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Abstract 

In response to the growing concern over PFAS contamination, employing models to simulate PFAS behavior 
in the environment becomes necessary. This facilitates evaluating risks tied to leaching into groundwater, adsorption 
in soil, plant uptake, entry into the food chain, and the conversion of precursors into persistent PFAS. We utilized 
the MACRO model to simulate the behavior of the precursors 6:2 diPAP and 8:2 diPAP using data from a 2-year 
lysimeter experiment, key compound parameters were optimized via the caRamel evolutionary algorithm. We 
assumed that the transformation of both diPAP precursors into stable PFAAs is influenced by temperature and soil 
moisture, similar to pesticide degradation by microorganisms. Results reveal that the model accurately represents 
transformation, leaching, soil retention, and plant uptake of diPAP and transformation products. A comparison 
with a lab-based soil column study supports the slower natural degradation of precursors, affirming our modeling 
approach. Temperature and soil moisture could indicate that a worst-case scenario for transformation product 
leaching into groundwater could occur during a mild summer with moderate evapotranspiration and heavy 
rainfall. Plant uptake involves multiple elements: PFAS availability in the root zone depends on prior degradation 
or presence. Increased moisture in the root zone favors PFAS uptake combined with temperatures high enough 
for prior biotransformation. The calculation of temperature and moisture-based conversion rates was adopted directly 
from MACRO. It is recommended to further investigate these effects to validate and possibly modify them.
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Background
Per- and polyfluoroalkyl substances (PFAS) are 
anthropogenic substances, which were created and used 
for products such as Teflon [1]. Currently, about 10,776 
PFAS [2] are known, with a rapidly growing trend. While 
there are many useful fields of applications for PFAS, 
studies have already identified adverse effects associated 
with some PFAS, including persistence, bioaccumulation, 
and toxicity [3]. These effects vary within the group of 
PFAS, with most compounds not yet been investigated, 
as research has primarily focused on a few compounds 
[4]. This includes, for example, perfluorooctanoic acid 
(PFOA), which is classified as a persistent compound 
within the subgroup of perfluoroalkyl acids (PFAA) 
[5]. PFAA are final transformation products of various 
biotransformable PFAS, referred as precursors [6]. 
These precursors include the group of polyfluoroalkyl 
phosphate diesters (diPAP). 6:2 and 8:2 diPAP [7], two 
important representatives of this group, are focused in 
the present study, simulating their biotransformation and 
leaching of transformation products in soil.

DiPAPs are used in the paper industry as grease and 
water repellent agents [8] and have already been detected 
in various environmental compartments such as soils 
[9], lakes [10] and indoor dust [11]. Once diPAPs are 
present in the soil, they are rather immobile due to their 
high sorption potential, but continue to release their 
transformation products [7]. PFAA, the mobile final 
transformation products of 6:2 diPAP and 8:2 diPAP [7], 
can rapidly enter the food web through plant uptake [12] 
or leach into groundwater [13], which may be a problem 
for several decades [14].

Due to the extensive range of PFAS and their diverse 
properties, there are currently gaps in our knowledge, 
particularly concerning the behavior of PFAS in the 
vadose zone. Studies involving non-degradable PFAS 
have shown that they exhibit lower recovery rates as 
the chain length increases [7, 15]. This phenomenon 
is often attributed to non-extractable residues (NER) 
[7], “irreversible sorption” [16] or “immobilized” 
compounds [15], all of which essentially have 
similar meanings. It has been established for other 
substances that they can form NER in soil through 
various mechanisms [17]. Although the process is 
not well understood, it has been frequently cited as a 
potential cause for a mass balance gap of PFAS in soil 
environments [7, 18, 19]. Several studies have also 
investigated the sorption of PFAS in soil. Fabregat-
Palau et  al. [20] attempted to estimate a sorption 
coefficient based on soil composition and chain length 
for a few PFAA but with significant uncertainties. 
Therefore, the estimate can only serve as an initial 
approximation due to the multitude of influencing 

factors. The study highlighted that the organic carbon 
content and the mineral soil fraction (clay and silt) 
have an impact on sorption, in addition to compound 
properties. However, the influence of these factors 
can vary depending on other parameters, such as the 
presence of other organic compounds or ions [21]. 
Understanding NER formation and sorption is crucial 
for estimating the potential of PFAS release from NER 
into soil.

The transformation pathways of certain precursors 
have been studied and documented [19, 22, 23]. However, 
transformation rates are often determined under 
constant environmental conditions [7, 19] and, in some 
cases, based on only two data points, assuming a uniform 
transformation rate [7, 12, 24]. It is important to note 
that transformation rates can be influenced by various 
factors. Firstly, the NER fraction may increase over time 
due to soil aging effects, as described in Cheng et  al. 
[25] for organic pollutants. Consequently, the fraction 
of precursor available for transformation may decrease 
over time. Secondly, if microorganisms are involved 
in the transformation process, as observed in the 
transformation of diPAPs [19], parameters that influence 
microbial productivity also affect the transformation rate. 
These parameters include temperature [26, 27], oxygen 
availability [26, 27], soil water content [28, 29], the ability 
of plants to influence microbial communities [30], the 
strains of microorganism [31] and their environmental 
preferences, and the availability of nutrients [26, 
27]. These diverse factors highlight the need to 
investigate their impact on precursor transformation 
to better predict the variability of transformation rates. 
Understanding these influencing factors can be used 
to model precursor transformation, enabling better 
estimations of substance behavior in contaminated soils.

Various models are available for simulating 
transformation and leaching processes in the vadose 
zone. These models were initially developed for pesticide 
registration purposes [32], but have been applied to 
other substances as well. Examples of such applications 
include veterinary antibiotics [33], pharmaceuticals [34] 
and nutrients [35]. Simulation studies involving different 
PFAS, primarily non-degradable ones [36], have also 
been conducted using various models such as HYDRUS 
[37] and MACRO [38]. These studies have examined 
environmental conditions such including saturated [39, 
40] and unsaturated soils [18, 37, 38, 41], laboratory 
settings [41] and field conditions [18, 38]. Additionally, 
they have investigated various processes such as NER 
formation [38] and sorption at the air–water interface 
[37]. In existing models processes are limited to the 
leaching of PFAA [18, 37–39, 41–43], transformation of 
diPAP and leaching of PFAA [41], the transformation 
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of PAP [19], the uptake of PFAA in plants [44] and 
the behavior in the saturated zone [39, 42, 43, 45]. 
Additionally, a further overview is given in [36].

Available simulation studies focusing on precursor 
transformation in the vadose zone have primarily focused 
on areas contaminated with Aqueous Film-Forming 
Foam (AFFF) [46, 47]. However, a laboratory-based 
simulation study using unsaturated soil columns has 
been conducted to investigate the transformation of 6:2 
and 8:2 diPAP [41]. The results of this study revealed that 
the biotransformation rate was not constant, indicating 
that changing conditions such as soil water content 
and oxygen availability influenced the transformation 
process.

In the present simulation study, we aimed to simulate 
the transformation of 6:2 diPAP and 8:2 diPAP, as well as 
related processes such as substance leaching, sorption 
and plant uptake, using data from a lysimeter study 
[24]. To the best of our knowledge, there is currently 
no existing simulation study that specifically addresses 
the transformation, leaching and plant uptake of 
transformation products of diPAPs and diPAPs in the 
vadose zone under near-natural conditions.

Materials and methods
Lysimeter study
In the 2-year lysimeter study in Schmallenberg, Germany 
[24], four lysimeters were set up to investigate the 
behavior of 6:2 and 8:2 diPAP individually in a duplicate 
setup each. The target concentration of diPAPs were 
2  mg/kg dry matter for the upper soil half, having a 
total input mass of 628.5  mg in each lysimeter, which 
corresponds to a molar amount of 0.80 mmol (6:2 diPAP) 
and 0.63 mmol (8:2 diPAP). To prevent erosion, grass was 
planted on the surface of the lysimeters. The lysimeters 
were exposed to natural climate conditions and were not 
artificially watered.

Throughout the study, samples of percolate were 
collected at irregular intervals from the bottom of the 
lysimeters at 65 cm. The topsoil includes the soil until a 
depth of 25 cm, the subsoil the depth from 25 cm down 
to 60  cm and a gravel layer was added from a depth of 
60 cm down to 65 cm. Grass samples were collected each 
year, and soil samples were obtained from five different 
depths at the end of study. Two methods were used to 
quantify PFAS, with detailed information provided in the 
original article [24]. The results presented in the study 
focus on the target method using tetrabutylammonium 
hydrogensulfate to quantify individual PFAS masses.

For the simulation study, values given in [24] are 
converted from concentrations to masses. All used 
values are listed in Additional file  1: Tables S3–8 in the 

supporting information, as well as an overview of the 
mass balance is shown in Additional file 1: Fig. S1.

The MACRO model
MACRO is a 1D numerical model used for simulating 
solute transport and water flow in the vadose zone [48]. 
Originally developed for pesticide registration procedures, 
MACRO has been adapted for studying various substances 
[33, 38]. In this simulation study, MACRO version 5.2 is 
used in the command line version, and parameter changes 
are controlled using GNU R. The macroutils package 
(version 1.15.0), recommended by MACRO developers 
[49], is employed to convert simulation results.

The model incorporates several key features 
that are relevant to the present study. The actual 
evapotranspiration is calculated based on input data 
of temperature and potential evapotranspiration. The 
potential evapotranspiration is partitioned into potential 
transpiration and potential evaporation via calculation of 
a fraction intercepted by the transpiring canopy surfaces 
and by dead plant material as well as a fraction which 
reaches the soil surface, respectively [50]. Both fractions 
are calculated using values of (green) leaf area index [50]. 
The actual evaporation is calculated with the value of 
potential evapotranspiration and the actual transpiration 
is calculated by using a function of the water stress index 
accounting for the water content and the distribution of 
roots [48].

Water flow and substance transport are simulated 
using two dual-permeable domains: micropores 
and macropores. Solute transport is influenced by 
various substance parameters, including the sorption 
coefficient KD, the linearity of sorption described by 
the Freundlich n parameter, anionic exclusion θAE, and 
transformation in all four domains (liquid/solid phase of 
micro-/macropores). Solute parameters can be adjusted 
individually for each soil horizon.

The actual transformation rate μD of the substances is 
calculated by

using the reference transformation rate μref,D and factors 
depending on temperature Ft and soil water content 
Fw. The factor Ft, which represents the influence of 
temperature on the transformation rate, is calculated 
using a three-section defined function:

(1)µD = µref,D · Fw · Ft ,

(2)Ft = eα(T−Tref) with T > 5 ◦C,

(3)Ft =

(

T

5

)

eα(5−Tref ) with 0 ≤ T ≤ 5 ◦C,
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The function takes into account the reference 
temperature Tref at which the transformation rate μref,D was 
measured, the current temperature T and a parameter α. 
The default value of α is 0.08 (–) on the basis of Boesten, 
Linden [51]. Setting α to zero removes the temperature 
effect, while higher values of α amplify the impact of 
temperature on the transformation rate.

The factor Fw was updated from MACRO version 5.0 to 
5.2 [52], using a different approach based on the work of 
Schroll et al. [53]. Fw is defined as a three-section function 
that depends on the current soil water content θ:

In very dry conditions, well below the soil water content 
at wilting point θw, the transformation rate is set to zero (5). 
As the soil water content increases until a water content 
corresponding to a pressure head of −100  cm is reached 
θ100, Fw can have values between 0 and 1 (6). In very moist 
conditions (7), the conditions are considered ideal, and Fw 
is set to 1, which is the maximum value. The parameter B 
can be set to zero to eliminate the influence of Fw, provided 
that the soil water content does not fall within the range 
described by Eq. (5).

MACRO does not have explicit built-in support for 
modeling NER. However, a possible workaround has been 
used in previous simulations [33, 38], where NER were 
modeled by using the transformation rate in the solid phase 
of the micropores.

Plant uptake Uc is calculated by

(4)Ft = 0 with T < 0 ◦C.

(5)Fw = 0 with θ < 0.5θw ,

(6)

Fw =

(

θ − 0.5θw

θ100 − 0.5θw

)B

with 0.5θw < θ < θ100,

(7)Ft = 1 with θ > θ100.

multiplying the solute concentration factor of the 
transpiration stream fc, the root water uptake volume Sr 
and the solute concentration c’.

Model parameterization
In the MACRO model, a free flow situation at the bottom 
outlet and a variable water input by precipitation was cho-
sen as boundary conditions. Precipitation and temperature 
data were obtained from a weather station situated at the 
lysimeter site. In cases of missing data, nearby weather sta-
tions were utilized as substitutes. Daily potential evapo-
transpiration was derived from raster data provided by the 
DWD (German Weather Service) [54]. Obtained raster 
data were calculated by DWD on the basis of the agrome-
teorological model AMBAV (Agricultural meteorological 
calculation of the current evaporation) for weather stations 
since 1991 and a multiple linear regression [55]. The grass 
was simulated as an annual crop using estimated parameter 
values (Additional file 1: Table S11). Physical soil data were 
measured (Additional file  1: Table  S1). Soil parameters 
were calculated using the pedotransfer function FOOT-
PRINT, which is part of the MACRO software. Initial 
soil water content and a selection of soil parameters were 
employed to calibrate the water flow (see Additional file 1: 
Table  S9). Substance parameters used for optimizing the 
solute transport can be found in Table 1 and cover the KD 
value, anion exclusion θAE, Freundlich n and the NER rate µ 
ref,s,mi. The parameters were varied for the two main trans-
formation products of 6:2 diPAP perfluoropentanoic acid 
(PFPeA) and perfluorohexanoic acid (PFHxA) and the two 
main transformation products of 8:2 diPAP perfluorohep-
tanoic acid (PFHpA) and perfluorooctanoic acid (PFOA). 
All four transformation products belong to the group of 
the perfluorocarboxylic acids (PFCA), which belong to the 
PFAA group, and will be abbreviated with PFCA’, if they 

(8)Uc = fc · Sr · c
′,

Table 1 Substance related parameter used for optimization. n.d. not determined

KD = distribution coefficient, θae = anion exclusion, µ ref,s,mi = NER formation in the solid phase of the micropores, µ ref,l,mi = transformation rate in the liquid phase of the 
micropores

6:2 diPAP: 6:2 polyfluoroalkyl phosphate diesters, 8:2 diPAP: 8:2 polyfluoroalkyl phosphate diesters, PFCA’: perfluorocarboxylic acids transformation product of a 
precursor, PFPeA: perfluoropentanoic acid, PFHxA: perfluorohexanoic acid, PFHpA: perfluoroheptanoic acid, PFOA: perfluorooctanoic acid

Dimension Precursors PFCA’

6:2 diPAP 8:2 diPAP PFPeA PFHxA PFHpA PFOA

KD l/kg 1–100 1–100 0–0.40 0–0.72 0–1.25 0–3.50

θAE % – – 0–10 0–10 0–5 0–5

Freundlich n – 0.7–1.3 0.7–1.3 0.7–1.3 0.7–1.3 0.7–1.3 0.7–1.3

µ ref,s,mi 1/days n.d n.d – – – 0–1

µ ref,l,mi 1/days 2 2 – – – –

fc – 0–1 0–1 0–1 0–1 0–1 0–1
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emerged from a precursor. The KD value was the only sub-
stance parameter which was varied for upper and lower soil 
separately, to reduce the amount of parameters within the 
optimization. The solute concentration factor fc was cali-
brated using the entire interval from 0 up to 1 (see Table 1).

Initial diPAP masses in soil were set to recovered masses 
of the lysimeter study [24]: 401.9  mg and 522.7  mg for 
6:2 diPAP and 8:2 diPAP, respectively, including their 
transformation products. The original mass input into 
the lysimeter for each compound was 628.5  mg. This 
approach was adopted due to uncertainties regarding 
the fate of the not recovered masses of precursors. 
NER were only simulated for PFOA, because of results 
given in [41]. The transformed masses were divided into 
multiple transformation products based on the formation 
fractions (ff) provided in Table  2. Formation fractions 
were determined using the amount of substance (mol), 
considering that two molecules of PFCA are equivalent to 
one molecule of diPAP [56]:

It was observed that under sterile conditions, there was 
hardly any degradation of diPAPs [19], indicating the likely 
influence of temperature and moisture content, as they 
have a demonstrable impact on microorganisms [57]. So, 
the approach followed here considers the degradation rate 
being influenced by temperature and moisture content, 
which is also similar to pesticides [57]. For the gravel layer 
no sorption and no degradation was assumed.

Evaluation of model performance and modeling strategy
Goodness‑of‑fit values
The Kling–Gupta efficiency KGE [58] is calculated by

(9)ff =
mPFCA′

mdiPAP′
.

(10)
KGEx= 1−

√

(rx − 1)2 + (α − 1)2 + (β − 1)2,

using the Pearson correlation coefficient between 
simulated and observed values rx, a quotient of standard 
deviations sx, the average of simulated values mx and the 
observed values ox.

The root mean square error RMSE is calculated by

using modeled values mt and observed values ot to create 
a mean absolute deviation of modeled values. For both 
objectives (KGE, RMSE), the hydroGOF (0.4–0) package 
was used.

Modeling strategy
The optimization was performed using the caRamel evo-
lutionary algorithm [59] and 10,000 simulation runs. The 
transformation rate was influenced by both soil tem-
perature and water content as described by Eq.  (1). In 
each simulation run (Fig.  1), a parameter set was used, 
which included the soil parameters Van Genuchten’s 
alpha (0.02–1   cm−1), saturated hydraulic conductivity 
(50–150 mm  h−1), initial volumetric soil water content of 
subsoil and topsoil (20–25%), as well as substance param-
eters of diPAP and PFAA transformation products (see 
Table 1).

A modeling run was started using only soil parameters, 
soil water content and substance parameters of diPAPs. 
The results of this simulation as well as the substance 
parameters of the first transformation product were then 
used to simulate the leaching of the first transformation 
product, which was PFHpA in case of 8:2 diPAP. The 
same was done for the second transformation product 
PFOA. After a complete simulation, obtained values 
were compared to measured values via an objective 
function. The same was done for 6:2 diPAP and its 
transformation products. To evaluate the performance 
of each simulation run, four objectives were used. The 
KGE (9) was employed to evaluate the water flow and 
the RMSE was used to evaluate both transformation 
product masses observed in the percolate. Additionally, 
a simple difference between the observed and modeled 
values was minimized to assess the transformed diPAP 
mass. The optimization algorithm used the evaluation of 
these objective functions to create new parameter sets 
for subsequent simulation runs, aiming to improve the 
agreement between the model predictions and observed 
data.

After a complete optimization process, the simulations 
included in the Pareto front (best 500 and then 

(11)with α=
sx(m)

sx(o)
, β=

mx

ox
,

(12)RMSE =

(

1

n

n
∑

t=1

(mt − ot)
2

)

1/2,

Table 2 Formation fraction values used in the model

The formation fraction (ff) is calculated using the observed recovered 
transformed mass of 154.6 mg (6:2 diPAP’) and 197.1 mg (8:2 diPAP’)

PFCA’ 6:2 diPAP 8:2 diPAP

Mass ff Mass ff

mg – mg –

PFBA 4.3 0.03 1.1 0.01

PFPeA 58.3 0.38 3.3 0.02

PFHxA 47.2 0.31 4.4 0.02

PFHpA 0.1  < 0.01 16.6 0.08

PFOA – – 133.0 0.67
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90%-quartile of every of the four objectives) were 
selected for the calibration of the plant uptake of PFAA 
transformation products. This calibration process was 
separated from the optimization process and involved 
adjusting the solute concentration factor fc. To calibrate 
fc, the interval bisection method was used. This method 
involves iteratively adjusting the factor fc within an 
interval and evaluating the goodness-of-fit with the 
observed data until the deviation from the observed 
values was less than or equal to 1%. The mean deviation 
of the substance uptake by plants for both years was used 
as a measure of the goodness-of-fit.

Results and discussion
Simulation results
The result of the optimizations were 314 simulations 
(6:2 diPAP) and 313 simulations (8:2 diPAP), that 
met the previously defined criteria. The water flow 
could be reproduced with good quality measures 
(KGE6:2  diPAP = 0.78–0.86, KGE8:2 diPAP = 0.85–0.86). This 
provided a solid foundation for simulating substance 
leaching. It is important to note that results obtained 
in controlled laboratory environments, such as the 
soil column study, may differ from natural conditions 
due to fewer variations in environmental factors like 
temperature and precipitation.

PFAS in percolate
In Fig.  2 the results of all chosen transformation prod-
uct simulations in the period of April 2019 until April 
2021 are shown. Until April 2020, all peaks and almost 
all observed values are covered by the simulations. Espe-
cially leaching dynamics of PFHpA and PFOA are well 
represented with only little deviations. Regarding PFPeA 
and PFHxA the dynamics are well represented as well, 

but wide simulation ranges are notable, which could be 
related to variations in the modeled values of water fluxes 
(see Additional files 1: Fig. S2). The variations between 
modeled and observed percolate were also found for 8:2 
diPAP lysimeters, but the influence of the variation may 
have been higher on the more mobile PFPeA and PFHxA. 
An overestimation of 6:2 diPAP transformation products 
masses (see Fig.  3) also influenced the leaching of both 
substances.

PFAS in soil
The modeling of the amount of diPAP, which is still 
adsorbed to soil particles, and its transformation 
products (PFPeA, PFHxA, PFHpA, PFOA), as shown 
in Fig. 3, was well-matched by the model, especially the 
dynamics with soil depth. Observed values of diPAPs in 
soil layers were all in the range of simulated values.

The best compromise overestimated the transformed 
amount of 6:2 diPAP. A high uncertainty of values can 
be found for the transformation products of 6:2 diPAP, 
PFPeA and PFHxA, although observed values are all 
within modeled ranges. The high uncertainty was only 
found in the upper two soil layers, whereby only outliers 
were recognized in the lower soil layers. This might be 
connected, to the simulations runs, in which transformed 
6:2 diPAP mass was overestimated, or simulation runs, 
in which the highest KD-values were used for a better 
representation of leaching from the bottom layer.

The transformed masses of 8:2 diPAP were 
underestimated in the simulation of the best compromise 
for the two upper soil layers. The amount in the third 
layer of 8:2 diPAP was highly underestimated, which 
could be the result of the third layer being the transition 
layer from initially contaminated soil to uncontaminated 
soil. Adsorption masses of PFHpA were underestimated 

Fig. 1 Schematic of modeling strategy with 8:2 diPAP as example
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in the upper two soil layers and overestimated in the 
lower soil layers. PFOA was also underestimated in 
every soil layer, but the increasing dynamic with soil 
depth was well simulated. Changing soil parameters 
may not have been expedient, because PFHpA masses 
were overestimated and PFOA masses underestimated. 
An improvement of one value would have worsened the 
fitting of other values, which is already covered by the 
pareto front of the optimization algorithm. A variation 
of the ff value might have improved the simulation 
results, which was not done due to the availability of the 
measured value. But the underestimation of simulated 
transformed 8:2 diPAP, would have been compensated by 
increasing the ff value of PFHpA and PFOA.

Plant uptake of PFAS
The decreasing uptake of PFPeA and PFHxA in the grass 
from 2019 to 2020 and the magnitudes were well rep-
resented by the model (Fig.  4): The best compromises 
have only slight deviations from the observed values 
and the distribution of values was broad, but still in the 
same order of magnitude. However, observed uptakes of 
PFHpA and PFOA were similar for both years, but were 
also represented by a decrease in the model, resulting in 
an underestimation of values in 2020 and an overestima-
tion for PFHpA in 2019. One reason for the decreasing 
uptake in the model could be a decreasing availability of 
substance in the soil, since the amount of precursor also 
decreased over time. Further, the water content in the 

Fig. 2 Observed and modeled values of transformation products leaching of 6:2 diPAP (PFPeA, PFHxA) and 8:2 diPAP (PFHpA, PFOA) in mg/interval
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soil was lower in 2020 due to lower precipitation than 
in 2019. A comparison of the vegetation period April to 
August shows a difference of 122 L/m2 (2019: 325 L/m2, 
2020: 204  L/m2). Looking into air temperature (26.04.–
31.08), both years were similar, with 2020 being slightly 
colder (2019: Tmean = 13.4 °C, standard deviation = 5.7 °C; 

2020: Tmean = 13.0  °C, standard deviation = 4.7  °C). A 
lower soil water content could have influenced the trans-
formation rate as well as the availability of substances for 
the grass. The question arises why this dynamic cannot 
be found for PFHpA and PFOA. In 2019 an overestima-
tion and in 2020 an underestimation of simulated values 

Fig. 3 Observed and modeled values of 6:2 diPAP and 8:2 diPAP and transformation products of 6:2 diPAP (PFPeA, PFHxA) and 8:2 diPAP (PFHpA, 
PFOA) in mg/soil layer. The order is from topsoil (1) to subsoil (5)

Fig. 4 Observed and modeled plant uptake of 6:2 diPAP and 8:2 diPAP and transformation products PFPeA, PFHxA (6:2 diPAP) and PFHpA, PFOA 
(8:2 diPAP) in mg/year
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can be found (Fig. 4). In case of simulated uptake values 
in 2019, an overestimation of transformed PFOA und 
PFHpA as well as their precursor 8:2 diPAP in the upper 
soil is likely the reason for an overestimated uptake. In 
case of 2020, the underestimation of simulated PFHpA 
and PFOA masses in the upper soil at the end of experi-
ment might the reason, assuming a similar underestima-
tion was also found before the vegetation period.

Parameter distribution
The optimized ranges and the initial ranges of substance 
parameters are given in Table 3 and Table 4 and in Addi-
tional file 1: Table S14–17. Although the initial parameter 
range was the same for all soil layers, the optimization 
found the substances more adsorptive to the upper soil 
layers (Additional file 1: Table S1), which are in fact more 
sorptive due to higher organic carbon content and min-
eral content (clay and silt). The upper boundaries of the 
parameter ranges were approached in several cases. An 
adjustment of the parameter ranges would have been 
a possibility, but was not done following the modeling 
strategy. Noticeable are the extreme differences of subsoil 
KD-values for both diPAP. The high ranges of KD values 
can be explained by a correlation to the degradation rate 
and the Freundlich n. The datapoint of diPAP masses in 

the third soil layer, which is the transition layer between 
upper and lower soil, is the only datapoint available to 
calibrate diPAP parameters for lower soil, which results 
in a high uncertainty in the found parameter values. 
Compared with another modeling study [41], optimized 
values of KD are higher for all PFAA in this study. The 
transport could be enhanced by different study condi-
tions: in the present study, PFAA were slowly produced 
over time and in the comparing study, they were applied 
as a mixture on the soil surface, having more adsorption 
competition. A comparison of the optimized KD values 
of PFAA and literature, where upper and lower soil was 
comparable to this study [18], show that the modeled 
range fits the magnitude of the measured values quite 
well, supporting the results of the optimization.

Results of Freundlich n values are shown in Additional 
file  1: Table  S16. Values in the complete initial range 
(0.7–1.3) in case of PFPeA and 6:2 diPAP, values between 
1 and 1.3 in case of PFHxA, values at the upper bound-
ary in case of PFHpA and PFOA and values at the lower 
range (8:2 diPAP) were found. Reasons for a wide range 
could be a not given sensitivity or equifinality, since 
higher KD and lower n might result in the same value of 
sorption strength, especially if the information content 

Table 3 Initial parameter ranges and posterior parameter statistics of degradation rate µ ref,l,mi and NER formation µ ref,s,mi (1/days) of 
behavioral models

Substance Min 5th 50th 95th Max Initial range

µref,l,mi at 20 °C

1/days

6:2 diPAP 0.154 0.390 0.842 1.350 1.834 0–2

8:2 diPAP 0.312 0.351 0.488 0.657 0.722 0–2

Substance µref,s,mi

10–3/days

PFOA 0.234 1.090 1.646 2.151 2.594 0–1000

Table 4 Initial parameter ranges and posterior parameter statistics of solute concentration factor (fc) for plant uptake of behavioral 
models

Precursor Substance Min 5th 50th 95th Max Initial range
fc  (10–3)

6:2 diPAP PFPeA 0.00 54.7 93.8 117 117 0–1000

PFHxA 4.11 5.47 7.30 11.1 14.8 0–1000

6:2 diPAP 0.26 0.65 1.23 1.93 3.01 0–1000

8:2 diPAP PFHpA 0.62 0.62 0.73 1.11 1.11 0–1000

PFOA 0.55 0.63 0.73 1.11 1.11 0–1000

8:2 diPAP 0.41 0.51 0.67 0.76 0.82 0–1000
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of the measured values is not enough to parameterize a 
non-linear isotherm or if the isotherm is in fact linear.

Anion exclusion posterior parameter statistics 
(Additional file 1: Table S17) show a complete use of the 
range for PFPeA and PFHxA and values at the boundary 
of initial values for PFHpA and PFOA. The small initial 
range of anion exclusion for the PFAA was the result of 
an internal model error when a bigger range was used 
as in [41]. An increase of the upper boundary of anion 
exclusion was rejected due to sufficient model results 
and only their maximum being on the boundary.

Results of degradation rate of diPAP µ ref,l,mi and NER 
rate µ ref,s,mi, only regarding PFOA, are given in Table 3. 
NER rate of PFOA had a similar magnitude to the given 
optimized range of PFOA from other modeling studies: 
1.5–4.4  10–3/days [41], 3.0–6.6   10–3 1/days [38] with 
the range being overall lower, which might be the result 
of small differences in the soil composition.

Degradation rates of diPAPs are in a wide range, with 
the maximum value of 8:2 diPAP being lower than 
the maximum value of 6:2 diPAP and the minimum 
value being the opposite. This might be the result 
of interaction with other parameters, such as KD-
value compensating for changes in the value of the 
degradation rate, ending up in equifinality. The ranges 
of degradation rate of 6:2 diPAP are similar (0.45 1/days, 
strategy II) to another modeling study [41], but one 
order of magnitude higher than in a laboratory study 
[19], where transformation rates were calculated with 
a first-order degradation (0.048 1/days). Degradation 
rate of 8:2 diPAP is one order of magnitude higher 
compared with another modeling study (0.05 1/days, 

strategy II) [41] and two orders of magnitudes higher 
than in a laboratory study [19], in which the rate had a 
value of 0.006 1/days. A possible reason for differences 
is the uncertainty of transformation dynamics between 
start and end of study, which was estimated through 
leaching dynamics of transformation products in 
this study and in another simulation study [41], and 
was measured in the laboratory study [19] with more 
data points for calculations. Furthermore, the rates 
calculated in this study were affected by soil moisture 
and temperature (Eq.  1). Thus, the actually used 
transformation rates during the modeling process were 
presumably lower most of the time, when optimum 
degradation conditions were not present. Additionally, 
in soils with saturated zones, the soil moisture factor 
in the degradation rate calculations of MACRO might 
not be suitable, because the degradation can decrease 
at high soil moisture due to low oxygen level [60], as 
discussed in [41].

The calibrated factor fc is dependent on the chain length 
of PFAS (see Table  4), which can be attributed to the 
decreasing water solubility with increasing chain length 
[61]. Previously calibrated uptake factors for PFOA 
[38], showed values one to three orders of magnitude 
lower than the values obtained here. Other reasons for 
differences between the various uptake factors for PFOA 
are (1) different uptake factors for different plant species 
[62]; (2) different values for substance parameters, 
which also influence the uptake factor; and (3) a lower 
contamination situation here compared to Gassmann 
et al. 2021 [38], with uptake masses of > 0.1 mg per year.

Fig. 5 Simulated minimum and maximum soil temperatures (°C) in the upper 30 cm (a). Simulated soil water content of the whole lysimeter (L/m2) 
(b) of an example simulation
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Some of the substance parameters are correlated with 
each other, which means that other parameter combi-
nations can also lead to similarly good results, since 
certain effects can be represented by different parame-
ter values. A mutual influence was observed, for exam-
ple, between the  KD value and the degradation rate (r8:2 

diPAP = 0.85, p < 0.001), the KD value and NER formation 
(rPFOA = − 0.55, p < 0.01), the KD value and Freundlich 
n (rPFHpA = 0.56, p < 0.001 und rPFHxA = 0.55, p < 0.001), 
KD value and fc for 6:2 diPAP and the upper soil (r8:2 

diPAP = 0.85, p < 0.001), Freundlich n value and fc for 6:2 
diPAP (r6:2 diPAP = − 0.72, p < 0.001) and KD value and 
µ ref,l,mi for both diPAP (r6:2 diPAP = 0.91, p < 0.001 and 
r8:2 diPAP = 0.96, p < 0.001) with high significance lev-
els determined through the Pearson rank correlation 
test (Additional file  1: Table  S18 and S19). The con-
nection lies in the sorption equilibrium for the men-
tioned parameters. The lower the KD value, the more is 
present in the liquid phase, and vice versa. To achieve 
a similar effect, a decrease in the KD value should be 
accompanied by a reduction in the degradation rate 
in the liquid phase or an increase in NER formation in 
the solid phase. The significant correlations were not 
equally observed for all substances in the mentioned 
combinations.

Implications for contamination cases
When considering Fig. 5, the relationship between simu-
lated temperatures and soil moisture content becomes 
evident, showing an inverse correlation (r = − 0.73, 
p < 0.001), which can be attributed to evapotranspiration.

For the model, this modified approach suggests that 
high temperatures (spring/summer) and high moisture 
content, but still unsaturated (fall/winter), favor the 
degradation process. Therefore, degradation would 
occur throughout the year, except during temperatures 
below 0  °C, as degradation is not considered at these 
temperatures in the MACRO model if the temperature-
dependent degradation is enabled. For real cases of 
diPAP contamination, a worst-case scenario for leaching 
of transformation products towards groundwater would 
occur during a mild summer with precipitation or 
precipitation after a warm but not dry period and in soils 
with a high water permeability, such as the sandy soils. 
This favors leaching of transformation products, such as 
at the beginning of fall until spring. Figure 5 also shows 
that the optimum conditions for transformation are 
hardly reached at all.

Another study [39], which simulated PFOA with and 
without precursor transformation in the saturated zone 
could be connected to a model such as presented here, to 

predict the leaching in the unsaturated soil for real con-
tamination scenarios.

Conclusions
The use of models to represent the behavior of PFAS in 
the environment is crucial given the recorded cases of 
contamination. Results show that the transformation, 
leaching of diPAPs and their transformation products, 
soil retention, and plant uptake can be represented with 
the chosen model setup in MACRO. The influence of 
temperature and soil moisture on the transformation 
of diPAP worked to represent observed values, but 
the calculation of the transformation rate based on 
temperature and soil moisture was directly adopted 
from the model and should be investigated separately to 
verify this approach and potentially make adjustments if 
necessary.
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