑
stock–animal product–human” has not been considered 
yet when deriving limit values for soil. However, the R&D 
project has shown this route of human exposure to be 
the most critical exposure pathway for PCDD/Fs and dl-
PCBs from soil to humans [17]. These low soil levels for 
livestock farming have to be included in the Soil Protec‑
tion Ordinance.

3.1.2 � Regulatory framework for the management of PCBs 
and hazardous substitutes in open applications

While PCBs in closed applications, in particular 
transformers and capacitors, are addressed by regu‑
lations in industrial countries, and increasingly in 
developing countries with the implementation of the 
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Stockholm Convention, PCBs in open application are 
often neglected. However, open applications are relevant 
to exposure, and levels in the population6 are particu‑
larly elevated in countries that produced (and extensively 
used) PCBs, including in open applications, as demon‑
strated by the WHO human milk studies (e.g., Czech 
Republic and Slovakia, Germany, Italy, Russia, United 
States). These PCB-producing countries and countries 
having extensively imported PCBs  and used in  open 
applications should develop an appropriate regulatory 
framework including requirements of inventorying PCBs 
in buildings. Sweden has developed an inventory of PCBs 
in buildings and could serve as example for a suitable 
inventory and management of PCBs in construction.

Furthermore, hazardous alternatives to PCBs used in 
open applications, such as PCNs and SCCPs, need also 
an appropriate regulatory framework after they were 
listed as POPs in the Stockholm Convention in 2015 and 
2017, respectively.

3.1.3 � Controlling and limiting further contamination input 
to soil

Effective regulatory frameworks are needed to protect 
soils from further pollution input of POPs and other pol‑
lutants. Such a framework needs to regulate air emissions 
from industries and incinerators and should require the 
use of best available techniques and best environmental 
practice (BAT/BEP) for such facilities as stipulated by 
Article 5 of the Stockholm Convention. In addition, the 
amendment of soils with contaminated sludge, ashes or 
sediment needs to be avoided and restricted. To achieve 
such a protection, regulatory frames such as a regulation 
for fertilizer and other materials used for soil amendment 
is needed. The German fertilizer regulation includes lim‑
its for some POPs including PCDD/Fs, PCBs and PFOS. 
The limit for applying fertilizer to pasture land is 8  ng 
TEQ/kg dm for the sum of PCDD/Fs and PCBs [283].

3.1.4 � Information to farmers and impacted population
Information on soil and feed contamination available 
to authorities should be given to the local farmers who 
produce fodder/feed materials or keep animals outdoors. 
This should include also floodplains from industrially 
impacted rivers.

Suspected or potentially impacted areas should also be 
assessed by the authorities or the respective polluter to 
support farmers using potentially impacted land for feed 
production or for extensive animal farming. The farmer 
should be informed about the levels of contamination and 

receive support towards an appropriate management of 
food production in these areas, or towards switching to 
other uses in case (certain) food production is not feasible.

Similarly, people living or working in PCB-contami‑
nated buildings (e.g., schools, universities, and kinder‑
gartens) should be informed about the existence and 
magnitude of the pollution (“Right to know”). Appropri‑
ate guidance regarding the duration of use of the build‑
ings should be given along with this information.

3.1.5 � Damage and cost compensation by the responsible 
polluters

While farmers are normally not the polluters, they are 
currently considered responsible for safe feed and food 
production and often bear the costs when maximum 
contaminant limits are exceeded and the food product is 
restricted on the market and needs to be destroyed. How‑
ever, the cost of the damage (impacted animals, polluted 
area, cost of management measures) should be covered 
by the polluters considering the polluter pays principle 
and the extended producer responsibility. Farmers are 
not responsible for the past use of PCBs. Authorization 
and control of hazardous chemicals are regulated by law, 
and these chemicals were produced and released by com‑
panies and continue to be released via their products.

Furthermore, farmers are normally not responsible for 
the PCDD/F contamination (e.g., of areas impacted by 
industrial emissions) except for, e.g., open burning in the 
backyard or non-authorized use of waste sludge on pas‑
ture land.

In all cases where farmers were not responsible for the 
environmental pollution and feed or food contamination, 
they need to be supported by the government and finan‑
cially compensated by the polluters and producers or the 
government.

3.2 � Research needs
A range of research needs for improving food safety 
have been identified within the R&D project [280]. These 
include, for example,

Assessment of PCB- and PCDD/F-contaminated sites 
and potentially contaminated areas, especially of soils 
where animals are housed outdoors or feeds are produced:

•	 Investigation of areas contaminated with PCBs and 
the impact of remediation of buildings and construc‑
tions.

•	 Footprint/extent of PCDD/F- and PCB-contami‑
nated sites from industrial sources.

•	 Relevance of PBDD/F and PXDD/F for selected con‑
taminated sites.

•	 Long-term perspective of PCB and PCDD/F soil con‑
tamination and degradation.

6  The PCB producing countries have elevated PCB levels in human milk 
[15], indicating a higher average use of PCB most likely in open applications 
leading to higher exposure.
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•	 Monitoring of soils and feed of potentially contami‑
nated areas.

•	 Monitoring of exposed food-producing animals on 
(moderately) contaminated areas.

•	 Measurement and modeling of the spatial distribu‑
tion of PCBs and PCDD/Fs in soil contamination 
around (historical) point sources.

Research needs on PCBs in open applications:

•	 Inventory of remaining amounts of PCBs in open 
applications.

•	 Open PCB applications and their relevance as point 
sources on farms (paints in silos, feed stores, silage 
bunks, manure pits).

•	 Assessment of PCB contamination of recycling 
cycles.

•	 Long-term emission of PCBs from sealants, paints 
and coatings.

•	 Risk of increased PCB indoor exposure due to 
increased insulation of houses.

Research needs for PCDD/F and PCB release from 
emission sources:

•	 PCDD/F emission from copper salts for the purifica‑
tion of small furnaces.

•	 PCDD/F releases of ashes from biomass combustion 
and related levels and risk.

•	 Modeling PCB and PCDD/F emission around point 
sources.

Analysis and validation of exposure estimates for free-
range poultry, including eggs:

•	 Further assessment/verification of the extent of 
exposure for free-range chicken/broilers with regard 
to transfer of contaminants into meat and eggs.

•	 Examination of critical PCDD/F and PCB levels in 
soil and factors influencing uptake by chicken.

•	 Examination of free-range broilers, ducks and other 
poultry.

Assessment of the extent of exposure and problematic 
soil levels of food-producing animals to soil contamination, 
where data are weak (pigs, horses, game, ducks/geese).

Investigation of the fate of pollutants within the 
animals:

•	 Metabolism.
•	 Best indicator: Which organ reflects body load best? 

Selective accumulation in liver?

•	 Development of methods to measure the level of 
contamination in animals without slaughtering (e.g., 
in fatty secretion).

Options for management measures for reducing 
PCDD/F and PCB levels in affected cattle/sheep, and 
their effectiveness:

•	 Influence of the suckling period and the period 
between weaning and slaughter (withdrawal time).

•	 Effect of supplement feed with low PCB and PCDD/F 
levels.

•	 Breeds with low PCB/dioxin accumulation potential.
•	 Implementation of adapted pasture management 

strategies.

Options for management measures for reduc‑
ing PCDD/F and PCB levels in laying hens, and their 
effectiveness:

•	 Compilation and validation of management meas‑
ures.

•	 Review and further development of management 
measures on impacted flocks.

Research needs for PCDD/F, PCB and POP/PBT reser‑
voirs and the impact of flood events:

•	 Assessment of contamination of river sediment, 
floodplains, and other flooded areas.

•	 Inventory of PCBs, PCDD/Fs and other POPs/PBTs 
in landfills, and assessment of flooding and mobiliza‑
tion risk.

•	 Potential impact of flooding events on livestock 
(mobilization and remobilization of PCBs, PCDD/Fs 
and other POP/PBT substances in sediments).

Systematic assessment of other POPs regarding their 
life cycle similar to PCBs (Fig. 5) and their risk for envi‑
ronmental and food contamination:

•	 The use of PCB alternatives, in particular SCCPs 
(listed as POPs since 2017), MCCPs [284], and the 
related exposure of humans and food-producing ani‑
mals.

•	 PCB alternatives (in particular SCCPs and PCNs) 
and their impact on recycling cycles and potential 
exposure of livestock and humans within the circular 
economy framework.

•	 Life cycle of brominated flame retardants, their 
releases and resulting exposures.

•	 Life cycle of per- and polyfluoroalkyl substances 
(PFAS), their releases and resulting exposures.
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3.3 � Inventory of PCDD/F and PCB‑contaminated areas 
and environmental matrices

3.3.1 � Inventory of PCDD/F‑ and PCB‑contaminated areas
Due to historical pollution, PCDD/F and PCB levels in 
soil, sediments and other reservoirs should be inven‑
toried and assessed for exposure potential. Soil PCB 
and PCDD/F levels critical for potentially exposed live‑
stock should be used as a benchmark for assessing areas 
potentially contaminated with PCDD/Fs and PCBs. For 
food safety and for minimizing exposure, contaminated 
sites should by systematically screened and appropri‑
ately secured, managed and possibly remediated. Such an 
assessment could also clarify what areas are safe for pro‑
ducing feedstuffs and food products from animal origin 
(and plants/vegetables).

An assessment of POP-contaminated sites in the 182 
countries that have ratified the Stockholm Convention 
on Persistent Organic Pollutants (the Stockholm Con‑
vention) is required as part of the implementation pro‑
cess. Article 6 of the Stockholm Convention requests that 
parties “Endeavour to develop appropriate strategies for 
identifying sites contaminated by POPs”. The develop‑
ment of an inventory of potentially PCDD/F-contami‑
nated areas is, therefore, necessary, both for meeting the 
obligation to implement the Stockholm Convention and 
for food safety.

To support countries/parties in their efforts, inven‑
tory guidance documents have been developed within 
the Stockholm Convention or by UN organizations. To 
facilitate such assessments, the UNEP inventory guid‑
ance document for PCDD/Fs and other unintentional 
POPs contain a chapter on contaminated sites inventory 
in chapter  10 of the UPOPs toolkit (http://toolk​it.pops.
int/Publi​sh/Main/II_10_HotSp​ots.html). Another guid‑
ance document has been developed by United Nations 
Industrial Development Organization [285].

3.3.2 � Inventory of PCBs in open applications
One-fifth of the global PCB use was in open applications 
[109, 286, 287]. In West Germany, open use accounted 
for about one-third or more of the total PCB use [65] 
and was possibly the highest in the world. It is estimated 
that the majority (> 50%) of PCB-containing sealants and 
paints/coatings are still in use today [76, 288]. Open PCB 
applications can be found in the everyday environment 
in buildings and constructions. A systematic inventory 
of PCBs in buildings has only been developed/required 
in Sweden. In Germany, there is no national inventory of 
PCBs in buildings, not even for state-owned properties.

In industrial countries with large historic use of PCBs 
in open applications, the largest releases of PCBs stem 
from this source. The need for developing a regulatory 
framework for the inventory of PCBs in buildings and 

structures has been recognized [280, 289]. Inventory and 
control of remaining PCBs in open applications have a 
high priority for industrial countries, to lower and control 
current PCB impacts on the atmosphere and grassland, 
and the resulting burden on farm animals. If and where 
an inventory of specific open applications is important 
and useful needs to be determined. For example, it is 
estimated that PCB paints were used in 20% of outdoor 
swimming pools in Switzerland [74]. Other applications 
with potential relevance are for instance paints/coating 
used for road markings, electricity pylons, silos, stables, 
and liquid manure pits [17, 73].

Since chlorinated paraffins were a major substitute 
for PCBs in these open applications, and since SCCPs 
are listed as POPs in the Stockholm Convention as of 
05/2017, they should be included in such an assessment 
of open applications and related management.

3.3.3 � Inventory of PCDD/F‑ and PCB‑impacted sediments
PCDD/F- and PCB-contaminated sediments are consid‑
ered important reservoirs [116, 144]. However, only a few 
detailed inventories and mass flows have been compiled 
so far, to give an insight into the current total PCDD/F 
and PCB contamination of some water bodies [144, 290], 
and an estimate of the future impact of sediment loading 
in river deltas or floodplains. A detailed inventory and 
substance flow analysis might help to  predict trends in 
fish contamination or estimate the burden of food-pro‑
ducing animals grazing on floodplains.

3.4 � Reduction of PCB and PCDD/F release, management 
and reduction of exposure

The contamination of food from animal origin and the 
low levels of PCDD/F and PCB in soil at which food-pro‑
ducing animals become contaminated above EU maxi‑
mum limits highlight the need to further control and 
reduce releases into the environment.

3.4.1 � PCB in open applications and reduction of emissions
For industrial countries with significant former use of 
PCBs in open application, the remaining PCBs, mainly 
in the construction sector, have a significant emission 
potential as demonstrated for Germany (7–12  t PCB/
year). Furthermore, extreme high release occurs if paints 
or sealants are sandblasted or otherwise removed with‑
out proper technology or waste management measures 
[73, 75, 76]. Even with BAT control, 5–10% of PCBs are 
released into the environment when removing paints 
from outdoor construction [72, 70].

Therefore, inventorying and control of remaining 
PCBs in open applications is important for lowering 
and controlling current PCB impacts on the atmosphere 
and grass, and the resulting burden on food-producing 

http://toolkit.pops.int/Publish/Main/II_10_HotSpots.html
http://toolkit.pops.int/Publish/Main/II_10_HotSpots.html
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animals. PCBs from open applications can also impact 
construction debris. The recycling/reuse of such materi‑
als around farms or grazing areas can result in exposure. 
Other POPs also need to be inventoried, controlled and 
managed, and their exempted uses phased out as soon as 
possible (see below).

3.4.2 � Management of remaining PCBs in closed applications
While PCBs in transformers and capacitors have already 
largely been disposed in the EU and a range of other 
industrial countries, developing countries are still strug‑
gling with inventory, management and exports for 
destruction. The most recent global inventory estimated 
that 14 million tonnes of PCB-contaminated equipment 
and waste oils must still be managed and destroyed [109]. 
Contamination from PCB use and inappropriate end-of-
life management and the associated long-term impacts 
from contaminated soils, sediments and feed highlight 
the urgent need to progress faster compared to the past 
10  years of Stockholm Convention implementation, in 
particular when considering that PCB oils are currently 
recycled in part for cream and pomade, underbody pro‑
tection of cars or welding operations [110, 291], and 
PCB-contaminated equipment is sold for recovering of 
metals in many developing countries.

With treatment costs of 1000–5000 USD per tonne 
(including packing, transport, and destruction), manage‑
ment of the remaining PCB equipment and contaminated 
oil would amount to an estimated global cost of 14–70 
billion USD. The overall GEF funding available for POP 

management is less than 1 billion USD for GEF 7. There‑
fore, additional funding for PCB management is needed. 
Following the extended producer responsibility principle 
[292], the original PCB producers should help manage 
and destroy their former products.

3.4.3 � Reduction and minimization of PCDD/F emissions
As mentioned above, the PCDD/F emissions to air have 
significantly decreased in Germany, Japan and most 
industrial countries in the last 30 years (Fig. 6; [10]), and 
are mostly below levels of concern. However, one increas‑
ing source of PCDD/F release in European countries is 
the use of copper salts for burning off deposited soot in 
wood and coal stoves. This is basically facilitating and 
optimizing PCDD/F formation and release by degrada‑
tion of soot and PAHs by de novo synthesis using the best 
catalyst (copper) for PCDD/F formation [293, 294]. The 
salt is broadly marketed and increases PCDD/F release 
from wood stoves 1000–10,000 times [224].

The situation in developing countries is different. 
While PCDD/Fs are considered within the framework 
of the Stockholm Convention and PCDD/F inventories 
have been developed in most developing countries, the 
release of PCDD/Fs has not been reduced due to the lack 
of improved waste management measures as well as the 
lack of capacity and funding to implement best available 
techniques and best environmental practice (BAT/BEP) 
in industries. A range of updated PCDD/F inventories in 
developing countries even show an increase in PCDD/F 
release due to increased consumption and release in 

Fig. 6  Historic release of PCDD/Fs into the environment of Japan [295, 130]
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uncontrolled incineration processes such as open waste 
burning [291, 296]. In addition to landfill fires, waste 
is often burned in backyards and along streets where 
chicken, goats and cattle forage for food, leading to expo‑
sures. Large areas are at risk of becoming contaminated 
over time leading to exposure, similar to the Campania 
region in Italy [239].

3.4.4 � Reduction of PCDD/F and PCB intake by reducing food 
of animal origin and co‑benefits

Meat and dairy products (milk) and fish are major 
sources of PCDD/F and PCB intake with lower impact 
from vegetables [12]. Therefore, an overall reduction of 
food from animal origin reduces the exposure to these 
POPs. PCDD/F, PCBs and other accumulated carcino‑
gens in meat are considered a cause of increased cancer 
rates with increased red meat consumption [297, 298]. 
A reduction of red meat consumption (in particular pro‑
cessed red meat), therefore, also reduces the associated 
cancer risk but also other meat-related diseases such as 
cardiovascular disease, type 2 diabetes, as well as total 
mortality, in both men and women [298–300]. A more 
vegetable- and fruit-based diet reduces the overall mor‑
tality [301].

Furthermore, the reduction of meat consumption also 
significantly reduces the ecological footprint of food 
[302]. Therefore, overall the reduction of high meat con‑
sumption can combine reduced health risks and reduced 
ecological footprint for a more healthy and sustainable 
nutrition [303, 304].

3.5 � Assessment of emerging POPs of concern
Within the R&D project for the German Environment 
Agency, the focus was on PCDD/Fs and PCBs since they 
are regulated in foodstuff in the EU along with a few POP 
pesticides [13, 14]. Most other POPs, in particular newly 
listed industrial fluorinated and brominated POPs, are 
not regulated in feed and food globally. However, these 
and other POP-like substances accumulate in food of 
animal origin, potentially leading to food contamination, 
and should, therefore, be assessed. The magnitude of 
accumulation of some of these pollutants has been docu‑
mented in research studies:

3.5.1 � Brominated and brominated–chlorinated PBDD/Fs 
and PXDD/Fs

Brominated dioxins and furans (PBDD/Fs) have toxicities 
similar to those of PCDD/Fs and are, therefore, of con‑
cern [305, 306]. The UK food authority conducted a com‑
prehensive survey on PCDD/Fs, PBDD/Fs and PXDD/Fs 
(mixed halogenated dioxins/furans) in British food, high‑
lighting that up to 30% of TEQ could stem from PBDD/
Fs, and an additional 20–50% from PXDD/Fs [307]. Eggs 

from free-range hens in Thailand and China have been 
found highly contaminated with PBDD/Fs [33]. PBDD/
Fs are even formed from PBDEs during cooking of fish 
[308]. In Sweden, the PBDD/F-TEQ contribution to 
human background contamination reached up to 15% 
of TEQ [309], and firefighters in the USA had 20 times 
higher TEQ levels from PBDD/Fs compared to PCDD/Fs 
in their blood [310]. The major source of PBDD/Fs is aro‑
matic brominated flame retardants, in particular PBDEs 
[311–313]. Based on measurements in e-waste plastic, 
it is estimated that the more than 1.3 million tonnes of 
PBDEs produced and used in consumer articles could 
have caused a total PBDD/F contamination in polymers 
in the order of 1000 t [312]. They are formed in the life 
cycle of PBDE-containing products, with highest releases 
at the end-of-life [314].

3.5.2 � Chlorinated paraffins
Chlorinated paraffins (CPs) are the chlorinated semi‑
volatile organic compounds with the highest production 
volume (1 million tonne/year), and were main substi‑
tutes for PCBs in open applications [315]. In May 2017, 
short-chain chlorinated paraffins (SCCPs) were listed as 
POPs under the Stockholm Convention, with a range of 
exempted uses [109]. For medium-chain chlorinated par‑
affins (MCCPs), a recent review also documented similar 
persistence and accumulation challenges [284]. Chlorin‑
ated paraffins bioaccumulate in meat/fat [316, 317] and 
might pose a risk for the future safe production of food 
from animal origin, considering their large use volumes 
in open applications and bioaccumulation potential. High 
levels of chlorinated paraffins (short-, medium- and long-
chain chlorinated paraffins) have been detected in wild‑
life in China, accounting for more than 95% of all POPs 
detected in the biota [318, 319]. CPs in sewage sludge are 
in the mg/kg range [320, 321], and are currently trans‑
ferred to agricultural soils via this pathway, accumulating 
and eventually contaminating food-producing animals 
and wildlife. SCCPs and MCCPs are also transferred 
from food contact materials such as baking ovens [322] 
or food blenders [323] to food and human intake.

3.5.3 � Polybrominated flame retardants
In 2009, some brominated flame retardants were listed 
as POPs under the Stockholm Convention, including 
polybrominated diphenyl ethers (PBDEs) and  polybro‑
minated biphenyls (PBBs) and in 2013  hexabromocy‑
clododecane (HBCD)  was listed. The significance of 
contaminated soils and sediments to food contamina‑
tion has been demonstrated for PBDEs [33, 324, 325]. 
Human exposure via eggs was shown to be a major path‑
way from e-waste recycling sites in China [324, 325]. In 
North America, where the largest amount of PBDEs has 
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been used in the past [326], PBDE exposure of cattle/
meat resulted from application of sewage sludge/biosol‑
ids [327]. For HBCD direct exposure of chicken and con‑
tamination of eggs have been documented [33, 328].

3.5.4 � PFOS, PFOA and other per‑ and polyfluorinated 
alkylated substances (PFAS)

In 2009, the first fluorinated POPs,  perfluorooctanesul‑
fonic acid (PFOS) and related precursor chemicals, were 
listed under the Stockholm Convention. Widespread 
environmental pollution was discovered for PFOS, PFOA 
(perfluorooctanoic acid) and other PFAS. These POPs 
can bioaccumulate in meat [329]. The transfer and expo‑
sure of PFOS from soil to food animals have been dem‑
onstrated and reviewed showing that exposure from soil 
is a significant exposure pathway that needs to be consid‑
ered in the assessment of human PFOS exposure [330]. 
Transfer factors from environmental contamination 
to food animals have been established for PFOS [330]. 
Assessments of a PFOS/PFAS-contaminated site impact‑
ing the groundwater of a farm have shown highest PFOS/
PFAS levels in cattle, up to ppm level in blood [331]. Due 
to their water solubility, PFAS can accumulate in vegeta‑
bles, fruits and grain, which can become an important 
exposure pathway for humans. Currently, more than 
4000 PFAS are in use [332]. All are highly persistent or 
have highly persistent degradation products [333]. There 
are currently no limit values in soil or food. Only PFOS/
PFOA and a few other PFAS have drinking water health 
advisories or limits (e.g., [334, 335]).

3.5.5 � Other pollutants of concern
POPs are only one group of soil pollutants of concern 
[36]. FAO/ITPS considers the following other soil pollut‑
ants [35]:

•	 Inorganic compounds (e.g. heavy metals, metallic 
trace elements, metalloids and radionuclides).

•	 Other organic compounds (e.g. xenobiotic mole‑
cules, antibiotics, polycyclic aromatic hydrocarbons, 
mineral oil).

•	 So-called “chemicals of emerging concern” (CECs) in 
soil amendments (e.g., antibiotics in manure). CECs 
also include, for example, nanoparticles, pharma‑
ceuticals and personal care products, estrogen-like 
compounds, antibiotics and hormones, flame retard‑
ants, detergents, currently used pesticides, plastics 
and microplastics, PFAS, various industrial chemical 
additives  such as softeners,  UV-stabilizers  and anti‑
oxidants, and pollutants from open burning of elec‑
tronic waste, such as chlorinated and brominated 
polycyclic aromatic hydrocarbons.

•	 Some organic wastes that can enhance the risk of 
spreading infectious diseases (e.g., untreated biosol‑
ids and wastewaters).

For a comprehensive and holistic protection of soils for 
sustainable food production, all these pollutants need to 
be monitored and controlled. One challenge is the impact 
of mixture toxicity, which is currently not considered in 
risk assessment. Furthermore, only approximately 100 
chemicals are currently addressed by soil regulations, 
while approx. 140,000 chemicals are used in industrial 
applications and consumer products, with more than 500 
of these chemicals having POP properties [336].

Bold approaches are needed to protect the soil and the 
environment from further pollution and degradation, 
such as the EU DG Environment strategy for a non-toxic 
environment, which is conducive to innovation and the 
development of sustainable substitutes, including non-
chemical solutions [337, http://ec.europ​a.eu/envir​onmen​
t/chemi​cals/non-toxic​/index​_en.htm].

3.6 � Management of pollutants and contaminated sites 
for safe food production

As mentioned in Sect. 2.7, there are a range of manage‑
ment measures for livestock farming, to reduce exposure 
on moderately contaminated areas. They have already 
been applied in a few cases, and have potential to be fur‑
ther developed and optimized.

3.6.1 � Further compilation of practical experience 
regarding food contamination pathways

Experiences regarding PCDD/F and PCB exposure of 
food-producing animals have been compiled (Sect.  2.2; 
Figs. 1, 5). Further such experiences should be gathered 
and made public, to help mitigate exposure pathways, 
including for other POPs groups used in the techno‑
sphere (PFOS and other PFAS; PBDEs and other bro‑
minated flame retardants (BFRs); SCCPs) (for initial 
information see Sect.  3.5). These chemicals might have 
different exposure pathways due to different techni‑
cal uses in products and different physico-chemical 
properties.

3.6.2 � Guidance documents from international organisations 
and governments

To support safe food production and to avoid PCDD/F-, 
PCB- and other POP contamination of food of animal 
origin (meat, milk and eggs), international organisations 
and governmental bodies have developed some guidance 
documents.

The Food and Agriculture Organization (FAO) pub‑
lished the “Code of Practice for the Prevention and 

http://ec.europa.eu/environment/chemicals/non-toxic/index_en.htm
http://ec.europa.eu/environment/chemicals/non-toxic/index_en.htm
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Reduction of Dioxin and Dioxin-like PCB Contamination 
in Food and Feeds” in 2006 [338].

Several documents were developed at the EU level, e.g., 
“Evaluation of the Occurrence of PCDD/PCDF and POPs 
in Wastes and Their Potential to Enter the Food Chain” 
[18] or “Guidelines for the enforcement of provisions on 
dioxins in the event non-compliance with the maximum 
levels for dioxins in food” [339].

Guidance documents have also been developed at a 
national level. For instance, the German Environmental 
Ministry has published a guidance on “Environmental 
protection—pillar for food safety to avoiding dioxin and 
PCB entry” [10]. The Chamber of Agriculture of the fed‑
eral state of Lower Saxony developed leaflets for farmers 
on controlling PCDD/F and PCB input, and on cultiva‑
tion on contaminated land [340, 341].

The recently developed national guidance documents 
consider more recent findings, which might be included 
in a possible update of the FAO Code of practice [338]. 
Some of the findings described in this review article, 
including the significance of soils, contaminated areas, 
and options for management measures and systematic 
screening could be considered in a possible update.

3.6.3 � Cooperation between competent authorities
Often, specific information is managed by a certain min‑
istry or regional authority. The topic of food contamina‑
tion from the environment is a cross-cutting issue for the 
Ministry of Environment and the ministry responsible 
for food safety. To effectively address this topic, a close 
collaboration among ministries is needed. For instance, 
data on contaminated sites/contaminated water bodies 
are normally managed by the environmental ministry, 
whereas data on contamination of feed/food are nor‑
mally handled by the ministry/authority responsible for 
food safety. These datasets need to be brought together 
to assess the impact of contaminated sites and waters on 
feed/food contamination. Furthermore, information on 
potentially contaminated sites could be used for devel‑
oping monitoring strategies for food-producing animals. 
Competent authorities should cooperate and inform 
potentially affected people.

3.6.4 � Inventory of POP‑contaminated sites and updating soil 
standards to better consider livestock

Under the framework of the Stockholm Convention, 
inventory guidance documents for the newly listed 
POPs (PFOS, PBDEs, HBCD, PCNs, PCP and HCBD) 
have been developed, including a chapter on contami‑
nated sites [154, 155, 342– 345]. Developing inventories 
of POP-contaminated sites, securing and, where feasi‑
ble, remediating these sites can improve feed and food 

safety, while contributing to achieving several Sustainable 
Development Goals (see below) [346].

No soil standards have yet been developed for PFOS, 
PFOA, PBDEs or PBDD/Fs, even though human expo‑
sure via livestock has been demonstrated for these 
POPs (see above) [346]. To establish soil standards, the 
most critical exposure pathway (in terms of animals for 
food production) should be considered. For the rea‑
sons detailed above, this pathway is the consumption of 
meat/eggs from chickens that ingest polluted soil. Higher 
soil contamination limits might be established for less-
exposed animals—although, again, particular care needs 
to be taken in relation to those animals whose liver or 
kidneys are consumed, such as pigs, beef and sheep.

Environmental Quality Standards (EQS) are concentra‑
tions of pollutants in water, sediment or biota that were 
derived to protect the aquatic environment and human 
health. EQS have been proposed by the EU Water Frame‑
work Directive and the Marine Framework Directive. The 
most sensitive protection goal for the derivation of EQS 
for dioxins and dioxin-like compounds was the protec‑
tion of human health via consumption of fishery prod‑
ucts. For those POPs lacking regulatory limits in food 
legislation, such EQS have been tailored according to 
toxicological guidance values for the consumption of fish 
and seafood in high consumers. This could possibly serve 
as model for other food and EQS for soils.

In addition to POP limits in soil, surface water and 
groundwater contamination are relevant for water-solu‑
ble POPs such as PFOS, PFOA and other PFAS. Limits 
for water are likely to be particularly important when 
groundwater or surface water is used for human or ani‑
mal drinking water, for irrigation, or for aquaculture or 
fishing [346].

Soil pollution must be assessed in an integrated man‑
ner. POPs covered by the Stockholm Convention, which 
is ratified by 182 countries, could be a “vehicle” to initiate 
a more holistic soil pollution assessment, particularly in 
countries with developing and emerging economies often 
having no cadastre of polluted sites.

3.7 � Contribution towards the implementation 
of the sustainable development goals

As mentioned above, soil pollution has been highlighted 
by FAO as one of the ten major soil threats identified in 
the 2015 Status of the World’s Soil Resources report [35]. 
There is a direct link between the quality and safety of the 
food we eat and the level of soil pollution. Soil pollution 
has a direct impact on food security [338]. Therefore, soil 
protection and avoidance of further pollution and appro‑
priate management of contaminated soils is needed for 
sustainable development. Several goals and indicators 
of the United Nations Sustainable Development Goals 
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(SDGs) are of direct relevance to POPs pollution and 
other type of contaminated sites and soils [346]:

•	 Goal 2: End hunger, achieve food security and 
improved nutrition, and promote sustainable agricul‑
ture.

•	 Goal 3: Ensure healthy lives and promote wellbeing 
for all at all ages (specifically Target 3.9: By 2030, sub-
stantially reduce the number of deaths and illnesses 
from hazardous chemicals and air, water and soil pol-
lution and contamination).

•	 Goal 6. Ensure availability and sustainable manage‑
ment of water and sanitation for all (specifically 
Target 6.3: By 2030, improve water quality by reduc-
ing pollution, eliminating dumping and minimizing 
release of hazardous chemicals and materials, halving 
the proportion of untreated wastewater and substan-
tially increasing recycling and safe reuse globally).

•	 Goal 11: Make cities and human settlements inclu‑
sive, safe, resilient and sustainable.

•	 Goal 12: Ensure sustainable consumption and pro‑
duction patterns (specifically Target 12.4: By 2020, 
achieve the environmentally sound management of 
chemicals and all wastes throughout their life cycle, 
in accordance with agreed international frameworks, 
and significantly reduce their release to air, water and 
soil in order to minimize their adverse impacts on 
human health and the environment).

•	 Goal 15: Protect, restore and promote sustainable 
use of terrestrial ecosystems, sustainably manage 
forests, combat desertification, halt and reverse land 
degradation, and halt biodiversity loss (specifically 
Target 15.1: By 2020, ensure the conservation, resto-
ration and sustainable use of terrestrial and inland 
freshwater ecosystems and their services, in particular 
forests, wetlands, mountains and dry lands, in line 
with obligations under international agreements; and 
Target 15.3: By 2030, combat desertification, restore 
degraded land and soil).

Soil pollution prevention by improved chemical and 
waste management and the management of contami‑
nated soils need to be part of the activities for the imple‑
mentation of these Sustainable Development Goals.
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