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Abstract 

Toxicity of single pollutants or microplastics (MPs) on organisms have been widely reported. However, their 
combined toxicity with boron has not been investigated. This study examined effects of individual polypropylene 
microplastics (PP-MPs) or mixed PP-MPs and boron on biochemical biomarkers in red tilapia (Oreochromis niloticus). 
O. niloticus were exposed for 21 days to pristine PP-MPs concentrations (10 or 100 mg/L), concentrations of boron 
alone (30 or 70 mg/L), and identical concentrations of boron in the presence of PP-MPs in laboratory aquaria. Results 
showed that higher concentrations of individual PP-MPs lead to significantly decreased acetylcholinesterase (AChE) 
in the brain and malondialdehyde (MDA) in fish liver. In contrast, superoxide dismutase (SOD), glutathione peroxidase 
(GPx), and glutathione (GSH) were significantly increased in fish liver exposed to higher concentrations of individual 
PP-MPs. Mixed concentrations of boron and PP-MPs significantly decreased AChE, GSH, and MDA activity in fish. In 
contrast, mixed concentrations of boron and PP-MPs significantly increased CAT, SOD, and GPx activity in fish. Findings 
highlight that PP-MPs may increase adverse effects of boron in O. niloticus. We present evidence that individual MPs 
in long-term exposure have a significant impact on biomarker responses in O. niloticus.
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Introduction
In recent decades, the demand for the use of plastics 
in a variety of industries has continuously grown [9, 
28, 44]. Plastics are estimated to reach  up to 54% (by 
mass) of anthropogenic waste materials discharged 
into the environment due to overuse and inappropriate 
management [22]. Microplastics (MPs; ranging from 
1  μm to 5  mm) [16] are ubiquitous in all matrices of 
the environment [4], including seas [46], sediments 
[34], rivers [10, 31], soils [29, 61], and airs [1]. Ingestion 
of different MPs has been shown to be hazardous to a 
number of species in laboratory experiments, ranging 
from invertebrates to fish [14]. For example, Hanachi 
et  al. [21] found that Zebrafish (Danio rerio) exposed 
to combined polyethylene terephthalate (PET) and 
abamectin for 96h exhibited alterations on glutathione 
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(GSH) content, glutathione peroxidase (GPX), and 
superoxide dismutase (SOD) activity. Likewise, Ding 
et  al. [12] found that red tilapia (Oreochromis niloticus) 
exposed to three sizes of PS-MPs (0.3, 5, and 70 − 90 μm) 
for 14 days had significant effects on oxidative stress in 
fish.

Biomarker responses have been applied to evaluate 
effects of environmental stressors on fish [50]. Some 
laboratory studies have reported MPs uptake in 
freshwater organisms including fish [13, 27], water flea 
(Daphnia magna) [24], and zebra mussel (Dreissena 
polymorpha) [35]. However, information on the 
mixed effects of MPs and chemical contaminants 
in freshwater fish is still limited. Zhang et  al. [60] 
showed interactive effects of polystyrene (PS) MPs 
and roxithromycin on activities of cytochrome P450 
(CYP) enzymes [7-ethoxyresorufin o deethylase 
(EROD) and 7-benzyloxy-4-trifluoromethyl-coumarin 
Odibenzyloxylase (BFCOD) O. niloticus.

Boron (including borates, boric acid, and boric oxide) 
can be found in rocks, soils, seawater and fresh water 
and is considered an essential micro-mineral [47]. 
Boron is also widely used in agricultural (e.g., fertilizer) 
and industrial applications (e.g., glass and antifreeze 
ingredients) [48]. Land-based anthropogenic activities 
can allow the release of boron into aquatic receiving 
environments from fertilizers, pesticides, and detergents 
[49]. Adverse effects on fish from boron contamination, 
including hematological, serum and DNA damage in 
Nile tilapia and Rainbow Trout (Oncorhynchus mykiss) 
have been reported by Acar et al. [2] and ÖZ et al. [41], 
respectively.

MPs may have a synergistic effect on organism health 
when combined with other pollutants, or they may 
serve as a transport vector for environmental pollutants. 
However, there is still a lack of understanding about the 
potential for pollutants to be incorporated into aquatic 
organisms by MP consumption [11]. To our knowledge, 
no study is available to investigate the combined 
effect of PP-MPs and boron on biomarker responses 
on organisms. The interaction of MPs and chemical 
contaminants has shown conflicting findings, with 
several studies reporting increased or decreased toxicity 
of mixed MPs with organic or inorganic chemicals [8, 
18, 27]. For example, Karbalaei et  al. [27] reported that 
PS-MPs increased toxicity of chlorpyrifos to O. mykiss. In 
another study, Guven et  al. [18] found that MPs do not 
enhance the acute toxicity effects of pyrene on predatory 
performance of barramundi (Lates calcarifer).

Boron could adsorb on MPs, because B(OH)3 
attaches to dissolved organic matter through surface 
complexations [53]. A recent study on the interaction 
between boron and MPs in aquatic environments 

showed boron adsorption capacity on aged PVC, aged 
PS, PVC, and PS. In addition, on aged PVC, 35.9% of the 
boron desorbed in the simulated gut of warm-blooded 
animals [53]. Another study also showed amino-modified 
polystyrene (PS-NH2) and excess boron inhibited the 
growth of Microcystis aeruginosa [59].

The Canadian federal government has called for 
more research to improve our understanding of the 
ecotoxicological impacts of MPs [15]. Thus, these 
important knowledge gaps must be address to help 
inform government strategies to reduce adverse effects 
of environmental MP pollution [52]. Very limited studies 
examined the effects of MPs and boron on aquatic 
environments and organisms [53, 59]. This study is the 
second research to investigate the combined effects 
of MPs and boron on aquatic organisms. To improve 
our understanding on impacts of individual and mixed 
PP-MPs and boron exposure, this study used multiple 
biomarkers in O. niloticus including a nervous system 
enzyme acetylcholinesterase (AChE) in the brain to 
assess potential neurotoxicity; cytochrome P450 (CYP) 
enzymes (EROD, and BFCOD) in the liver of O. niloticus 
to assess metabolic disturbances; and an antioxidant 
enzymes superoxide dismutase (SOD), catalase (CAT), 
GPX, GSH, and malondialdehyde (MDA) in the liver of O. 
niloticus to assess potential oxidative damage. The main 
objectives of this study were to: (1) examine the effect 
of pristine PP-MPs exposure on enzymatic activities in 
liver of O. niloticus; and, (2) investigate whether PP-MPs 
change impacts of boron on enzymatic activities in liver 
of O. niloticus.

Materials and methods
Sources of MPs
MPs used in this study were pristine polypropylene pel-
lets purchased from commercial MP pellets Takht-e-Jam-
shid company. Original purity of PP was frozen in liquid 
nitrogen and crushed with a 0.5 mm sieve in an Ultra 
Centrifugal Mill ZM 200 (Germany). PP-MPs mixed 
with ethanol were pipetted onto aluminum stubs and 
gold sputtered, and considered in a scanning electron 
microscope (SEM; VEGA3 TESCAN; Czech Republic) 
for morphological observations (Fig. 1). Image J software 
was used to analyze the SEM image to determine the 
MPs particle size distributions. Sizes ranged from 5.12 
to 398 μm, with 82% of particles < 100 μm, 13% between 
100 and 250  μm, 3% between 250 and 300  μm, and 2% 
> 300 μm. MP composition was confirmed using Fourier 
transform infra-red spectroscopy (FTIR, Bruker tensor 
27, Germany).
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Experimental design
Fish samples
Tilapia is one of the most widely used farmed fish 

worldwide for aquaculture, marketability and stable 
market prices, and about ten species including Nile, 
blue, Mozambique tilapia, and red tilapia are the most 
commercially important species [51]. O. niloticus were 
bred from brood stock fish in a sterilised farm that used 
UV-treated water in tanks and the environment was 
cleaned with detergent and sterilised with 70% ethanol. 
Larvae were initially fed ad  libitum with newly hatched 
Artemia nauplii, 4 times/day for 2 weeks. Fish were 
then fed 5–10% of body weight two times/day with fish 
pellets (crude protein: 38–40%). Early juveniles of tilapia 
were transported to the fish biology laboratory and 
acclimatized for 2 weeks at 28.5 ℃ in UV-treated water in 
a 2000 L fiberglass tank in photoperiod 12:12 light:dark. 
During the acclimatization period, no mortality was 
observed.

Fish exposure experiment
A total of 60 early juveniles O. niloticus (mean weight ± SD: 
24.15 ± 9.21 g, mean total length ± SD: 8.91 ± 1.56 cm) were 
randomly distributed among 100  L glass aquaria (Seven 
fish per aquarium, one aquarium per treatment) 1 week 
prior to the exposure. A farmwork of this study is shown 
in Fig. 2. According to OECD guideline for testing chemi-
cals, a minimum of seven fish must be used at each treat-
ment and in the controls and no test tank replication is 

Fig. 1 Scanning electron microscope (SEM) image of virgin 
polypropylene (PP) fragments used by this experiment

Fig. 2 Framework of the study for 21-day exposure of individual polypropylene microplastics (PP-MPs), boron, and mixed boron and PP-MPs 
concentrations
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required [38]. Protocols for exposure, sampling and meth-
ods were approved by Laboratory Animal Center. Boron 
(purity: 99%, size: 44  µm), was selected as the pollutant 
model, purchased from Nanomaterial Powders, Turkey. 
Boron concentrations were below reported median lethal 
concentration (LC50) values for O. niloticus (141.42 mg/L) 
[2]. Boron concentrations were prepared from a boron 
standard stock diluted in boric acid  (H3BO3, Merck This 
solution was prepared by dissolving 0.571 g of boric acid, 
then dried beforehand at 50 ℃ until constant weight, in 
500  mL double distilled water and made up to 1  L. Sus-
pension of PP-MPs was prepared by adding MPs particles 
(0.1 g) in Milli-Q water (1 L), then the bottle was placed for 
30 min in an ultrasonic bath (Elma Schmidbauer GmbH, 
Singen, Germany) to achieve a homogeneous suspension. 
Chronic toxicity was conducted to identify adverse effects 
of individual PP-MPs, boron, and mixed boron and PP-
MPs concentrations within 21  days exposure according 
to OECD guidelines [38] and modified by Karami et  al. 
[26]. Treatments included: negative control (NC; no added 
PP particles), nominal PP-MP concentrations (10  mg/L 
PP-MPs, 100  mg/L PP-MPs), nominal boron concentra-
tions (30 mg/L boron, 70 mg/L boron), and mixed PP-MP 
and boron concentrations (30  mg/L boron + 10  mg/L 
PP-MPs, 70  mg/L boron + 10  mg/L PP-MPs, 30  mg/L 
boron + 100  mg/L PP-MPs, 70  mg/L boron + 100  mg/L 
PP-MPs). Concentrations of PP-MPs tested in this study 
(i.e., 10 and 100 mg/L) were within reported ranges found 
in previous studies [3, 19]. For combination of boron and 
PP-MPs, target concentrations of boron (30 mg/L boron, 
70  mg/L boron) were loaded to MPs (10  mg/L PP-MPs, 
100  mg/L PP-MPs) in cleaned glass tube, then tubes 
were incubated in shaker for 28 h [27]. Water quality of 
experiment was as follows: temperature 28.5 ± 0.1 ℃, pH 
7.2 ± 0.3, and dissolved oxygen 7.16 ± 0.3 mg/L. To reduce 
MP aggregation, glass aquaria were aerated gently with 
two air stones attached to the up and down parts of the 
aquaria. Fish were fed once a day at 2% of body weight 
during the 21-day exposure time. Water in aquaria was 
changed every 24  h with UV-treated water spiked with 
appropriate boron/PP-MP concentrations. No mortality 
was observed during exposure. The fish were fasted for 
24 h prior to sampling to prevent vomiting during sam-
pling. After a 21-day exposure, five fish per treatment were 
euthanized with clove oil, weighed and measured. Livers 
and brains were quickly sampled, washed in 0.15 M KCl, 
weighed, and then frozen in liquid nitrogen, and stored at 
– 80 °C until analysis of enzymatic activity.

Analysis of enzymatic activity
Liver and brain of each sample were homogenized by 
0.15 M KCl, 0.1 M Tris–HCl at pH 7.4, and centrifuged 
(10,000 ×g; 25 min) at 4  °C. The remaining supernatant 

was collected for determination of enzymatic activity 
using a microplate reader (Biotek, USA). Analysis of 
AChE (in brain), CAT, SOD, GPx, GST, MDA activities 
and protein content were performed according to 
Diagnostic Reagent Kits (Comin Biotechnology Co., Ltd., 
Suzhou, China) according to manufacture instruction. 
All treatments were repeated three times. CAT activity 
of fish samples was assayed according to the method 
of ammonium vanadate–molybdate. A unit of CAT 
enzyme activity defined by catalytic degradation of 
1 nmol H2O2 per minute. The xanthine oxidase method 
(hydroxylamine method) was used to measure SOD 
activity, and the absorbance was read at 550  nm. The 
dithio-binitrobenzoic acid method was used to measure 
the GPx activity, and the absorbance was read at 412 nm. 
GST activity was determined by measuring the substrates 
of 1-chloro2,4-dinitrobenzene (CDNB) and glutathione 
(GSH), and the absorbance was read at 340  nm. The 
MDA level was measured by the thiobarbituric acid 
method in the absorbance at 532 nm and 600 nm. EROD 
and BFCOD activities of the livers were quantified based 
on the method described by Mayeaux and Winston 
[37] with a slight modification [13]. The excitation and 
emission filters for EROD and BFCOD activities were set 
at 530 and 585 nm, respectively. Briefly, liver homogenate 
(10 mL), buffer (30 mL), and 40 mmol/L alkyl-substituted 
resorufin in Tris buffer (12.5  mL) were mixed and the 
reactions were initiated by adding 10 mmol/L NADPH 
(10mL). Reactions were stopped by adding ice-cold 
methanol (150 mL). For quantification, the fluorescence 
values were compared to authentic resorufin standards.

Data analysis
All data were checked for normality (Shapiro–Wilks test) 
and homoscedasticity (Levene’s test) prior to analysis. 
Data of enzyme activities were analyzed using one-way 
ANOVAs and If ANOVA indicate a significant difference 
(p  ˂ 0.05), treatments were compared by Tukey multiple 
comparison tests. Two-way ANOVA with interaction 
was used to compare effects of boron in absence and 
presence of PP-MPs (main factors: boron concentrations 
and presence of PP-MPs). Data were analyzed with IBM 
SPSS Statistics (V. 23).

Results
Biomarkers in O. niloticus exposed to individual PP‑MPs
As shown in Fig.  3, obvious reduction was observed in 
the AChE activity in fish brains exposed to high concen-
tration of PP-MPs (p < 0.05). In addition, AChE activity 
has no significant difference in the lower concentration 
of PP-MPs and control group (p > 0.05). PP-MPs do not 
change activity of CAT, SOD, and GPx (p > 0.05) except in 
higher concentration of MPs that SOD and GPx activity 
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was increased in fish liver (p < 0.05; Fig. 4a–c). Both indi-
vidual MPs significantly increased GSH activity in fish 
liver (p < 0.05; Fig.  4d). MDA contents was significantly 
decreased in higher concentration of individual PP-MPs 
(p < 0.05; Fig.  5). No significant difference was observed 

in EROD and BFCOD activity of fish liver in all treat-
ments of PP-MPs (p > 0.05; Fig. 6a, and b).

Biomarkers in O. niloticus exposed to individual boron
AChE activity decreased in higher concentration of boron 
compared to control and lower concentration of boron in 

Fig. 3 Change in AChE activity in the brain of fish following various treatments with PP-MPs and boron over 21-day exposure duration. Error bars 
indicate ± SD (n = 5). Bars surmounted with different letters are statistically different (p < 0.05, Tukey multiple comparison tests)

Fig. 4 Change in a CAT, b SOD, c GPx, and d GSH activity of fish liver following various treatments with PP-MPs and boron over 21-day exposure 
duration. Error bars indicate ± SD (n = 5). Bars surmounted with different letters are statistically different (p < 0.05, Tukey multiple comparison tests)
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fish brain (p < 0.05; Fig. 2). CAT activity was significantly 
increased in both concentrations of boron in comparison 
with control group of fish liver (p < 0.05; Fig. 3a). In SOD 
activity, no significant differences were observed in in 
both concentrations of boron and control group of fish 
liver (p > 0.05; Fig. 3b). There was no significant difference 
in GPx activity among boron concentrations and control 
group (p > 0.05; Fig.  3c). Higher concentration of born 
significantly increased GSH activity (p < 0.05; Fig. 3d) and 
decreased MDA contents in fish liver (p < 0.05; Fig. 4). No 
significant difference was observed in EROD and BFCOD 
activity of fish liver in all treatments of boron (p > 0.05; 
Fig. 5a and b).

Biomarkers in O. niloticus exposed to mixed concentrations 
of boron and PP‑MPs
Similar to the higher concentration of individual 
PP-MPs, three mixed concentrations of boron and 
PP-MPs (30  mg/L boron + 100  mg/L PP-MPs, 70  mg/L 
boron + 10  mg/L PP-MPs, 70  mg/L boron + 100  mg/L 
PP-MPs) significantly decreased AChE activity in fish 
brains (p < 0.05; Fig. 2). Higher concentration of PP-MPs 
and boron was significantly increased CAT activity in 
fish liver (p < 0.05; Fig.  3a), while no changed observed 

in other individual and mixed concentrations. Similar 
to higher concentration of individual PP-MPs, both 
concentration of boron mixed with higher concentration 
of PP-MPs were significantly increased SOD activity in 
fish liver compared to control groups (p < 0.05; Fig.  3b). 
GPx activity was increased in 30 mg/L boron + 100 mg/L 
PP-MPs, 70 mg/L boron + 10 mg/L PP-MPs, and 70 mg/L 
boron + 100 mg/L PP-MPs (p < 0.05; Fig. 3c). In contrast, 
GSH activity was decreased in 30 mg/L boron + 100 mg/L 
PP-MPs, 70 mg/L boron + 10 mg/L PP-MPs, and 70 mg/L 
boron + 100  mg/L PP-MPs (p < 0.05; Fig.  3d). All mixed 
concentrations of PP-MPs and boron were significantly 
decreased MDA contents in fish (p < 0.05; Fig. 4). EROD 
was significantly increased in mixed concentrations of 
PP-MPs with higher concentration of boron (p < 0.05; 
Fig.  5a). However, BFCOD activity was significantly 
increased in all mixed treatments of PP-MPs and boron 
(p < 0.05; Fig. 5b).

Discussion
Cholinesterases (ChE) belong to a family of enzymes 
that hydrolyze acetylcholine into choline and acetic 
acid, which can block acetylcholine metabolism causing 
acetylcholine to accumulate in the synaptic cleft, 
causing nerve impulse transmission to be disrupted [36]. 
Neurotoxic effects of individual MPs and combined MPs 
with other contaminants have been widely reported [5, 6, 
40, 58]. The activity of AChE in the brain was measured 
to indicate impacts of individual PP-MPs, boron, and 
mixed boron and PP-MPs on neural activity. In this study, 
significant reductions found in AChE activity in the brain 
of O. niloticus in mixed contaminants concentrations, 
suggesting that mixed PP-MPs and boron can suppress 
catalytic capacity of this enzyme and lead to neurotoxicity 
in fish. In fact, AChE activity inhibition due to individual 
MPs, contaminants, and MPs load other contaminants 
has been found in various marine organisms, such as 
brain juvenile seabass (Dicentrarchus labrax) [6], larvae 

Fig. 5 MDA content of fish liver following various treatments 
with PP-MPs and boron over 21-day exposure duration. Error bars 
indicate ± SD (n = 5). Bars surmounted with different letters are 
statistically different (p < 0.05, Tukey multiple comparison tests)

Fig. 6 Change in a) EROD and b) BFCOD activity of fish liver following various treatments with PP-MPs and boron over 21-day exposure duration. 
Error bars indicate ± SD (n = 5). Bars surmounted with different letters are statistically different (p < 0.05, Tukey multiple comparison tests)
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zebrafish (Danio rerio) [6], liver benthic crustacean 
(Eriocheir sinensis) [58], and liver mice [58]. Oliveira 
et  al. [39] showed individual polyethylene microplastics 
(1–5  μm) and combined MPs with pyrene were able to 
inhibit AChE activity in common goby (Pomatoschistus 
microps).

SOD, CAT, and GPx endogenous antioxidant defense 
systems, are important for fish health by scavenging, 
neutralizing, and/or detoxifying ROS. Both CAT and 
SOD act as first antioxidant defense enzymes that 
eliminate ROS induced by xenobiotics. SOD can also 
catalyze partitioning of superoxide into hydrogen 
peroxide  (H2O2) and molecular oxygen  (O2). Any 
subsequent  H2O2 can be removed by CAT to nonharmful 
products [43]. Changes of CAT activity in individual 
concentration of boron and mixed concentration of 
boron and PP-MPs showed MPs and boron led to CAT 
activation, probably due to the antioxidative response 
to increased  H2O2 production. Some studies showed 
individual MPs and combined with other contaminants 
increased CAT and SOD activity in fish [20, 54, 55]. 
For example, CAT and SOD activity were significantly 
increased in Channa argus exposed to 80 nm and 0.5 μm 
PS-MPs (200 μg/L), and Cd (50 μg/L)[54].

GPx aids in the conversion of peroxides into less-toxic 
hydroxyl compounds and prevents the accumulation of 
ROS [57]. The higher GPX activity in individual PP-MPs 
and mixed PP-MPs/boron might have been the result 
of de novo synthesis, which was potentially induced 
by increased oxidative stress of liver in response to the 
contaminants [17] and required further investigation. 
Similarly, increased GPx activity in the marine copepod 
(Paracyclopina nana) with 20 μg/mL PS-MPs (0.05 μm) 
[25] and juvenile guppy (Poecilia reticulata) with low 
and high concentration of PS-MPs (32 − 40 μm)[23] were 
observed. In a study conducted by Magara et al. [33], GPx 
activity increased in combined exposures of polyethylene 
MPs and fluoranthene in fish gills.

GSH antioxidant enzymes can also play a major role in 
the maintenance of redox status. The GSH level increased 
in O. niloticus exposed to individual PP-MPs and higher 
concentration of boron, suggesting a protective response 
of fish to MPs concentrations. Such an increase in GSH 
may show the activation of the glutathione-dependent 
system of antioxidant defense caused by MPs [55]. 
However, the GSH content was reduced by mixed 
PP-MPs and boron, probably due to an antagonistic 
interaction between PP-MPs and boron. In addition, 
Wen et al. [55] reported that the mixture of PS-MPs and 
cadmium resulted in a decreased GSH content in discus 
fish (Symphysodon aequifasciatus).

Changes in MDA levels, indicate ROS production and 
intense oxidation, accompanied by severe damage to 

cell structure and function [56]. Kim et  al. [30] found 
that SOD activity was negatively correlated with MDA 
levels, owing to the ability of SOD to metabolize and 
neutralize ROS. This study showed an increase in 
SOD activity in O. niloticus liver following exposure of 
individual and mixed PP-MPs and boron treatments. 
Similarly, MDA content was inhibited in O. niloticus 
liver in this study. Zhang et  al. (2021) reported single 
and combined effects of phenanthrene and PS-MPs also 
showed negative correlation of SOD activity and MDA 
levels in the clam (Mactra veneriformis). Although this 
study demonstrated that exposure to individual and 
mixed MPs and boron treatments increases levels of 
intracellular ROS and, induced oxidative stress, more 
studies are required to improve our understanding of 
the biological effects of individual MPs or combined 
effects with other environmental stressors on aquatic 
organisms.

Both EROD and BFCOD activities in fish liver 
showed an increase in mixed concentrations of PP-MPs 
and boron, indicating disturbance of fish metabolism, 
but the disturbance mechanism is still unknown. 
Increase in CYP enzyme activity could be attributed to 
a period of contaminant adaptation [13]. No significant 
effects of individual PP-MPs on CYP enzyme activity 
observed in this study corroborates similar studies that 
showed CYP enzymes, such as EROD activity, were not 
sensitive to MPs exposure (e.g., [7, 32, 42]). In contrast 
to our study, Pannetier et al. [45] reported ingestion of 
individual MPs increased EROD activity in Japanese 
medaka. Conflicting results of EROD activity and CYP 
enzyme metabolism in organisms exposed to MPs 
pollution required further studies.

In General, MPs may exhibit different effects on 
O. niloticus, particularly when combined with other 
pollutants. CAT, SOD, GPx, EROD, and BFCOD 
activity showed similar results, with a significant 
increase observed in combined MPs and boron 
treatments. In contrast, AChE, GSH activity and 
MDA content decreased in combined MPs and boron 
treatments. Induced perturbations in antioxidant 
enzymes observed in this study, may suggest that 
aquatic organisms activate their antioxidant defense 
systems to cope with oxidative stress induced by mixed 
MPs and boron exposure. Recent study showed the 
charges on MPs affected boron adsorption on MPs 
and the aggregation of MPs with algal (Microcystis 
aeruginosa) cells, showing that the charge on MPs is 
a dominant factor influencing the combined effects of 
MPs and excess boron on M. aeruginosa [59]. Previous 
studies have also shown individual or mixed MPs 
combined with contaminants may induce complex, or 
even contradictory responses in fish due to the complex 
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suite of contaminants or polymers used in exposure 
studies. Therefore, further studies are required to verify 
long-term or short-term biochemical responses in fish 
exposed to mixed MPs and other contaminants.

Conclusion
This study shows that individual PP-MPs, boron, and 
mixed PP-MPs and boron exposure induces complex 
biochemical response in O. niloticus. However, 
biochemical effects were observed more in mixed 
PP-MPs and boron treatments. Inhibition of AChE 
activity suggests potential neurotoxicity of mixed MPs 
and contaminants in fish. Alterations in biochemical 
biomarkers highlight that under oxidative stress from 
individual MPs and in combination with contaminant 
exposure, antioxidative enzymatic systems could be 
activated and hamper oxidative damage from occurring 
in fish. Further studies are required to expand our 
knowledge on the biological effects of individual MPs 
or combined effects with other environmental stressors 
on aquatic organisms.
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