Skip to main content

Table 2 Oxidation products of PPD

From: Oxidative transformation processes and products of para-phenylenediamine (PPD) and para-toluenediamine (PTD)—a review

Name, molecular mass (amu), and structural formula

Reaction conditions

Analytical method

Relative analytical reliabilitya

References

Monomeric compounds

    

 Semibenzoquinone diimine radical cation (SBQDIRC) 108.14

ox. ag.: ferricyanide, pH 8 (phosphate buffer)

UV–VIS spectroscopy, EPR spectroscopy

+

[35]

+ •

pH 4.8 (acetate buffer)

CVA, EPR spectroscopy

+

[34]

 

pH 2–8 (Britton-Robinson buffer)

Electrolysis at GCE- or Pt-electrode, EPR spectroscopy

+

[38]

 

solv.: CH2Cl2 and ACN

Electrochemical oxidation at GCE, UV–VIS spectra

[37]

 

pH 7.0 (phosphate buffer)

Oxidation at a GCE modified with MnO2, UV–VIS spectroscopy, 415–425 nm

[36]

 

pH 7.0 (water), 30 min reaction time, drying until solid formation under vacuum

Adsorption on Au- and Cu- surfaces of nanoparticles, UV–VIS spectroscopy, surface enhanced Raman spectroscopy (SERS)

+

[46]

 

solv.: ACN

Oxidation at Pt electrode, EPR spectroscopy

+

[39]

 

ox. ag.: OH• and N3•, pH 8 (buffer)

UV–VIS spectroscopy, 300, 370, 460, and 490 nm, Raman spectroscopy, 1430 and 1650 nm

+

[45]

 

solv.: ACN

CVA, Pt electrode, EPR spectroscopy

+

[40]

 

ox. ag.: Br2 or photolysis, solv.: methanol, ethanol, pH 7 (water)

UV–VIS, IR, and Raman spectroscopy, 300, 460, 490, and 560 nm

[43]

 

ox. ag.: Br2 pH 4.6 (20 % acetate buffer + 80 % methanol)

UV–VIS spectroscopy, 462 and 479 nm

−−

[41]

 

Photolysis, ox. ag.: Br2, solv.: ethanol, −72 °C, −130 °C, −196 °C

UV–VIS spectroscopy, 465 and 500 nm

−−

[71]

 

ox. ag.: Br2 solv.: ethanol

UV–VIS spectroscopy, 463 and 490 nm, resonance Raman and Raman spectroscopy

[42]

 Dimeric SBQDIRC 216.29

ox. ag.: Br2, UV photolysis, pH 7 (water), ethanol (−72 °C); methanol

UV–VIS spectroscopy, 600 nm, Raman spectroscopy

−−

[43]

+ •

Photolysis, solv.: ethanol, −72 °C, −130 °C, −196 °C

UV–VIS spectroscopy, 600 nm

−−

[71]

 

solv.: ethanol −72 °C, 25 °C

Equilibrium, SBQDIRC and (SBQDIRC)2, UV–VIS and resonance Raman spectroscopy, 448 nm (monomer), 600 nm, 670 nm (dimer)

[44]

para-Benzoquinone diimine (BQDI) 106.13

ox. ag.: ferricyanide, pH 8 (buffer)

UV–VIS spectroscopy 257 and 265.5 nm

−−

[35]

ox. ag.: O2, ferricyanide, pH 7 (water), 30 min

HPLC-MS/MS, m/z: 107 amu [M + H]+fragments: 80 and 53 amu

+

[49]

 

ox. ag.: MnO2, pH 7 (phosphate buffer)

CVA, oxidation at an electrode modified with MnO2, UV–VIS spectroscopy, 276, 319, and 465 nm

−−

[36]

 

pH 7.4 (30 % ACN/70 % ammonium acetate)

Electrochemical oxidation, EC-ESI-MS-TOF, m/z: 107 amu [M + H]+

++

[25]

para-Benzoquinone (PBQ) 108.10

ox. ag.: MnO2, solv.: benzene

UV and IR spectroscopy, melting point

[73]

para-Nitroaniline138.13

ox. ag.: H2O2, ammoniacal solution, filtration of precipitates, dissolution in DMF, TLC separation

IR spectroscopy, melting point

[55]

 4-Aminophenyl formamide 136.15

Culture medium

HPLC-MS; 13C-, UV-, MS-detection, m/z: 137 amu [M + H]+

[8]

Culture medium

HPLC-MS/MS, d4-PPD, m/z: 137/141 amu [M + H]+

[56]

Dimeric compounds

    

 4,4′-Diamino-azobenzene (DAB) 212.25

ox. ag.: MnO2, solv.: benzene, 30 % yield

IR and UV spectroscopy of the isolated substance

[73]

 

ox. ag.: H2O2, ammoniacal solution, filtration of precipitates, dissolution in DMF, TLC separation

Rf-value (TLC), UV- and IR spectroscopy, elemental analysis, melting point

+

[55]

 

ox. ag.: O2, ferricyanide, aqueous solution, 30 min

HPLC-MS/MS m/z: 198 amu [M + H]+

[49]

 

pH 7.4 (30 % ACN/70 % ammonium acetate)

Electrochemical oxidation, EC-ESI-MS-TOF, m/z: 213 amu [M + H]+

++

[25]

 2-(1′,4′-Benzoquinone diimine)-4-aminoaniline 212.25

pH 7.4 (30 % ACN/70 % NH4Ac)

Electrochemical oxidation, EC-ESI-MS-TOF, m/z: 213 amu [M + H]+

[25]

 2-(1,4-Benzoquinone diimine)-1,4-benzoquinone diimine 210,24

pH 7.4 (30 % ACN/70 % NH4Ac)

Electrochemical oxidation, EC-ESI-MS-TOF, m/z: 211 amu [M + H]+

[25]

 2-(4′-Aminoaniline)-5-hydroxy-1,4-benzoquinone diimine 228.25

ox. ag.: H2O2, ammoniacal solution, filtration of precipitates, dissolution in DMF, TLC separation

UV, NMR, and IR spectroscopy, 460 nm, 550 nm, melting point, elemental analysis

+

[55]

 2-(4′-Aminoaniline)-1,4-diaminobenzene 214.27

solv.: ACN

Electrochemical oxidation, coulometry at Pt electrode

−−

[58]

Trimeric product

    

 Bandrowski’s Base N’,N’-bis-(4-Aminophenyl)-2,5-diamino-1,4-benzoquinone diimine 318.38

ox. ag.: O2, ferricyanide

Elemental analysis

−−

[24]

 

Culture medium

PPD transformation by dendritic cells, reaction time 16 h, HPLC-MS, HPLC radio detection, HPLC-UV (254 nm)

+

[2]

 

ox. ag.: H2O2 ammoniacal solution, filtration of precipitates, dissolution in DMF, TLC separation

NMR, IR, and UV–VIS spectroscopy (~460 nm)

+

[55]

 

ox. ag.: H2O2 pH 9.5 (sodium carbonate); filtration of precipitates

Elemental analysis, TLC, IR, and UV–VIS spectroscopy

[59]

 

pH 7.4 (30 % ACN/70 % NH4Ac)

Electrochemical oxidation, EC-ESI-MS-TOF, m/z: 319 amu [M + H]+

[25]

 

ox. ag.: O2, ferricyanide, pH 7 (water), 30-min reaction time, pH 4 (buffer), 1-h reaction time

HPLC-MS/MS, m/z: 319 amu [M + H]+, confirmation of substance identity by comparison with standard material

++

[49]

 

pH-dependency (pH 4, 5, 6, 7, and 9) of BB formation

HPLC-DAD (480 nm)

+

[49]

 

ox. ag.: H2O2 pH 2.2 (HCl), pH 9.9 (ammoniacal solution)

Ames Test, TLC separation, UV–VIS spectroscopy, comparison with standard

[63]

 

ox. ag.: photolysis, solv.: DMSO, reaction time 1–4 h

Ames Test, TLC separation, detection with UV and IR spectroscopy

[64]

  1. ox. ag. oxidizing agent, solv. solvent, ACN acetonitrile, CVA cyclic voltammetry, DAD diode array detection, DMF dimethyl formamide, DMSO dimethyl sulfoxide, EPR electron paramagnetic resonance spectroscopy, ESI electrospray ionization (MS interface), GCE glassy carbon electrode, TOF time-of-flight (MS technique)
  2. aFive degrees of relative analytical reliability: ++: two independent high resolution (HR) spectroscopic methods, e.g., MS, NMR, EPR, or combination of one HR method with various others; +: one HR method; : one HR method but with interferences; combination of methods with lower resolution or lesser specificity; −: one method with lower resolution/lesser specificity; −−: analysis of reaction mixtures with non-specific or low performance methods
  3. The experimental design, number of different reaction conditions, and number of replicates or reproducibility tests are also taken into account