# Table 3 Comparison of formulas for MCI calculation

$$V = M(1 - F_{R} - F_{U} - F_{S} )$$ $$V_{B} = M_{B} - {\text{SM}}$$
$$W = W_{0} + \frac{{W_{F} + W_{C} }}{2}$$ $$W_{B} = W_{{{0}_{B} }} + \frac{{W_{{{\text{F}}_{B} }} + W_{{{\text{C}}_{B} }} }}{2} + K_{0} \left( { - 1} \right)$$
$$W_{0} = M\left( {1 - C_{R} - C_{U} - C_{C} - C_{E} } \right)$$ $$W_{{0_{B} }} = {\text{HWD}} + {\text{NHWD}} + {\text{RWD}} + {\text{MER}}$$
$$W_{C} = M\left( {1 - E_{C} } \right)C_{R}$$ $$W_{{{\text{C}}_{B} }} = \left( {1 - E_{C} } \right){\text{MFR}}$$
$$W_{F} = M\frac{{\left( {1 - E_{F} } \right)F_{R} }}{{E_{F} }}$$ $$W_{{{\text{F}}_{B} }} = \frac{{\left( {1 - E_{F} } \right){\text{SM}}}}{{E_{F} }}$$
$${\text{LFI}} = \frac{V + W}{{2M + \frac{{W_{F} - W_{C} }}{2}}}$$ $${\text{LFI}} = \frac{{V_{B} + W_{B} }}{{2M_{B} + \frac{{W_{{F_{B} }} + W_{{C_{B} }} }}{2}}}$$
$$F\left( X \right) = \frac{0,\;9}{X}$$ $$F\left( X \right) = \frac{0,\;9}{X}$$
$$X = \left( {\frac{L}{{L_{{{\text{av}}}} }}} \right)\left( {\frac{U}{{U_{{{\text{av}}}} }}} \right)$$ $$X = \left( {\frac{L}{{L_{{{\text{av}}}} }}} \right)\left( {\frac{U}{{U_{{{\text{av}}}} }}} \right)$$
$${\text{MCI}}^{*} = 1 - {\text{LFI}}*F\left( X \right)$$
$${\text{MCI}} = \max \left( {0,\;{\text{MCI}}^{*} } \right)$$
$${\text{MCI}}^{*} = 1 - {\text{LFI}}*F\left( X \right)$$
$${\text{MCI}} = \max \left( {0,\;{\text{MCI}}^{*} } \right)$$