Schwerpunktthema II: Funktion des Bodens

Originalarbeit

Hydrochemie von Waldquellen des Fichtelgebirges

- Ein Indikator für den Stoffhaushalt von Waldökosystemen

Einfluß von Waldschäden, Kalkung und Boden auf den Nitrat-Austrag

W. Durka¹, E.-D. Schulze²

¹ Bayreuther Institut für Terrestrische Ökosystemforschung – BITÖK, Universität Bayreuth, Postfach 10 12 51, D-W-8580 Bayreuth
 ² Universität Bayreuth, Lehrstuhl für Pflanzenökologie, Postfach 10 12 51, D-W-8580 Bayreuth

Zusammenfassung. Mit der Beschreibung der aktuellen Hydrochemie von Waldquellen des Fichtelgebirges (NO-Bayern) wird hier erstmals eine Region in Bayern untersucht, die besonders stark von Waldschäden betroffen ist. Zugrunde liegt ein wasserchemischer Datensatz von 165 Quellen (Tabellen 1 – 5). Die durch hohe Nitrat-, Sulfat- und Aluminiumkonzentrationen charakterisierte Hydrochemie der Quellwässer wird von Waldschäden, Kalkungsmaßnahmen und Bodentyp der Einzugsgebiete beeinflußt.

Modellrechnungen ergeben maximale Stickstoff-Austräge von 40 kg Nitrat-N/ha*a, die darauf hindeuten, daß sich die Waldökosysteme des Fichtelgebirges zum Teil im Zustand der Stickstoff-Sättigung befinden. N-gesättigte Ökosysteme, die keine weitere Speicherkapazität für Stickstoff besitzen, werden alle N-Einträge in Form steigender NO₃-Austräge an nachgeschaltete aquatische Ökosysteme weitergeben.

Abstract.

The Hydrochemistry of Forest Springs in the Fichtelgebirge The hydrochemistry of forest springs was investigated in the Fichtelgebirge, a region in NE Bavaria (F.R.G.) which is strongly affected by forest decline. Data were collected from 165 springs (Tables 1-5). Water chemistry is characterized by high concentrations of nitrate, sulfate and aluminium and is influenced by forest decline, liming and soil type of the catchment.

Model calculations show maximal N-outputs of 40 kg nitrate-N/ha*a indicating N-saturation in some forest ecosystems of the Fichtelgebirge. N-saturated ecosystems without buffercapacity for Nitrogen will release all further N-inputs as NO₃ to the aquatic ecosystem.

1 Einleitung und Problemstellung

Waldökosysteme werden traditionell als Stickstoff-limitierte Ökosysteme betrachtet, die einen weitgehend geschlossenen N-Kreislauf mit geringen N-Verlusten haben (ABER et al., 1989). Unter solchen Bedingungen weist das unter Wald gebildete Grundwasser sehr geringe NO_3 -Konzentrationen auf. Durch die Untersuchungen über die Ursachen der Waldschäden wurde deutlich, daß die Annahme eines geschlossenen N-Kreislaufes sowohl für geschädigte als auch für äußerlich gesund aussehende Bestände *nicht* richtig ist (Forschungsbeirat Waldschäden 1989). Bedingt durch die atmosphärischen S- und N-Einträge und durch hohen NO_3 -Anteil an den N-Einträgen, der vom Pflanzenbestand nicht verwertet werden kann, kommt es zu einem bemerkenswerten Austrag von Nitrat und Sulfat in tiefere Bodenschichten. Durch den gleichzeitigen Austrag von basischen Kationen und Schwermetallen wird der Vorgang der Bodenversauerung über die in natürlicher Weise ablaufenden Versauerungsprozesse hinaus beschleunigt (ULRICH 1987). Wie Modellrechnungen zeigen, ist die bodenversauernde Wirkung von NO_3 dabei effektiver als die von SO₄, das im Bodenprofil gebunden werden kann (KAUPENJOHANN et al., 1989). Eine NO_3 -Speicherung findet dagegen im Boden nur in geringem Ausmaß statt.

Erreichen die N-Verluste in das Grundwasser das Maß der N-Einträge und hält dieses Ungleichgewicht langfristig an, so befindet sich das entsprechende Ökosystem im Zustand der Stickstoff-Sättigung (AGREN & BOSATTA 1988; ABER et al., 1989). Die Folge sind Nährstoffungleichgewichte, physiologische Veränderungen, Vegetationsveränderungen und die Belastung des Grundwassers sowie nachgeschalteter aquatischer Ökosysteme (GRENNFELT & HULTBERG 1986; KÖLLING 1990). Die mögliche Beeinträchtigung der Wasserqualität von Wässern aus Waldgebieten durch erhöhte NO₃-Austräge wurde von verschiedenen Autoren diskutiert (BRECHTEL 1989; BÜCKING 1988).

Bisher vorliegende wasserchemische Untersuchungen umfassen meist nur wenige Quellen oder Bäche (QUADFLIEG 1990; FÖRSTER 1990; BALAZS 1990; KÜGEL & SCHMITT 1991), so daß nur in Ausnahmefällen gebietsrepräsentative Angaben gemacht werden können (ZÖTTL et al., 1985; PU-HE & ULRICH 1985; HEINRICHS et al., 1986). Für die Beurteilung der Rolle des NO₃ muß außerdem gewährleistet sein, daß keine durch Landwirtschaft oder Siedlungen bedingten N-Kontaminationen vorliegen. Für Bayern fehlen solche flächenhaften Untersuchungen.

In dieser Arbeit wird erstmals eine Region in Bayern untersucht, die besonders stark von Waldschäden betroffen ist. Es wird die aktuelle Hydrochemie von Waldquellen des Fichtelgebirges beschrieben und vor allem der Austrag an Nitrat unter stoffhaushaltlichen Gesichtspunkten diskutiert.

2 Untersuchungsgebiet

Das Fichtelgebirge bildet die höchsten Erhebungen der nordbayerischen Mittelgebirge. Unter einem Mantel von metamorphen Phylliten und Paragneisen, der im Süden und Westen des Gebietes vorherrscht, dringen im zentralen und nördlichen Teil Granite an die Oberfläche. Diese Gesteine bilden die Grundlage für eine Bodenentwicklung, die zu sauren, nährstoffarmen, z.T. podsolierten Braunerden führte. Die vorherrschende Vegetation sind Fichtenforste mit geringen Laubwaldanteilen (REIF 1989). Die Nähe zu thüringischen und tschechischen Braunkohlerevieren führte zu starken grenzüberschreitenden S-Immissionen. Die Hauptwindrichtung ist West mit erhöhten N-Immissionen (EIDEN 1989). Die Stoffeinträge im Fichtelgebirge belaufen sich in Fichtenforsten auf ca. 20 - 30 kg N/ha \cdot a und ca. 50-60 kg S/ha · a (HANTSCHEL 1987; HORN et al., 1989).

Die hydrogeologischen Verhältnisse sind im Gebiet sehr vielfältig, entsprechend der geologischen und orographischen Differenzierung. In den Hochlagen über 800 m, die das zentrale Granitmassiv bildet, sind geringmächtige von Blockschutt überdeckte Böden mit geringer Wasserspeicherfähigkeit ausgebildet. Hier herrscht oberflächennahe Wasserführung vor. An den Hängen bildet sich auf dichten eiszeitlichen Fließerden Hangwasserzug, der z.T. bei ca. 800 m in Quellen mündet oder sich in tiefere Hanglagen bewegt (REISSMANN 1958). Häufig, vor allem an Unterhängen und flachen Hängen, kommt es zur Ausbildung von Hangmooren und Anmoorgleyen an Wasseraustrittstellen. Neben den oberflächennahen Wasserleitern bestehen Kluftwasserleiter, die z.T. in Quellen an Unterhängen münden (STETTNER 1958). In den aus Phylliten aufgebauten und von einem stärkeren Zersatzmantel überdeckten flacheren Randgebieten treten neben den aus Hangwasser gespeisten Quellen auch Grundwasserquellen auf.

3 Methoden

In der Zeit von Juli 1989 bis März 1991 wurden Wasserproben aus Quellen oder Quellbächen entnommen, die in geschlossenen Waldbeständen entspringen und nicht an landwirtschaftlich genutzte Flächen grenzen. Von 165 Quellen liegen aus 1 - 10 Beprobungen insgesamt 749 Proben vor, deren Daten für jede Quelle gemittelt wurden. Im Gelände wurden Wassertemperatur, pH und Leitfähigkeit (LF) bestimmt. Die chemische Analyse der Anionen NO₃, SO₄ und Cl wurde mit ionenchromatographischen Methoden (Methrom, DIONEX) durchgeführt; die Bestimmung der Kationen Mg, Ca, K, Na erfolgte per Flammen-AAS (PERKIN-ELMER). Bei einem Teil der Proben wurde Gesamt-Al per Graphitrohr-AAS (VARIAN) in angesäuerten Proben (1 % HNO₃) bestimmt. Eine Bestimmung der Al-Speziierung wurde nicht durchgeführt; wie STENZEL und HERRMANN (1988, 1990) aber zeigten, dominieren in DOC-armen Wässern des Fichtelgebirges die monomeren anorganischen Aluminiumspezies. Bei Stichprobenmessungen konnte NH₄ bei einer Nachweisgrenze von 10 μ Mol/l NH4 nicht nachgewiesen werden. Als Maß für die KonzenZusatzinformationen über den Waldzustand der Quelleinzugsgebiete wurden aus einer Waldschadenskarte (Stand 1985, ergänzt 1989) im Maßstab 1 : 50 000 entnommen (Oberforstdirektion Bayreuth). Diese weist drei Klassen aus:

- (1) gesunde Bestände (Schadklasse 0 2 der amtlichen Nomenklatur (Forschungsbeirat Waldschäden (1990))
- (2) Bestände in kleinflächiger Auflösung (Schadklasse 3)
- (3) Bestände in großflächiger Auflösung (Schadklasse 4-5).

Die beiden Klassen der in Auflösung befindlichen Bestände wurden für die vorliegende Arbeit als "geschädigt" zusammengefaßt. Weite Teile des Staatswaldes im Fichtelgebirge wurden zwischen 1985 und 1989 mit Dolomit $(2,5 - 3,0 \text{ t/ha CaMg}(CO_3)_2)$ gekalkt. Die entsprechende Information für die Qelleinzugsgebiete wurde einer Kalkungskarte (Stand Ende 1988) entnommen (Oberforstdirektion Bayreuth).

Die Quellen wurden einem von drei Quelltypen zugeordnet:

- (I) gefaßte Quellen und Brunnen
- (II) natürliche Quellen guter Schüttung und Quellbäche
- (III) natürliche Quellen sehr geringer Schüttung und Humussickerwässer.

Zum Vergleich mit Stoffeintragsangaben wurden die NO_3 -Konzentrationen in flächenbezogene Stoff-Flüsse umgerechnet, indem die Konzentrationen (μ Mol/l) mit der jährlichen Versickerungsrate von ca. 700 l/m² (SCHULZE et al., 1989) multipliziert wurde.

4 Statistik

Um normalverteilte Grundgesamtheiten zu erhalten, wurden die Konzentrationen einer logarithmischen, zweifachlogarithmischen oder einer Wurzel-Transformation unterzogen. Zur Prüfung der Effekte von Kalkung, Waldschäden und Quelltyp auf die Ionen-Konzentration wurden diese als Faktoren einer Varianzanalyse mit der Meereshöhe als Kovariate eingesetzt. Die statistische Auswertung erfolgte mit dem Programm SPSS/PC+ (NORUSIS 1988).

5 Ergebnisse

Entsprechend den basenarmen, wenig puffernden Ausgangsgesteinen handelt es sich bei den Quellwässern des Fichtelgebirges um saure, weiche, gering mineralisierte Wässer (\rightarrow Tabelle 1; Anhang, Tabelle 5, S. 224).

5.1 Nitrat

Die räumliche Verteilung der NO₃-Konzentrationen weist keine deutlichen geographischen Muster auf ($\rightarrow Abb. 1$). Einzig im Süden des Gebietes treten vermehrt Konzentrationen unter 100 μ Mol/l auf. Quellen mit hohen und nied-

	NO ₃	SO₄ −	Cl ¹	Mg μMol/l	Ca -	к -	Na² -	AI -	рН	Alk µeq/l	LF µS/cm	UV 1/m
Mittel	103	167	53	51	59	32	129	29	4,98	- 131	82	0,064
StdAbw	72	106	16	43	76	16	49	28		188	51	0,079
Min	1	15	26	9	1	4	16	1	3,46	-717	26	0,007
Мах	418	612	99	260	785	80	258	130	6,95	389	418	0,425

 Tabelle 1: Wasserchemische Daten der Waldquellen des Fichtelgebirges 7/1989 – 2/1991. Dargestellt sind Mittelwert, Standardabweichung, Minimum und Maximum, berechnet aus den Jahresmitteln

^{1, 2} Um anthropogene NaCl-Kontaminationen auszuschließen, wurden nur ¹Werte < 100 μMol/l bzw. nur ²Werte < 300 μMol/l berücksichtigt; LF = Leitfähigkeit; UV = UV-Absorption in 1/m

rigen NO_3 -Konzentrationen können unweit voneinander vorkommen. Diese kleinräumige Variabilität verweist auf lokale Standortsverhältnisse der Quelleinzugsgebiete als Ursache der unterschiedlichen NO_3 -Austräge. Granit) und Quelltyp (Typ I, II – III) wurde in einer Drei-Weg-Varianzanalyse getestet. Als Kovariate wurde zudem die Höhenlage eingesetzt, um mögliche Höhenabhängigkeiten der Variablen zu bereinigen. Für die drei Faktoren Waldschaden, Kalkung und Quelltyp ergab sich jeweils ein signifikanter Einfluß auf die Nitratkonzentration (\rightarrow Tabelle 2).

Der Einfluß von Waldschäden (geschädigt – ungeschädigt), Kalkung (gekalkt – ungekalkt), Geologie (Phyllit –

Abb. 1: Übersichtskarte des Untersuchungsgebietes mit Quellstandorten und ihren NO3-Konzentrationen

Tabelle 2: Einfluß der Faktoren Waldschäden, Kalkung, Quelltyp und Geologie auf die Wasserchemie der Waldquellen (Konzentrationsangaben in μMol/l; UV-Adsorption in 1/m). Signifikante Unterschiede der Varianzanalyse mit Irrtumswahrscheinlichkeit*: p < 0,05; **p < 0,01:***: p < 0,001

	N 1	Waldschäden			Kalkung			Quelltyp		Geologie			
	-	+	Sig.	-	+	Sig.	1,11	11	Sig.	Ph	Gr	Sig.	
n	98	67		139	26		122	44		60	106		
NO3	80	138	***	96	144	**	118	66	***	84	115		
SO₄	154	181	* *	162	180		169	149		139	178	***	
Cl1	54	53		53	53		55	49		52	54		
Ca	57	63		56	77		64	44		44	68	٠	
Mg	57	49		50	58	* *	55	42	•	64	44		
к	31	34	**	33	27		33	29		28	34	**	
Na²	122	117		120	121		123	11 1		95	136	***	
Al	20	43	*	27	58		31	24		21	34		
pН	5,14	4,75	*	4,99	4,92	٠	5,01	4,88		5,16	4,88		
υv	0,046	0,083	*	0,065	0,052		0,057	0,092	* *	0,052	0,068		

Von den 165 untersuchten Quellen weisen 41 % Waldschäden im Einzugsgebiet auf. Diese geschädigten Flächen weisen gegenüber den ungeschädigten eine mittlere Erhöhung der NO₃-Konzentration um 73 % auf (\rightarrow Tabelle 2). Erhöhte NO₃-Austräge geschädigter Flächen sind sowohl bei gekalkten als auch bei ungekalkten Flächen zu beobachten (\rightarrow Tabelle 3).

16 % der Quellen liegen im Einzugsbereich gekalkter Waldbestände. Der mittlere NO_3 -Austrag gekalkter Bestände liegt 50 % über dem der ungekalkten. Die Erhöhung der NO_3 -Austräge ist dabei sowohl bei geschädigten als auch, bei absolut niedrigeren Konzentrationen, bei *ungeschädigten* Flächen nachweisbar (\rightarrow Tabelle 3).

Obwohl Quellen auf Phyllit zu niedrigeren NO₃-Konzentrationen tendieren als solche auf Granit, läßt sich ein Einfluß der Geologie des Einzugsgebietes nicht sichern (\rightarrow *Tabelle 2*). Dies kann allerdings damit zusammenhängen, daß Waldschäden und Geologie nicht unabhängig voneinander variieren und sich somit keine von Waldschäden unabhängigen Effekte der Geologie nachweisen lassen.

Der Quelltyp hat signifikanten Einfluß auf die NO₃-Konzentrationen (\rightarrow Tabelle 2). Die Mittelwerte der Quelltypen I, II und III fallen von 145 über 100 zu 66 μ Mol NO₃/l. Dieser Gradient kann damit erklärt werden, daß Wässer des Quelltyps I mit ihren stärkeren Schüttungen kurze Verweilzeiten im Boden haben und tieferen Wasserleitern entstammen, so daß mikrobieller NO₃-Abbau und

Tabelle 3: NO3-Konzentrationen (μ Mol/l) von Waldquellen unter
dem Einfluß von Waldschäden und Kalkung. Alle Unter-
schiede sind signifikant (p < 0,05)</th>

	Kalkung						
Waldschaden	-	+					
+	75	115					
	130	169					

pflanzliche Aufnahme nur begrenzt stattfinden können. Wässer des Quelltyps III unterliegen dagegen dem zunehmenden Einfluß von Denitrifizierung, da sie geringe Fließgeschwindigkeiten und lange Verweilzeiten unter anaeroben Bedingungen im vernäßten Oberboden aufweisen. Die Beeinflussung durch biologische Prozesse bei diesem Quelltyp wird auch belegt durch die negative Korrelation (r = -0,364, r < 0,01) der NO₃-Konzentration mit der Wassertemperatur (Probenahme August 1989). Höhere Temperaturen zeugen dabei von langen Verweilzeiten im Oberboden und stellen gute Voraussetzungen für mikrobielle Aktivität dar, die zu NO3-Abbau führt. Die Wässer des Typs II nehmen bezüglich Fließgeschwindigkeit und NO3-Abbau eine Mittelstellung zwischen Typ I und III ein.

Die als Kovariate der Varianzanalyse eingesetzte Höhenlage trägt signifikant zur Varianz bei (p = 0,003). Wir führen das auf die mit der Meereshöhe steigende N-Deposition und Gesamt-Schadstoffbelastung zurück. Die höchste Korrelation zeigt NO₃ zu Al (r = 0,453, p < 0,001), gefolgt von SO₄ (r = 0,356, p < 0,001) und Ca (r = 0,336, p < 0,001).

In den Jahresverläufen der NO₃-Konzentration kommen die beschriebenen Einflußfaktoren ebenfalls zum Ausdruck. Bei einer Quelle, die einem gesunden Altbestand entspringt, sinken die Konzentrationen während der Wachstumsperiode – bedingt durch pflanzliche Aufnahme – ab und steigen im Herbst erneut an (\rightarrow Abb. 2, Kurve C). In geschädigten Waldbeständen ist die NO₃-Produktion durch Streu- und Humusabbau hoch und kann nicht mehr durch pflanzliches Wachstum gebunden werden. Die Folge sind gleichbleibend hohe NO₃-Konzentrationen während des ganzen Jahres (Kurven A, B). Starke jahreszeitliche Schwankungen mit Sommerkonzentrationen unter 10 μ Mol/l treten dagegen bei Quellen des Typs III auf (Kurven D, E). Hier wirken während der Vegetationsperiode sowohl pflanzliche Aufnahme als auch Denitrifikation konzentrationsvermindernd. Im Winter hingegen ist der NO_3 -Austrag hoch, bedingt durch fehlende biologische Aktivität und z.T. oberflächlichen-lateralen Abfluß.

5.2 Sulfat

Im regionalen Überblick zeigen sich bei SO₄ im Gegensatz zu NO₃ deutliche großräumige Muster. Die höchsten SO₄-Konzentrationen treten am Kornberg und an den Höhen des östlichen Fichtelgebirgsrandes auf (\rightarrow Abb. 3). Auffallend niedrige SO₄-Konzentrationen weisen dagegen die Quellen an der Nordflanke des Schneeberges und am Ochsenkopf auf. Als Grund für diese niedrigen SO₄-Konzentrationen der zentralen und westlichen Gebiete kann angenommen werden, daß sie im Lee des östlichen Gebirgsrandes liegen und somit geringeren Immissionsbelastungen ausgesetzt sind (ULRICH 1989).

Die Quellen mit geschädigten Einzugsgebieten weisen um 18 % erhöhte SO₄-Konzentrationen gegenüber den ungeschädigten auf. Quellen auf Granit zeigen gegenüber sol-

Abb. 2: NO₃-Konzentrationen (μ Mol/l) typischer Quellen im Jahresgang.

- A, B: Quellen aus Einzugsgebiet mit Waldschäden
- C: Quelle aus gesundem Waldbestand

D, E: Quelltyp III

Abb. 3: Übersichtskarte des Untersuchungsgebietes mit Quellstandorten und ihren SO4-Konzentrationen

chen auf Phyllit um 28 % erhöhte Wert (\rightarrow *Tabelle* 2). Da Phyllite aber nur im Westen und Süden des Gebietes auftreten, können die unterschiedlichen SO₄-Austräge auch eine Folge des verstärkten Eintrages aus NO sein. Kalkung und Quelltyp haben dagegen keinen signifikanten Einfluß auf die SO₄-Konzentrationen.

5.3 Chlorid

Die Variabilität der Cl-Konzentrationen ist vor allem bedingt durch den Einfluß von Streusalz an straßennahen Quellen. Dieser Einfluß mit Cl-Konzentrationen bis > 1 μ Mol/l ist bis in die Gipfelregionen der gut erschlossenen Gebiete (Schneeberg, Kössaine, Kornberg) nachweisbar.

5.4 Magnesium und Calcium

In der regionalen Verteilung verhalten sich Mg und Ca sehr ähnlich. Die höchsten Konzentrationen treten am Kornberg, nördlichen Waldstein und an der Kössaine auf und fallen mit hohen SO₄-Konzentrationen zusammen. Bei Cazeigen sich keine sicherbaren Unterschiede mit Waldschäden, Kalkung oder Quelltyp. Das ist anders beim Magnesium. Hier macht sich Kalkung in einer leichten Erhöhung bemerkbar. Wässer aus Quelltyp III haben außerdem niedrigere Mg-Konzentrationen als aus Quelltyp I und II (\rightarrow Tabelle 2), welche die Folge kurzer oder fehlender Mineralbodenkontakte des oberflächlich in Humushorizonten fließenden Wassers sein können.

5.5 Kalium und Natrium

Die Kaliumkonzentration zeigt kaum regionale Differenzierung. Einzig die Quellen am Kornberg fallen durch erhöhte K-Werte auf. Natrium ist einerseits hoch mit Chlorid korreliert und somit anthropogen. Schließt man anthropogen erhöhte Werte aus (Na < 300 μ Mol/l), so ergibt sich ein signifikanter Unterschied zwischen den Quellen auf Phyllit und Granit (\rightarrow *Tabelle 2*). Dies könnte durch einen höheren Na-Feldspatanteil der Granite (WERNER unveröff. 1991) bedingt sein.

5.6 pH

Die pH-Werte liegen im Mittel bei 4,98, wobei Quellen geschädigter Bestände signifikant niedrigere pH-Werte haben als gesunde (\rightarrow Tabelle 2). Der pH ist hoch korreliert mit DOC (UV-Absorption r = 0,742, p < 0,001), so daß angenommen wird, daß bei oberflächennahem Wasserfluß Huminsäuren zur pH-Absenkung führen. Dies zeigt sich auch darin, daß die gefaßten Quellen des Typs I, deren Wässer in tieferen Schichten fließen, signifikant höhere pH-Werte aufweisen (pH = 5,11) als die der oberflächiger fließenden, nicht gefaßten Quellen des Typs II + III (pH = 4,94). Bei einigen Sickerwässern des Quelltyps II und III, deren hohe DOC-Gehalte schon durch eine gelbliche Färbung erkennbar sind, treten die niedrigsten pH-Werte auf, die ganzjährig unter pH = 4 liegen.

5.7 Alkalinität

Die Alkalinität ist definiert als die Ladungsdifferenz zwischen der Summe basischer Kationen und der Summe anorganischer Anionen (Alk ($\mu eq/l$) = Ca + Mg + K + Na – SO₄ – NO₃ – Cl) (STUMM et al., 1983) und beschreibt die verbleibende Neutralisierungskapazität des Wassers. Die untersuchten Wässer haben ihre Neutralisierungsfähigkeit weitgehend verloren; nur 15 % der Quellen weisen eine geringe positive Alkalinität auf (\rightarrow Tabelle 2).

5.8 Aluminium

75 % der Quellen erreichen Konzentrationen von über 0,2 mg/l Al, dem Grenzwert der bundesdeutschen Trinkwasserverordnung (1986) und der Toxizitätsgrenze für Fische (BAKER & SCHOFIELD 1982). Al ist mit dem pH korreliert (r = 0,488, p < 0,001); bei pH-Werten < 5 ist mit Al-Konzentrationen von Al < 7,5 μ Mol/l (= 0,2 mg/l Al) zu rechnen. Die höchsten Al-Konzentrationen werden auf geschädigten Standorten beobachtet. Sie sind dort doppelt so hoch wie auf ungeschädigten Standorten. Unterschiede aufgrund von Kalkung, Quelltyp oder Geologie lassen sich nicht sichern. Die tiefen pH-Werte und hohen Al-Konzentrationen im Quellwasser zeigen, daß sich ein Großteil der Böden und Gewässer des Fichtelgebirges im Al-Pufferbereich befinden.

Al zeigt sowohl mit NO₃ (r = 0,453, p < 0,001) als auch mit SO₄ (r = 0,402, p < 0,001) hohe positive Korrelation. Am höchsten korreliert (r = -0,827, p < 0,001) ist Al mit der Alkalinität, was zeigt, daß Al-Austräge die direkte Folge von versauerungsbedingtem Alkalinitätsverlust sind, der von SO₄- und NO₃-Austrägen bestimmt wird.

6 Diskussion

Als Faktoren, welche die NO_3 -Konzentrationen in Quellwasser aus Waldgebieten beeinflussen, konnten Kalkungsmaßnahmen, Quell- und Bodentyp und vor allem das Auftreten von Waldschäden identifiziert werden.

Niedrige NO₃-Austräge auf vernäßten Standorten können durch Denitrifikation (KREUTZER 1989), erhöhte Austräge nach Kalkung durch erhöhte Nitrifikationsaktivität (MATZNER 1985, 1990) erklärt werden. Bei den Waldschäden stellt sich dagegen die Frage, ob erhöhte NO₃-Austräge allein die Folge von Waldschäden sind, also das Ergebnis verringerter N-Aufnahme bei gleichzeitig erhöhter Nitrifikation der vermehrt anfallenden Streu, oder ob sie, als Zeichen von N-Sättigung, schon vor den sichtbaren Schäden aufgetreten sind (HAUHS 1985; HAUHS & WRIGHT 1986). Der Vergleich von aktuellen und historischen Quellwasseruntersuchungen des Fichtelgebirges zeigt, daß später geschädigte Bestände schon vor dem Auftreten sichtbarer Schäden deutlich erhöhte NO3-Konzentrationen aufwiesen (DURKA unveröff.). Die Hydrochemie der Quellen aus geschädigten Beständen ist gekennzeichnet durch stärkere Versauerung, erhöhte NO3-, SO4- und Al-Konzentrationen. Unterschiede bei Mg und Ca sind dagegen nicht sicherbar, obwohl Mg-Mangel das wichtigste Symptom der Waldschäden im Fichtelgebirge ist (ZECH & POPP, 1983). Allerdings tendieren Quellen mit Waldschäden zu verringerten Mg-Konzentrationen gegenüber Quellen in ungeschädigtem Wald (\rightarrow Tabelle 2, p = 0,066).

Die geringeren Mg-Konzentrationen der geschädigten Flächen würden auf regionaler Ebene die Erkenntnisse der Waldschadensforschung über die Ursachen der Mg-Mängel geschädigter Fichtenökosysteme bestätigen. Die wenig deutlichen Unterschiede sind möglicherweise dadurch bedingt, daß die Hauptwurzelmasse der Bäume und damit die Orte der stärksten Nährstoffaufnahme in der Humusauflage lokalisiert sind (MEYER et al., 1989; GEBAUER & SCHULZE 1991), das Sickerwasser sich aber erst in den tieferen Mineralbodenhorizonten mit Ca und Mg anreichert. Die im Quellwasser gemessenen Konzentrationen geben also nicht unbedingt die Situation der durchwurzelten Bodenhorizonte wieder.

Für eine Beurteilung der NO₃-Konzentrationen in bezug auf den Gesamt-Stickstoffhaushalt der Waldökosysteme wurden die NO3-Konzentrationen unter der Annahme einer Versickerungsrate von 700 l/m² (SCHULZE et al., 1989) in N-Austräge umgerechnet. Die N-Austräge erreichen dabei im Mittel 10,1 kg N/ha · a bei einem Maximum von 40,9 kg N/ha · a. Für ,gesunde Normalstandorte' (ungeschädigte, ungekalkte Bestände ohne Quelltyp III) ergibt sich ein Austrag von 8,9 kg N/Ha \cdot a. Die hier errechneten N-Austräge liegen bei einigen Quelleinzugsgebieten im Bereich der im Fichtelgebirge gemessenen N-Einträge von ca 20 - 30 kg N/ha \cdot a (HANTSCHEL 1987; HORN et al., 1989) abzüglich der für das Wachstum immobilisierten N. Stickstoffsättigung, also ein den N-Eintrag erreichender N-Austrag, kann, falls diese Austräge langfristig anhalten, in diesen Systemen nicht ausgeschlossen werden. NO₃-Konzentrationen im Quellwasser von > 200 μ Mol/l entsprechen einem Austrag von ca 20 kg N/ha \cdot a und sind als deutliches Anzeichen einer erheblichen Störung eines in gesundem Zustand geschlossenen N-Kreislaufes zu bewerten. Nicht berücksichtigt sind in diesem Ansatz gasförmige N-Verluste, die auch auf nicht vernäßten Standorten bis zu 10 kg N/ha · a ausmachen können (KREUTZER 1989; BRUMME et al., 1987), so daß auch bei niedrigeren NO_3 -Austrägen N-Sättigung auftreten kann. Da in den einzelnen Einzugsgebieten durch Wachstum, Waldschäden, Sukkzession krautiger Pflanzen in verlichteten Beständen, Wiederbestockungsmaßnahmen, Kalkungen usw. sehr unterschiedliche Dynamiken des Stoffhaushaltes vorliegen, bedarf es der langfristigen vergleichenden Beobachtungen einzelner Systeme mit bekannter Nutzungsgeschichte. Die Untersuchung der Hydrochemie von Quellwässern bietet die Möglichkeit, dies an vielen Einzugsgebieten flächenrepräsentativ durchzuführen.

Wie Tabelle 4 zeigt, sind die im Fichtelgebirge gewonnenen Ergebnisse typisch für deutsche Mittelgebirge. Dabei ist zu berücksichtigen, daß die bei Schneeschmelzen gewonnenen Daten (SCHOEN et al., 1984; ZÖTTL et al., 1985) die mittleren NO3-, SO4- und Al-Konzentrationen aufgrund fehlender biologischer Aktivität und oberflächlichen Abflusses überschätzen können. Bezüglich der NO3-Konzentration nehmen die Wässer des Fichtelgebirges eine Mittelstellung zwischen den niedrigen Konzentrationen der südlichen Mittelgebirge und den stärker belasteten Regionen West-, Nord- und Ostdeutschlands ein. Stark ausgeprägt sind regionale Unterschiede bei SO4, das in den industrienäheren Regionen bis zu 10 mal höhere Konzentrationen erreicht als in den industriefernen. Das Fichtelgebirge zählt trotz der Nähe zu S-Emittenten in Thüringen und der Tschechoslowakei zu Gebieten mit mäßigen SO4-Austrägen. Ein Hinweis darauf, daß auch die niedrigsten hier erreichten Konzentrationen Ausdruck einer großflächigen Belastung und Überschreitung "kritischer Belastungen" (SCHULZE et al., 1989) sind, gibt der Vergleich mit Werten aus weniger oder unbelasteten Regionen wie Norwegen (ENGLUND 1986) oder Neuseeland (STENZEL & HERRMANN 1990). Hier liegen vor allem die NO3-Konzentrationen um Größenordnungen niedriger (→ Tabelle 4). Der Anteil des NO_3 an der Gesamtversauerung ($NO_3 + SO_4$) steigt mit

Tabelle 4: NO_3^- und SO_4^- Konzentrationen und NO_3^- Anteil an der Gesamt-Versauerung (NO_3^- ($NO_3^- + SO_4^-$) [$\mu eq/\mu eq$]) in Waldquellen und
Quellbächen verschiedener Regionen mit sauren Ausgangsgesteinen

Herkunft	NO ₃ μMol/I	SO₄ µMol/I	NO ₃ /(SO ₄ + NO ₃) μeq/μeq %	Literatur
Sösetal/Harz	111	195	21 %	HEINRICHS et al. (1986) (n = 32)
Solling/Harz, Schneeschmelze 1983	153	270	23 %	SCHOEN et al. (1984) (n = 6)
Ost-Harz	65	200	14 %	STÖCKER (1990)
Kaufunger Wald, Schneeschmelze 1983	124	639	9 %	SCHOEN et al. (1984) (n = 8)
Hessisches Bergland	112	370	13 %	QUADFLIEG (1990) ($n = 15$)
Hunsrück/Taunus, Schneeschmelze 1983	138	372	16 %	SCHOEN et al. (1984) (n = 8)
Erzgebirge	140	370	16 %	STÖCKER (1990)
Fichtelgebirge Quellen 1989/1991, Quelltyp I + II	118	169	28 %	diese Arbeit (n = 121)
Fichtelgebirge Quellen 1989/1991, Quelltyp III	66	149	20 %	diese Arbeit (n = 44)
Fichtelgebirge, Schneeschmelze 1983	99	170	22 %	SCHOEN et al. (1984) (n = 8)
Bayerischer Wald, 1986/87	95	42	53 %	Förster (1988) (n = 16)
Bayerischer Wald, Schneeschmelze 1983	77	62	38 %	SCHOEN et al. (1984) (n = 2)
Schwarzwald, Schneeschmelze 1983	48	71	24 %	SCHOEN et al. (1984) (n = 16)
Schwarzwald, Schneeschmelze 1984	87	66	30 %	Zöttl et al. (1985) (n = 86)
Vogesen, Schneeschmelze 1983	39	51	28 %	SCHOEN et al. (1984) (n = 8)
Norwegen	13	36	15 %	ENGLUND (1986) ($n \neq 2$)
Neuseeland	0,3	10	1 %	Stenzel & Herrmann (1990) $(n = 44)$

sinkenden SO₄-Konzentrationen und kann, wie im Bayerischen Wald, das dominierende versauernde Anion sein (\rightarrow Tabelle 4). Unter Bedingungen mit niedrigen N-Einträgen, wie in Norwegen, oder ohne saure Niederschläge, wie in Neuseeland, spielt NO₃ als versauerndes Ion dagegen nur eine geringe oder fast keine Rolle. Da für die Zukunft bei schon jetzt sinkenden SO₄-Einträgen im Fichtelgebirge (TÜRK 1991) ebenfalls mit sinkenden SO₄-Austrägen zu rechnen ist, wächst die Bedeutung des NO_3 bei der Gewässerversauerung, zumal mit sinkenden NOx-Emissionen nicht vor 1995 gerechnet wird (Forschungsbeirat Waldschäden 1989). N-gesättigte Ökosysteme, die keine weitere Speicherkapazität für Stickstoff besitzen, werden alle N-Einträge in Form steigender NO_3 -Austräge an nachgeschaltete aquatische Ökosysteme weitergegeben.

> Eingegangen: 02. 01. 1992 Akzeptiert: 03. 02. 1992

Anhang

Tabelle 5: Liste der hydrochemischen Daten. Bei den chemischen Parametern handelt es sich um die Mittelwerte aller zwischen 8/89 und 3/91 durchgeführten Analysen. Dargestellt sind Nummer (Nr.), Name, Rechtswert und Hochwert (Gauß-Krüger), Anzahl der Beprobungen (N), Mittelwert und Standardabweichung (S) der Ionen NO₃, SO₄, Cl, Ca, Mg, K, Na, Al, Leitfähigkeit (LF) und pH

Nr.	Name/Ortsangabe	Rechtswe	ert Hochwert	N	NO ₃ (S) -) SO₄ (S) -	CI (S) -	Ca (S) -	Mg (S) μMol/t	K (S)	Na (S)	AI (S)	LF (S) µS/cm	рН
1	Lehestenbach/Köhlerloh/Waldstein	4490.300	5555.675	1	11	278	1428	46	49	56 75 3	1927	8	210	3.46
3	Lehestenbach / Gr. Waldstein	4490.725	5555.375	9	41 12	122 38	49 11	30 19	23 9	25 6	156 24	30 17	52 7	4.91
4	Lehestenbach / Gr. Waldstein	4490.750	5555,400	9	33 16	97 51	46 8	18 8	15 5	23 7	135 50	13 11	35 5	4.92
5	Kleinbach/Schindelberg/Waldstein	4492.950	5558.750	1	129	153	115	63	125	20	173		74	5.51
6	Kleinbach / Waldstein(NW)	4492.825	5559.025	12	258 55	267 16	125 52	113 1 51 10	195 4	25 1	212 1	z z	110	5.64
8	Privatbrunnen / Kössein(E)	4501.125	5540.375	1	8 14	55	31	40	17	18	175		39	5.79
9	Brunnen Wasservers. Waldsassen/ Kösseine	4501.175	5540.375	1	26	28	170	52	25	24	153		46	5.76
10	Kleinwenderner Bach /Kösseine(E)	4501.135	5540.325	1	14	44	49	27	10	18	97		26	5.26
11	Kosseinbach / Kosseine (5)	4498.475	5538.000	1	21	22	45	29	12	18	127		26	5.78
13	Ochsenkopfbach /Kösseine (S)	4497.900	5538.025	ż	< 5	80	58	19 8	37 42	12 6	110 88		41	4.97
14	Pfalzbrunnenm / Kösseine (W)	4498.950	5538.250	10	50 18	213 25	49 6	58 26	39 4	35 4	174 15	11 8	72 7	5.09
15	Kössainebrunnen / Kösseine (\$)	4498.875	5538.725	10	199 18	274 16	156 14	88 40	64 9	59 24	230 17	28 3	110 20	4.54
16	Brunnen N.N. / Kossaine (N) Büttmarchaumnen (Känsaine (E)	4498.500	5539.275	11	515 58	250 22	184 20	/1 55 50 /	55 /	40 D	219 32	150 11	144 17	4.10
18	N.N. / Kössaine (E)	4499.225	5539.000	1	211 0	350	76	86	56	38	138	14 3	137 0	4.43
19	Förster Kraus Brunnen / Kössaine	4499.275	5538.950	2	126 1	277 13	46 22	120 66	76 1	46 Z	174 18	8	105	5.31
20	Brunnen N.N / Luisenburg	4499.425	5541.750	1	172	193	70	136	45	43	342	-	104	5.71
21	Quelle hinter Luisenburg	4498.975	5541.850	2	23 1	28 4	45 19	26 3	13 3	23 5	117 7	1	34	6.04
22	Spritzbrunnen/Steinbruch/Kossaine	4498.000	5530.013	7	121 20	295 10	89 35	207 95 46	63 5	20 40 Q	179 7	20 Q	93 11	4.34
24	Spritzbrunnen / Kössaine(N)	4498.000	5539.925	Ś	181 18	275 12	74 19	106 55	60 6	40 2	139 59	34 4	93 15	4.55
25	N.N. / Hohe Mätze	4495.025	5539.275	8	29 22	226 45	66 48	27 10	28 9	37 38	152 21	53 14	82 19	4.14
26	Steinloh / Hohe Mätze	4494.825	5539.675	1	9	204	43	48	31	18	99	/F /A	102	4.03
27	Engelsbrunnen / Hone Matze	4494.700	5540,588	8	124 24	241 37	24 10 26	51 18 124	32 D 57	55 2 /2	115 10	65 41	78 14 107	4.4/
30	Quelle hinter Hartingbrunnen/Platte(SW)	4491.975	5541.900	i	128	228	48	49	31	31	141		140	4.34
31	Hartingbrunnen / Platte(SW)	4491.950	5541.900	1	169	221	46	68	35	37	161		96	4.64
32	Lochbach / Platte(W)	4491.525	5542.975	1	< 5	120	42	32	26	20	75		58	4.28
33	N.N. / Platte(E)	4492.750	5542.300	1	108	204	31	55	34	32	111		82	4.08
34	N.N. / Platte(E) N.N. / Platte(E) Tröstauer Forst	4492.000	5542.200	2	127	202 1	55 45 16	23 13	42 30 1	دد د دت	02 3	52	81	4.30
36	zum Zinnschutzweiher / Platte(NE)	4492.125	5543.450	8	49 10	125 16	113 219	23 7	20 2	26 2	110 9	29 12	61 37	4.86
37	zum Zinnschutzweiher / Platte(NE)	4492.150	5543.350	1	29	111	26	55	18	24	125		46	5.12
38	Zinnbach / Platte(SE) Silberrangen	4492.863	5541.525	9	134 35	208 25	52 9	36 13	38 7	33 7	115 15	70 6	83 15	4.59
39 70	Jean-Paul-Brunnen / Fichtelberg	4490.025	5542.800	4	< 5 35 11	150 15	132 88 08	51 30 11	28 7	32 3	107 22	23	90 55 7	5.97 6 86
41	Fichtelseezusluß/Parkplatz/Fichtelberg	4489.625	5542.650	ž	16 1	109 1	31 4	37 18	16 1	31 1	130 12	5	41	5.41
42	Hartungquelle / Nußhardt(W)	4490.175	5545.025	10	164 26	121 11	55 12	45 22	24 5	34 6	133 22	33 7	64 10	4.92
43	N.N. Karches / Schneeberg	4489.900	5545.750	1	<i>2</i> , , , , , , , , , , , , , , , , , , ,	135	27	9	10	8	75	F4 4F	70	4.13
44	N.N. Karches / Schneeperg	4489.023	5545.000	2	87 87	245	203	22 (96	20 2	26	429	21 12	93 / 142	3 07
46	Schneebergbrunnen / Schneeberg	4489.525	5546.675	8	267 330	208 28	312 158	785 368	80 22	29 3	400 114	10 2	261 80	6.71
47	N.N. / Schneeberg	4490.550	5546.975	9	22 28	203 30	54 13	18 7	30 8	10 4	80 14	50 20	77 43	3.83
48	Dornbrunnen unter Steilstufe/Schneeberg	4490.750	5546.625	2	173 50	137 12	129 37	18 8	22 3	28 4	167 17	47	84	4.67
49 50	Koslaquelle / Schneeberg(E) Seehauscuelle / Nußbardt/Seehaus	4490.050	5545.95U	2	139 24	41 6	57 17	30 17	24 2	30 3	125 10	11 21	80 4 44	4.39
51	N.N. Seehaus/Nußhardt	4490.825	5544.000	2	125 6	94 1	83 18	57 31	30 1	46 1	147 12	11	63	4.99
52	Ahorn-Brunnen / Seehaus(S)	4490.700	5543.350	10	128 19	175 21	56 16	25 5	23 5	26 9	94 17	75 12	74 12	4.57
53	Schimmelbrunnen / Ochsenkopf	4487.800	5544.425	2	133 11	143 4	42 6	59 44	33 2	29 3	122 9	19	63	5.12
54 55	N.N. ZLAN WEISEN Main / Uchsenkopt	4487.400	5545 050	4	124	63	44 D 56	22 / 60	20 7	30 D 70	110 20	10	42	4.17
56	N.N. bei Weberguelle / Ochsenkopf	4487.025	5545.175	ż	171 15	122 5	54 11	52 36	29 1	37 4	127 13	10	71 0	4.78
57	Herthaquelle / Ochsenkopf	4487.213	5545.100	8	123 20	85 16	43 8	37 18	21 4	29 4	117 19	14 3	49 7	5.06
58	N.N. Ochsenkopf(oberer Ringweg)	4486.400	5544.725	9	167 23	150 11	50 7	26 10	25 3	33 3	97 13	65 21	92 8	4.06
59 40	N.N. Ochsenkopt(oberer Kingweg) Rouppen NN am ob Ringweg (Ochsenkapf	4486.200	5544.615 5544.575	10	121 54	123 14	49 10	12 3	18 4	26 /	78 10 77 9	41 18	90 10 61	5.91
61	Reißinger Brunnen / Ochsenkopf	4486.300	5544.350	3	137 27	103 13	45 16	24 5	24 3	31 7	70 14	35 5	65 8	4.67
62	N.N. bei Fürstenbrunnen / Ochsenkopf	4486.775	5543.125	2	198 18	181 28	40 16	34 6	54 1	20 3	99 11	36	97	4.56
63	Unterer Fürstenbrunnen / Ochsenkopf	4486.675	5543.000	8	226 57	207 24	54 10	17 5	46 6	16 2	87 9	83 26	88 7	4.58
64 45	NN am Auftahrtsweg / Ochsenkopf SE Kalter Brunnen / Ochsenkomf	4487.425	5543.075	4	75 33	56 21	59 10 45 P	15 3	16 Z	30 6	89 20	11 11	33 4 46 7	5.11
82 70	Kaller Brunnen / Ochsenkopf Steinachquelle(Arm) / Ochsenkopf/Fieckl	4487.200	5542.275	2	52 22	59 N	55 25	30 16	22 1	27 2	97 4	6	35 /	4.00
71	N.N. zum Bocksgraben / Ochsenkopf/Fleckl	4487.325	5542.075	2	25 2	30 0	32 2	29 16	14 1	27 4	108 2	1	31	5.37
72	N.N. zum Neuweihers Bach / Ochsenkopf	4486.025	5543.350	5	219 42	160 81	42 11	36 19	41 4	23 3	81 3	71 37	97 4	4.42
73	N.N. zum Steinbach / Ochsenkopf	4483.275	5544.150	5	69 33	121 38	85 17	67 30	36 8	36 14	140 32	7	55 8	5.41

Tabelle 5, Fortsetzung

Nr.	Name/Ortsangabe	Rechtswei	rt Hochwert	N	NO ₃ (S) -	SO ₄ (S) -	CI (S) -	Ca (S) _	Mg (S) µMol/l	K (S)	Na (S)	AI (S)	LF (S) μS/cm	рН
74 75 76	Schmelzbach/Goldkronacher Forst NN Weiherloh/Goldkronacher Forst	4481.950 4482.375 4484 300	5543.375 5542.975 5544 500	1 2 10	24 44 56 84 11	90 127 46 73 6	60 63 23 556 129	17 84 7528	27 26 6 59 15	36 22 57 1	55 5 57 11 1 409 59	21	66 58 109 15	4.27
77	N.N. Bischofsgrüner Forst	4484.200	5544.850	9	127 48	89 15	73 21	39 14	34 7	46	7 98 13	11 3	50 8	5.00
78 79	Egerquelle Springlobbach / Mehlmeisel(W)	4487.700	5548.675 5538.650	11	51 12	26 5 181 25	411 139	40 13 43 16	56 12 32 5	35 4	6 313 75 9 199 18	9 15 13 10	73 9 61 3	5.20
80	Geißbach / Lenauer Forst / Mehlmeisel(S)	4489.675	5536.075	2	41 8	76 3	39 9	26 13	35 2	25	5 51 9	7	42	4.44
81 82	Rusel-Graben / Lenauer Forst Zinnebrunnen / Lenauer Forst	4489.650	5535.575 5534.725	10	88 27	159 60	55 10	29 / 33 6	43 8 70 10	30 i 20 i	5 62 9 7 81 17	24 10 10 4	56 11 56 5	4.68
83	zum Tiefenlohbach / Lenauer Forst	4490.950	5534.125	10	29 4	238 23	56 7	45 13	122 18	20	122 13	6 Z	68 6	5.59
84 85	zum Hirtbach / Lenauer Forst zum Pfarroraben / Lenauer Forst	4490.500	5534.050 5534.650	4	44 19 51 13	192 52	61 11 47 6	54 18 29 8	92 18 80 35	17 2	2 100 7	3	60 16 65 8	5.02
86	Armeslohgraben / Ahornberger Forst	4488.975	5534.375	4	15 5	163 10	44 13	41 14	78 16	33	107 21	3	61	5.10
87 88	zum Pfarrgraben / Ahornberger Forst Holzaraben /Südl. Hochwald	4488.375	5535.600 5535 275	2	77 78 90	58 44 138	43 8 35	84 13	21 16	34 8	3 64 18 85	2	73 70	4.96
89	Weißer Main-Quelle / Ochsenkopf	4487.450	5543.725	10	114 11	73 8	42 12	35 12	21 3	35 5	5 94 14	14 4	50 8	5.00
90 91	N.N. oberhalb Marienbrunnen/Ochsenkopf Marienbrunnen / Ochsenkopf	4487.575	5543.700 5543.875	23	144 12 167 10	130 8 146 14	42 11 44 10	23 7	23 2 32 1	31 5 34 1	5 79 3 1 108 3	29 34 21	69 76 5	4.95
92	Rupprechtbrunnen / Ochsenkopf	4488.000	5544.050	3	125 8	111 11	46 11	39 16	25 1	35 E	3 94 4	30 19	58 7	4.76
93	zum Mauspach übwst zum Mandleswiesenb, / O'warmensteinach	4485.375	5539.200	10	63 29	236 25	47 11 55 11	30 12 56 45	61 6 55 7	17 4	554	62 23 33 23	75 10 55 9	4.58
95	Langenstockbach / Warmensteinach	4485.950	5538.150	2	66 30	84 27	55 16	26 3	40 15	18	95 7	5	43	5.60
97	Gesundneitsbrunnen / Fichtelberg	4487.025	5537.350	9	94 89 20	141 109 17	57 9	18 19 7	47 54 6	11 13 2	2 72 4	21 13	63 50 9	4.22
98	Glaserbach Fichtelberg	4486.550	5538.125	8	69 40	157 33	50 10	11 3	28 3	10 6	59 6	54 23	72 15	4.16
100	Maiselbrunnen / Fichtelberg	4487.425	5536.100	1	120	78	39	15 27	33	26	69	2 1	53 53	5.07
101	Hahnenbach/ Hahnengrün/ Südi. Hochwald	4485.975	5534.250	1	35	116	29	43	36	48	91		52	5.40
102	Kleeleitenbach / Sophientaler Forst	4482.025	5537.075	2	110 100	137 25	56 1	47 78 61	76 30	35 6	40 5 187 64	3	45 78	6.21
105	Rendelbrunnen / Sophientaler Forst	4482.325	5538.100	8	148 16	112 20	47 5	4 2	36 38	18 3	40 Z	66 27	62 11	4.31
107	zum Krebsbach / Sophientaler Forst	4480.200	5539.075	2	67 10	232 3	49 16	62 28	56 1	80 2	102 4	9 9	86	4.82
108	zum Krebsbach/Königsheide/Sophiental. F.	4481.650	5538.525	1	53	146 186	30 34	5	19	12	48		106	3.94
110	N.N. / Sophientaler Forst/Schloßberg	4480.050	5539.675	i	42	226	50	39	48	68	90		97	4.12
111	zur Kronach / Sophientaler Forst Kronfbach / Soldkronacher Forst	4481.800	5539.900 5541 100	1	9 47 10	81 113 1	33 38 14	114	24	7	50 70	7	41	4.44
113	zum Kropfbach / Goldkronacher Forst	4482.350	5542.125	1	9	166	29	49	53	12	79	•	85	4.20
114	Eselsbrunnen / Goldkronacher Forst Haderbrunnen / Rischofsgrüner Forst	4481.775	5542.075	8	109 26	165 20	69 35 31	20 12	31 8	57 5	86 53	65 19	66 10 70	4.61
116	z. Kohlersgrundbach / Bischofsgr. Forst	4483.625	5548.575	10	152 16	157 28	261 128	61 22	141 21	18 3	239 62	86	86 22	5.36
117	Jesusbrunnen / Bischofsgr. Forst z. Kornbach / Hetzstein	4483.375	5549.700 5548 000	10	158 23	146 25 114	78 27 47	64 31 67	63 18 81	24 4	181 48	33	74 9 61	5.60
119	z. Tuchschererbach / Bischofsgr. Forst	4485.650	5548.975	i	32	36	41	17	20	11	70		30	5.08
120	N.N. z. Eger / Hohe Kaide nahe Helenenquelle / Hohe Haide	4487.200	5548.775 5547.725	2	87 17 84	53 22 72	54 11 38	27 9 41	26 2 26	26 6	74 1	13	39 9 42	4.47
122	z. Weißen Main / Schneeberg	4488.050	5546.625	12	94 18	79 28	60 10	27 18	25 32	25 13	134 36	18 13	48 8	4.62
123	Kroppersbach / Schneeberg Alte Emerguelle	4488.675	5547.375 5548.425	2	22 1	136 4 15 8	43 12 76 30	94 3921	15 0 29 0	18 5	96 3	18 2	85 39	4.25
125	N.N. Schneeberg	4489.900	5547.400	11	206 61	142 20	376 101	34 16	43 24	34 7	334 62	61 25	114 22	4.41
126	zur Eger / Schneeberg Sägwiesenbach / Schneeberg	4489.300	5547.375 5548.675	1 9	182 107 12	78 35 21	232 72 26	63 640	34 4 39	37 -4 54	384 110 80	10 5	111 33 4	4.00
128	z. Sägwiesenbach / Rudolfstein	4490.650	5548.975	1	60	143	33	78	37	25	183		59	5.43
129	Jagerbrunnen / Rudolfstein N.N. / Rudolfstein / Uranbergwerk	4492.925	5548.000	2	50 1 46	223 4 191	56 14 30	93 49 124	54 1 32	27 0 38	180 7	4	82 76	5.40
131	zur Lamitz / Epprechtstein	4493.775	5557.025	į	111	249	48	112	78	63	171		95	5.72
132	zur Lamítz / Epprechtstein	4493.225	5557.175	ž	179 18	101 44	57 11	49 23	41 8	37 3	256 45 166 12	10 4	54	5.27
134	N.N. Epprechtstein	4492.550	5556.875	9	70 72	240 82	54 25	40 16	46 13	35 14	165 55	40 18	93 37	3.67
136	Kirschbach / Epprechstein	4493.250	5555.850	9	193 28	403 25	67 11	57 14	74 16	40 8	151 17	109 47	132 17	4.31
137 138	bei Gebhardtquelle / Epprechtstein Veidenbrunnen / Veldstein	4492.250	5555.950 5556 425	2	32 34 265	210 7	52 25 54	28 21	33 7 68	30 9	117 13 138	25	95 03	4.37
139	Schlöppner Brunnen / Waldstein	4491.150	5556.200	10	298 22	312 16	77 18	45 18	75 13	44 6	119 15	98 43	128 15	4.28
140 141	Stadtquelle / Waldstein Saalequelle / Waldstein	4486.975 4487.800	5552.825 5553.650	1	97 81	96 23	39 77	32 26	77 59	9 11	490 70		50 34	5.46
142	neben Saalequelle / Waldstein	4487.800	5553.675	1	71	39	51	24	61	34	171		34	6.93
143	Förmitzquelle / Waldstein Kleinbach / Waldstein	4490.975	5558.200 5559.250	5 11	221 6	143 9 112 79	83 17 535 83	58 27 125 86	95 7 149 32	33 3 28 6	156 9 348 80	6 4 14 24	86 4 112 33	5.35
145	Spindelbrunnen / Kleiner kornberg	4497.200	5560.200	2	86 6	458 47	101 17	215	219	44	199		149	5.25
146 147	N.N. / Kornberg zur Lamitz / Kornberg	4500.700	5561.375 5560.713	10 7	194 9 39 15	350 32 612 124	2567 731	256 106 154 109	166 47 155 53	81 10 60 16	2422 969 390 166	45 25 18 6	418 82 227 140	4.67
148	N.N. / Kornberg	4501.400	5561.500	10	256 18	434 20	794 192	212 81	123 50	66 8	577 112	37 9	221 32	4.66
150	zum steinbach / Kornberg zum Ringelbach / Kornberg	4502.950	5560.900	2	88 18 133	209 6 326	64 1 47	209	115	60 4 44	244 54 211	4	82 145	5.26 4.55
151	N.N. / Kornberg	4501.225	5559.125	1	53	166	45	96 17 7	55	30	192	E7 74	66	5.85
202	m.m. sprungschanze warmensteinach Nühlransenbrunnen Bischofsgrün	4484.875	5547.550	ž	90 8	99 22	77 13	48 17	37 D 32 4	29 Z	129 12	טב בכ	41 11	4.59
226	Quelle Vorsuchhütte. Kornberg	4502.425	5560.450	7	402 35	446 23	124 11	121 48	109 17	59 10 17	210 20	71 13	160 21	4.49
231	NN zwischen Gr-Blöcken an Nußhardt	4490.175	5544.875	4	98 21	212 9	54 7	12 8	20 1	14 2	90 7	97 18	77 11	4.36
233	Bach Schneeberg/Seehügel	4489.700	5545.450 5547.575	5	104 35	179 27 78 27	272 49	32 23 16 6	25 1 25 A	-4 54	194 97 65 P	54 27 B 1	119 23	4.06
250	Warmensteinach/Kropfloh	4482.875	5541.525	1	56	122 27	49	32	36	71	16	9	40 0	5.65
251	NN Großer Kornberg Heidlas Vesserversorgung	4501.175	5561.550	3	172 16	435 13	541 41	154 53	152 12	60 10	412 42	27 19	188 31	4.56
253	Tuchschererbach / Haidlas	4485.963	5548.775	2	91 1	21 3	63 2	12 1	32 1	26 0	70 1	6 6	34	5.28
254	Birkenbach /Rudolfstein /Neuer Schlag	4491.225	5547.725	2	89 29	67 13	57 4	16 4	20 4	28 6	127 1	13 9	47	5.24

7 Literatur

ABER, J. D.; J. NADELHOFFER; P. STEUDLER; J. M. MELILLO: Nitrogen saturation in northern forest ecosystems. BioScience 39, 378 – 386 (1989) BACHHUBER, R.; R. LANG; R. LENZ; W. HABER: Dokumentation und Übergabe der Daten zur Hypothesensimulation zum Waldsterben an die Ökosystemforschungszentren Göttingen und Bayreuth. Berichte des Forschungszentrums Waldökosysteme, Reihe B, Bd. 21 (1991)

- BALÁZ A.: Gefährdung der Waldquellen durch immissionsbedingten Säureeintrag. 5. Wissenschaftliche Tagung ,Hydrologie und Wasserwirtschaft^{*}, 2. – 4. April 1990 in Neubiberg bei München. S. 427 – 435 (1990)
- BAUER, J.; R. LEHMANN; A. HAMM: pH-Wert-Veränderung an ungepufferten Seen und Fließgewässern durch saure Deposition und ökologische Aspekte der Gewässerversauerung. In Gewässerversauerung im nord- und nordostbayerischen Grundgebirge, Bayerische Landesanstalt für Wasserforschung, München, 1-252 (1988)
- BRUMME, L.; N. LEFTFIELD; F. BEESE: N₂O Freisetzung aus einer sauren Braunerde. Mitt. Dt. Bodenk. Gesellschaft 55, 585 – 586 (1987)
- BÜCKING, W.: Stoffeintrag aus der Atmosphäre Konsequenzen für den Gewässerschutz. Gewässerschutz, Wasser, Abwasser 109, 117-143 (1988)
- DURKA, W.: Unveröffentlicht
- EIDEN, R.: Air pollution and deposition. In SCHULZE, E. D.; O. L. LANGE; R. OREN (Hrsg.): Forest decline and air pollution. Ecological Studies 77, 57-103 (1989)
- ENGLUND, J. O.: Spring characteristics and hydrological models of catchments: A case study from ASTDALEN, S. E., Norway. Nordic Hydrology 17, 1-20 (1986)
- Forschungsbeirat Waldschäden/Luftverunreinigungen (Hrsg.): Dritter Bericht. Karlsruhe. 611 (1989)
- GRENNFELT, P.; H. HULTBERG: Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water Air and Soil Pollution 30, 945 963 (1986)
- HANTSCHEL R.: Wasser- und Elementbilanz von geschädigten, gedüngten Fichtenökosystemen im Fichtelgebirge unter Berücksichtigung von physikalischer und chemischer Bodenheterogenität. Bayreuther Bodenkundliche Berichte 3, 1 – 219 (1987)
- HAUHS, M.: Der Einfluß des Waldsterbens auf den Zustand von Oberflächengewässern. Zeitschrift der Deutschen Geologischen Gesellschaft 136, 585 – 597 (1985)
- HAUHS, M.; R. F. WHRIGHT: Regional pattern of acid deposition and forest decline along a cross section through Europe. Water Air and Soil Pollution 31, 463-474 (1986)
- HEINRICHS, H.; B. WACHTENDIRF; K. H. WEDEPOHL; B. RÖSSNER; G. SCHWEDT: Hydrogeochemie der Quellen und kleineren Zuflüsse der Sösetalsperre (Harz). Hydrogeochemistry of springs and tributary streams of the Söse Dam (Harz). Hessisches Jahrbuch Mineralogische Abhandlungen 156, 23 – 62 (1986)
- HORN, R.; E. D. SCHULZE: Nutrient balance and element cycling in healthy and declining Norway Spruce stands. *In* SCHULZE, E. D.;
 O. L. LANGE; R. OREN (Hrsg): Forest decline and air pollution. Ecological Studies 77, 444 – 455 (1989)
- KAUPENJOHANN, M.: Effects of acid rain on soil chemistry and nutrient availability in the soil. *In*: SCHULZE E. D.; O. L. LANGE; R. OREN (Hrsg.): Forest decline and air pollution. Ecological Studies 77, 297 340 (1989)
- KÖLLING, C.: Stickstoffsättigung von Waldökosystemen. Allgemeine Forst Zeitschrift 46, 513 – 517 (1991)
- KREUTZER, K.: Änderungen im Stickstoffhaushalt der Wälder und die dadurch verursachten Auswirkungen auf die Qualität des Sickerwassers. In BRECHTEL H. M. (Hrsg): Immissionsbelastung des Waldes und seiner Böden – Gefahr für die Gewässer? DVWK-Mitteilungen 17, 121 – 132 (1989)
- KÜGEL, B.; P. SCHMITT: pH-regime and water chemistry of two temporarily acidified streams in the Bavarian Forest. Archiv für Hydrobiologie 122, 177 – 197 (1991)
- MATZNER, E.: Auswirkungen von Düngung und Kalkung auf den Elementumsatz und die Elementverteilung in zwei Waldökosystemen im Solling. Allgemeine Forstzeitschrift 41, 1143 – 1147 (1985)
- MATZNER, E.: Effects of above ground liming and soil amelioration technics on N losses with seepage water from ecosystems. Vortrag. European workshop on the effects of forest management on the nitrogen-cycle with respect to changing environmental conditions. München-Neuherberg, 9. 13. Mai 1990
- MEYER, J.; B. U. SCHNEIDER; K. WERK; R. OREN; E. D. SCHULZE:

Performance of two *Picea abies* (L.) Karst. stands at different stages of decline V. Root tip and ectomycorrhiza development and their relations to above ground and soil nutrients. Oecologia 77, 7-13 (1988)

- NORUSIS, M. J.: SPSS/PC + V 2,0 Base Manual, Chicago (1988)
- OREN, R.; E. D. SCHULZE: Nutritional disharmony and forest decline: a conceptual model. In SCHULZE, E. D.; O. L. LANGE; R. OREN (Hrsg.): Forest decline and air pollution. Ecological Studies 77, 425 - 443 (1989)
- PUHE, J; B. ULRICH: Chemischer Zustand von Quellen im Kaufunger Wald. Archiv für Hydrobiologie 102, 331 – 342 (1985)
- QUADFLIEG, A.: Zur Geohydrochemie der Kluftwasserleiter des nordund osthessischen Bundsandsteingebietes und deren Beeinflussung durch saure Deposition. Geologische Abhandlungen Hessen 90, 110 (1990)
- REIF, A.: The vegetation of the Fichtelgebirge: origin, site conditions, and present status. In SCHULZE, E. D.; O. L. LANGE; R. OREN (Hrsg.): Forest decline and air pollution. Ecological Studies 77, 8-22 (1989)
- REISSMANN, B.: Forstwirtschaftliche und standortkundliche Verhältnisse. In STETTNER, G.: Erläuterungen zur Geologischen Karte 1: 25 000, Blatt Nr. 5937 Fichtelberg. 98 – 105 (1985)
- SCHOEN, R.; R. WRIGHT; M. KRIETER: Gewässerversauerung in der Bundesrepublik Deutschland. Erster regionaler Überblick. Naturwissenschaften 71, 95 – 97 (1984)
- SCHOEN, R.; R. F. WRIGHT; M. KRIETER: Regional survey of freshwater acidification in West Germany (FRG). Acid Rain Research. Report 5/1983. NIVA, Oslo (1983)
- SCHOEN, R.; R. F. WRIGHT; M. KRIETER: Gewässerversauerung in der Bundesrepublik Deutschland. Naturwissenschaften 71, 95-97 (1984)
- SCHULZE, E. D.; O. L. LANGE; R. OREN: Forest decline and air pollution. Ecological Studies 77, 475 (1989)
- SCHULZE, E. D.; W. de VRIES; M. HAUHS; K. ROSÉN; L. RASMUSSEN; C. O. TAMM; J. NILSSON: Critical loads for nitrogen deposition on forest ecosystems. Water Air and Soil Pollution 48, 451-456 (1989)
- STENZEL, A.; R. HERRMANN: Comparing the effects of acidic deposition on the chemistry of small streams in the South island of New Zealand with those in the Fichtelgebirge, F.R.G.. Catena 17, 69-83 (1990)
- STENZEL, A.; R. HERRMANN: Verhalten verschiedener Aluminiumspezies im Fluß- und Bodenwasser des Fichtelgebirges. Deutsche Gewässerkundliche Mitteilungen 32, 2-7 (1988)
- STUMM, W.; J. J. MORGAN; J. L. SCHNOOR: Saurer Regen, eine Folge der Störung hydrogeochemischer Kreisläufe. Naturwissenschaften 70, 216 – 223 (1983)
- Trinkwasserverordnung: Verordnung über Trinkwasser und Wasser für Lebensmittelbetriebe (Trinkwasserverordnung-TrinkwV) vom 22. 05. 1986. Bundesgesetzblatt Teil I v. 25. 08. 1986, S. 760 – 773
- TÜRK, T.: Die Wasser- und Stoffbilanzen in zwei unterschiedlich geschädigten Fichtenstandorten im Fichtelgebirge. Dissertation Universität Bayreuth (1991)
- ULRICH, B.: Stability, elasticity, and resilience of terrestrial ecosystems with respect to matter balance. Ecological Studies 61, 11-49 (1987)
- ULRICH, B.: Ökochemische Kennwerte des Bodens. Z. Pflanzenernähr. Bodenk. 151, 171 – 176 (1988)
- ULRICH, W. (1989): Long-range transport and deposition of pollutants in the Fichtelgebirge. In SCHULZE, E. D.; O. L. LANGE; R. OREN (Hrsg.): Forest decline and air pollution. Ecological Studies 77, 41 – 56 (1989)
- ZECH, W.; E. POPP: Magnesiummangel, einer der Gründe für das Fichten- und Tannensterben in NO-Bayern. Forstwissenschaftliches Centralblatt 102, 50-55 (1983)
- ZÖTTL, H. W.; K. H. FEGER; G. BRAHMER: Chemismus von Schwarzwaldgewässern während der Schneeschmelze 1984. Chemistry of waters of the Schwarzwald in the snowmelt periode, 1984. Naturwissenschaften 72, 268 – 270 (1985)