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Abstract 

Background: The European chemicals’ legislation REACH aims to protect man and the environment from substances 
of very high concern (SVHC). Chemicals like endocrine disruptors (EDs) may be subject to authorization. Identification 
of (potential) EDs with regard to the environment is limited because specific experimental assessments are not stand-
ard requirements under REACH. Evidence is based on a combination of in vitro and in vivo experiments (if available), 
expert judgement, and structural analogy with known EDs.

Objectives: The objectives of this study are to review and refine structural alerts for the indication of potential estro-
genic and androgenic endocrine activities based on in vitro studies; to analyze in vivo mammalian long-term repro-
duction studies with regard to estrogen- and androgen-sensitive endpoints in order to identify potential indicators for 
endocrine activity with regard to the environment; to assess the consistency of potential estrogenic and androgenic 
endocrine activities based on in vitro assays and in vivo mammalian long-term reproduction studies and fish life-cycle 
tests; and to evaluate structural alerts, in vitro assays, and in vivo mammalian long-term reproduction studies for the 
indication of potential estrogenic and androgenic endocrine disruptors in fish.

Results: Screening for potential endocrine activities in fish via estrogenic and androgenic modes of action based 
on structural alerts provides similar information as in vitro receptor-mediated assays. Additional evidence can be 
obtained from in vivo mammalian long-term reproduction studies. Conclusive confirmation is possible with fish life-
cycle tests. Application of structural alerts to the more than 33,000 discrete organic compounds of the EINECS inven-
tory indicated 3585 chemicals (approx. 11%) as potential candidates for estrogenic and androgenic effects that should 
be further investigated. Endocrine activities of the remaining substances cannot be excluded; however, because the 
structural alerts perform much better for substances with (very) high estrogenic and androgenic activities, there is 
reasonable probability that the most hazardous candidates have been identified.

Conclusions: The combination of structural alerts, in vitro receptor-based assays, and in vivo mammalian studies 
may support the priority setting for further assessments of chemicals with potential environmental hazards due to 
estrogenic and androgenic activities.
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Background
The European chemicals’ legislation REACH (EU 
1907/2006) [1] aims to protect man and the environment 

from substances of very high concern (SVHC). Chemi-
cals with (very) persistent, (very) bioaccumulative, and 
toxic properties (PBT and vPvB compounds), substances 
that are carcinogenic, mutagenic, and toxic to reproduc-
tion (CMR compounds), as well as chemicals of equiva-
lent concern like endocrine disruptors (EDs), see Box 1, 
and sensitizers may be subject to authorization.
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Box 1 Definition of endocrine disruptors

An Endocrine Disruptor is an “exogenous substance or mixture that 
alters function(s) of the endocrine system and consequently causes 
adverse health effects in an intact organism, or its progeny, or (sub)
populations,” according to the widely accepted WHO/IPCs definition. 
The REACH regulation does not use the term “Endocrine Disruptors” but 
refers to “substances—such as those having endocrine disrupting 
properties […]—for which there is scientific evidence of probable 
serious effects to human health or the environment which give rise 
to an equivalent level of concern” compared to CMR and PBT/vPvB 
substances (Art 57f ). However, the WHO/IPCS definition has been used 
for the identification of EDs as substances of very high concern and 
was confirmed to be the base for SVHC identification by the European 
Commission in its communication with regard to Endocrine Disruptors 
in June 2016 (http://ec.europa.eu/health/endocrine_disruptors/docs/
com_2016_350_en.pdf )

The Roadmap 2020, proposed by the European Com-
mission in February 2013, asks all European Member 
States and the European Chemicals Agency (ECHA) to 
consider by 2020 which hazardous chemicals may be 
SVHC [2]. In this context, identification of potential EDs 
is restricted because specific experimental assessments 
are not standard requirements under REACH.

The OECD tiered conceptual framework for testing 
and assessment of EDs [3] involves OECD test guidelines 
and standardized test methods that can be used to evalu-
ate chemicals for endocrine disruption. The guidance 
provides five levels of mammalian and non-mammalian 
toxicology using existing data and non-test information 
(level 1), in vitro (level 2) and in vivo (level 3) assays of 
selected endocrine mechanisms and pathways, in  vivo 
assays providing data on adverse effects on endocrine rel-
evant endpoints (level 4), and in  vivo effects over more 
extensive parts of the life cycle of the organisms (level 5). 
Respective data are, however, available only for a limited 
number of chemicals.

Many currently known EDs operate via sexual endo-
crine pathways, and estrogenic (E) and androgenic (A) 
EDs (EA-EDs), agonists and antagonists, are thus an 
important group of possible SVHC candidates under 
REACH. The screening for potential EDs with regard to 
the environment to identify SVHC candidates is currently 
based on a combination of observations from in  vitro 
and/or in vivo experiments (if available), structural anal-
ogy with known EDs, and expert judgement. The evalu-
ation of information inherent to the chemical structures 
of the compounds is an appropriate starting point with-
out the immediate need for animal experiments. Key to 
chemical structure-based approaches is the paradigm 
that similar chemical structures have similar properties 
and effects. However, chemical similarity is a complex 
and context-dependent phenomenon. Regarding estro-
genic or androgenic activities, similar chemicals share 
one or several chemical patterns related to EA receptor 
interactions, the so-called structural alerts [4–19]. If a 

structural alert for potential ligands of EA receptors, act-
ing as agonists or antagonists, is present in a compound, 
there is evidence that it may be EA-ED and closer inspec-
tion may be warranted.

The present study addresses screening for EA-EDs in 
fish based on evidence from structural alerts and in vitro 
and in vivo toxicological assays:

  • review and refinement of structural alerts for the 
indication of potential estrogenic and androgenic 
endocrine activities based on in vitro studies;

  • analysis of in  vivo mammalian long-term reproduc-
tion studies with regard to estrogen- and androgen-
sensitive endpoints in order to identify potential 
indicators for endocrine activity with regard to the 
environment;

  • consistency of potential estrogenic and androgenic 
endocrine activities based on in  vitro assays and 
in  vivo mammalian long-term reproduction studies 
and fish life-cycle tests; and

  • evaluation of structural alerts, in  vitro assays, and 
in  vivo mammalian long-term reproduction studies 
for the indication of potential estrogenic and andro-
genic endocrine disruptors in fish.

The results of this study have been used to develop a 
computerized screening tool for the German Environ-
ment Agency (Umweltbundesamt, UBA) to identify 
potential EA-EDs with regard to the environment based 
on structural alerts related to binding to estrogen and 
androgen receptors. Other endocrine mechanisms, for 
example, interference with thyroid hormones or steroi-
dogenesis, damage of the corticosteroid system or the 
immune system, or epigenetic effects, are not regarded in 
this study.

Elements of the screening tool are used for a computer-
ized mass screening performed by ECHA [20]. The mass 
screening is part of a common screening approach devel-
oped by ECHA and Member States aiming at identifying 
those substances which might be subject to further eval-
uation or risk management measures. The mass screen-
ing includes hazard-based indicators such as structural 
alerts but also considers potential emissions to man and 
the environment. In a second step, substances identified 
during mass screening are manually screened by member 
states, taking into account additional information, with 
the aim to decide whether or not further information is 
needed to conclude on the hazard potential. If informa-
tion is missing to conclude on the endocrine-disrupting 
properties, the chemical may become subject to sub-
stance evaluation under REACH, a process permitting 
to request non-standard information on endocrine-
disrupting properties. If substance evaluation confirms 

http://ec.europa.eu/health/endocrine_disruptors/docs/com_2016_350_en.pdf
http://ec.europa.eu/health/endocrine_disruptors/docs/com_2016_350_en.pdf
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endocrine disruption, further regulatory action such as 
identification as SVHC and eventually restriction or the 
need for application for authorization might be triggered.

Results and discussion
Screening for potential endocrine disruptors in fish was 
approached based on evidence from structural alerts 
and in vitro and in vivo toxicological assays. First, struc-
tural alerts for the indication of potential estrogenic 
and androgenic endocrine activities were reviewed and 
refined based on in  vitro studies. Then, consistencies 
between in silico structural alerts, in  vitro assays, and 
in  vivo mammalian long-term reproduction studies and 
fish life-cycle tests were assessed. Finally, the model was 
applied to EINECS to search for potential candidates 
for estrogenic and androgenic effects with regard to the 
environment.

Review and refinement of structural alerts for the 
indication of potential estrogenic and androgenic 
endocrine activities based on in vitro studies
In vitro data collection
Data from in  vitro tests on estrogenic and androgenic 
effects (the so-called sexual endocrine effects) were 
retrieved from established databases [4, 21] and the lit-
erature (see Additional file  1). The focus was on tests 
based on receptor binding and receptor activation in cell 
cultures measured via reporter gene activation or cell 
proliferation:

  • Competitive ligand-binding assays measure the bind-
ing affinity of a substance to an (isolated) receptor.

  • Reporter gene assays measure activities of intact cells 
as a result of receptor-binding, for example mRNA, 
protein. The cells are transiently or permanently 
transfected with reporter gene systems.

  • Cell proliferation assays measure cell proliferation 
triggered by receptor binding.

The collected dataset covers EA endocrine agonistic 
and antagonistic activities of 744 discrete chemicals. Sub-
stances were categorized based on their in vitro potencies 
in individual tests, relative receptor-binding affinities, or 
effect concentrations relative to positive controls, ethi-
nylestradiol (estrogenic) or testosterone (androgenic), 
respectively (Table 1). If several test results were available 
for the same compound, we used the highest reported 
in vitro potency. For a detailed description of the experi-
mental data used to identify receptor-mediated EA endo-
crine activities of substances, see the “Methods” section 
and Additional file 1.

Many chemicals are potential ligands of both, the estro-
gen and androgen receptors. Substantial similarity of EA 

receptors regarding their binding sites can be assumed. 
Only a few chemical classes interact only with one of 
these receptor families, such as phthalates [5]. Because 
any kind of binding of xenobiotics to estrogen or andro-
gen receptors is undesirable, we pooled the results from 
studies with both receptor types for the identification of 
relevant structural alerts. With the same reasoning, we 
did not differentiate between agonistic and antagonistic 
activities, since binding to the receptor is a prerequisite 
for both activities.

Analysis of available structural alerts
The collected dataset of estrogenic and androgenic activi-
ties in  vitro provided a comprehensive basis to analyze 
and define structural alerts that can be used to screen for 
potential EA-EDs (Table 2). First, we tested the applica-
bility of structural alerts reported in the literature [1–17] 
like, for example, steroids, phytoestrogens, diphenyl-
methanes, biphenyls, bisphenols, phthalates, and alkyl-
phenols (for details, see Additional file  2). The existing 
structural alerts identified many potential EA-EDs, but 
also resulted in a considerable fraction of false negatives 
with active EA-EDs not detected. False negatives are par-
ticularly critical because they could result in severe prob-
lems if adequate precaution was then not taken.

Development of improved structural alerts
To improve the detection of potential EA-EDs, we iden-
tified more structural alerts by systematic inspections 
of the chemical structures of substances with endo-
crine activity, for example, brominated diphenyl ethers 
(BDEs) and hexabromocyclododecanes (HBCDDs) that 
are antagonists in EA receptor-binding assays [22]. Fur-
thermore, we looked for possible refinements of estab-
lished structural alerts. The phenolic ring structure is an 
essential element of many EA-EDs; however, without fur-
ther specifications it is not an indicative structural alert. 

Table 1 Overview of relative in vitro EA endocrine poten-
cies (agonistic and antagonistic) of test substances

Relative potency: substances were categorized based on their in vitro potencies 
in individual tests, relative receptor-binding affinities, or effect concentrations 
relative to positive controls, ethinylestradiol (estrogenic) or testosterone 
(androgenic), respectively

Activity Relative potency Number of substances

Very high ≥1 35

High 0.1–1 66

Moderate 0.001–0.1 110

Weak 0.00001–0.001 96

Very weak/inactive <0.00001 437

Total number  
of substances

744
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Established “phenol” alerts explicitly address, for exam-
ple, DES, biphenylols, or parabens [4, 5, 7]. For additional 
improvements, we suggest p-alkyl substitution pattern 
to increase the detection of actives from less than 60% to 
more than 70% (see Table  2, SA 34 as compared to SA 
26).

The performance of existing and new structural alerts 
was evaluated with the collected dataset of estrogenic 
and androgenic activities in vitro based on the number 
of substances with endocrine activity that contain the 
structural alert (“true positives”) relative to the number 
of substances without endocrine activity that contain 
the same structural alert (“false positives”). Table 2 lists 
the structural alerts together with their occurrences in 
either active or inactive substances. Generally, a struc-
tural alert is considered a relevant EA-ED indicator (X 
in column “relevance for EA-ED screening”) if it could 
be found more often in active substances than in inac-
tive substances. An empirical threshold of two-thirds 
was used to balance between too many “false positives” 
and too many “false negatives”. A few structural alerts 
with lower percentage of actives were included when 
either addressing very potent EA-EDs or covering large 
numbers of actives. Some structural alerts with high 
percentage of actives were not included because very 
similar structural alerts were available with even bet-
ter performance (see Table 2, for example SA 6 as com-
pared to SA 4 and 5). Some structural alerts could not 
be evaluated because they are not represented by the 
chemicals of the collected dataset of estrogenic and 
androgenic activities in  vitro (see Table  2, for example 
SA 10, 13, 22, 31b, 36b).

The structural alerts (Table 2) classify 257 of 307 (84%) 
substances with endocrine activity in vitro as “true posi-
tives”. The presence of a relevant structural alert thus 
clearly indicates potential EA receptor agonists and 
antagonists. These are priority pollutants to undergo 
further assessments of their potential for endocrine 
activities. At the same time, the structural alerts indicate 
100 of 437 (23%) substances without endocrine activ-
ity in  vitro as false positives. False-positive predictions 
may lead to additional testing to show the absence of EA 
activities. Concern is related to false negatives [50 of 307 
(16%)], chemicals with EA endocrine activities in  vitro, 
but not recognized by structural alerts. Closer inspection 
of the 50 chemicals with false-negative predictions of 
EA-ED activities (for details, see Additional file 3) reveals 
16 compounds with only (very) weak in  vitro potencies 
according to the in vitro test results. With regard to pri-
oritization of hazardous substances, these compounds 
may be considered less relevant. More significant are 
outliers with moderate (n = 26), high (n = 6), and very 
high (n = 2) in vitro potencies. Notably, among the eight 

(very) highly potent compounds are six antiandrogens 
like linuron and cypermethrin. For example, linuron 
is a weak in  vivo AR antagonist that causes antiandro-
genic activity via enzymatic pathway inhibition [23] and 
thyreotoxicity [24]. Impairment of thyroidal function 
has profound effects on fetal development and postna-
tal maturation and may mask EA-mediated effects. The 
26 false-negative outliers of moderate in  vitro potency 
are chemically diverse, including several pharmaceuticals 
and pesticides. The search for relevant structural alerts 
to detect these compounds was not successful. Another 
influential factor may be related to uncertainties of indi-
vidual test results. Although the data were taken from 
peer-reviewed literature and quality-checked databases, 
“outliers” cannot be excluded.

It is important to note that the structural alerts are only 
indicators of the potential of chemical substances to be 
ligands of estrogen or androgen receptors. It is not possi-
ble to conclude mode and strength of potential agonistic 
or antagonistic activities. Furthermore, chemicals acting 
by other endocrine pathways will not be recognized.

Analysis of in vivo mammalian long‑term reproduction 
studies with regard to estrogen‑ and androgen‑sensitive 
endpoints
Long-term in vivo studies of the effects on reproduction 
and development of mammals may include effects on 
endocrine systems. Symptoms like estrus cycle irregulari-
ties, reduced reproduction rate, or delayed sexual matu-
ration may be due to systemic toxic effects, for example 
seen as decreased body weight, but also due to interfer-
ences with the endocrine system [25]. Although causal 
links between the observed effects and endocrine dis-
orders may be difficult to establish (Fig.  1), evaluation 
of existing information from repeated dose and multi-
generation in  vivo studies indicated several parameters 
related to potential endocrine disruption [26] and can 
thus be used to inform about potential endocrine disrup-
tion with regard to the environment: 

  • malformation of reproductive organs, for example, 
agenesis/atrophic changes of testes, epididymis, and 
prostate;

  • malformation and/or deviation of secondary sex 
characteristics, for example, hypospadia, male rodent 
nipple retention, and increased female anogenital 
distance;

  • changes in serum hormone concentrations, for 
example, luteinizing hormone (LH), follicle-stimulat-
ing hormone (FSH), estrogen, and dihydrotestoster-
one (DHT); and

  • effects on the onset of puberty/sexual maturation, for 
example, delayed preputial separation.
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Table 2 Performance of structural alerts for EA-EDs based on the number of substances with endocrine activity that con-
tain the structural alert [Actives (true positives)] relative to  the number of  substances without  endocrine activity 
that contain the same structural alert [Inactives (false positives)] (Table extracted from the project report [26])

Structural 
alert

Structure SMILES Actives 
(true pos.)

Inactives 
(false pos.)

% actives Relevance 
for EA‑ED 
screening

Comments Ref.

SA 01 C1CCC4C(C1)C2C(C3C(CC2)
CCC3)CC4

56 8 87 X [4, 7, 8]

SA 02 c1ccc3c(c1)C2C(CCCC2)
CC3

19 0 100 Covered by 
SA 01

[11]

SA 03 c1ccc2c(c1)C(C(C)CC2)C 21 0 100 X [40]

SA 04 c1cccc(c1)C=Cc2ccc(cc2)O 14 1 93 X [4]

SA 05 c1cccc(c1)CCc2ccc(cc2)O 17 2 89 X [4, 7]

SA 06 c1cccc(c1)CCc2ccccc2 18 8 69 More false 
positives than 
SA 05

[5, 8]

SA 07 c1cccc(c1)C(=Cc2ccccc2)
c3ccccc3

8 0 100 X [4]

SA 08 C3(c1ccccc1)Oc2c(cccc2)
C(C=3)=O

8 7 53 [4]

SA 09 C3(c1ccccc1)Oc2c(cccc2)
C(C3)=O

5 4 56 [4]

SA 10 C3(c1ccccc1)C(c2c(cccc2)
OC3)=O

0 0 [4]

SA 11 C3(c1ccccc1)=Cc2c(cccc2)
OC3=O

1 0 100 X [4]

SA 12a

O

C(c1ccccc1)
CC(c2ccccc2)=O

7 4 64 [4]

SA 12b O=C(c(cccc1)c1)
C=Cc(cccc2)c2

12 8 60 X [4]
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Table 2 continued

Structural 
alert

Structure SMILES Actives 
(true pos.)

Inactives 
(false pos.)

% actives Relevance 
for EA‑ED 
screening

Comments Ref.

SA 13

HO OH

O

C2C(c1c(cc(cc1O([H]))
O([H]))CCCCCCCCCC2)=O

0 0 [4]

SA 14 c1cccc(c1)Cc2ccccc2 46 35 57 [4, 5]

SA 15a c1cccc(c1O([H]))
C(c2ccccc2)=O

3 7 30 [4, 5, 7, 
16]

SA 15b c1(cccc(c1)C(c2ccccc2)=O)
O[H]

0 2 0 [4, 5, 7, 
16]

SA 15c c1c(ccc(c1)C(c2ccccc2)=O)
O[H]

4 1 80 X [4, 5, 7, 
16]

SA 16 c1cccc(c1)
C(c2ccccc2)=C(Cl)Cl

6 0 100 X [4, 18]

SA 17 c1cccc(c1)C(c2ccccc2)C 19 15 56 X Coverage of, 
e.g., DDT 
analogues

[7, 17]

SA 18 c1ccccc1c2ccccc2 11 14 44 X [5–7, 
12, 
13, 
16, 
19]

SA 19a c1ccccc1c2c(cccc2)Cl 6 2 75 X [4]

SA 19b c1ccccc1c2cc(ccc2)Cl 4 3 57 X Analogy with SA 
19a and 19c

[4]

SA 19c c1ccccc1c2ccc(cc2)Cl 6 3 67 X [4]

SA 20a c1ccccc1c2c(cccc2)O[H] 0 1 0 [4]

SA 20b c1ccccc1c2cc(ccc2)O[H] 0 1 0 [4]

SA 20c c1ccccc1c2ccc(cc2)O[H] 6 0 100 X [4]
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Table 2 continued

Structural 
alert

Structure SMILES Actives 
(true pos.)

Inactives 
(false pos.)

% actives Relevance 
for EA‑ED 
screening

Comments Ref.

SA 21 c1ccc2c(c1)Oc3c(O2)cccc3 1 0 100 X [12]

SA 22 c1ccc2c(c1)oc3c2cccc3 0 0 [12]

SA 23
O

O

O

O

c1ccc(c(c1)C(OC)=O)C(=O)
OC

7 6 54 X [5, 7, 
18]

SA 24 OH

OO

c1cc(ccc1C(OC)=O)O[H] 16 2 89 X [4, 5]

SA 25a OH

O
c1c(c(ccc1)O([H]))OC 3 3 50 [4]

SA 25b OH

O

O(C)c1cc(ccc1)O[H] 15 17 47 [4]

SA 25c OH

O

O(C)c1ccc(cc1)O[H] 7 3 70 X [4]

SA 26 c1cc(ccc1)O[H] 131 98 57 Specified phe-
nols: see SA 
04, SA 05, SA 
15, SA 20, SA 
25, SA 34

[5, 
7–
11, 
14–
16, 
18, 
40]

SA 27 C1(=O)CCCCC1 7 4 64 [40]

SA 28 c1cccc(c1)C(c2ccccc2)
c3ccccc3

1 5 17 [7]

SA 29 c1c(ccc(c1)S(c2ccc(cc2)
O([H]))(=O)=O)O[H]

0 1 0 [7]

SA 30a c1c(ccc(c1)Oc2c(cc(cc2)
Cl)Cl)Cl

2 0 100 X [18]

SA 30b c1c(ccc(c1)Oc2c(cc(cc2)Cl)
Cl)N(=O)=O

4 0 100 X [18]

SA 31a c1cccc(c1)CN2C(c3c(C2=O)
cccc3)=O

1 1 50 [7]

SA 31b c1c(ccc(c1)
CN2C(c3c(C2=O)
cccc3)=O)N(=O)=O

0 0 [7]
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Table 2 continued

Structural 
alert

Structure SMILES Actives 
(true pos.)

Inactives 
(false pos.)

% actives Relevance 
for EA‑ED 
screening

Comments Ref.

SA 31c c1c(ccc(c1)
CN2C(c3c(C2=O)
cccc3)=O)O[H]

1 0 100 X [7]

SA 32a c1cccc(c1)OP(=O)(OC)OC 1 0 100 X [7]

SA 32b c1cccc(c1)OP(=S)(OC)OC 3 1 75 X [7]

SA 33 c1nc(N)nc(N)n1 0 6 0 [7]

SA 34a OH [H]Oc1ccc(C([H])C)cc1 39 15 72 X Specified from 
SA 26

SA 34b OH [H]Oc1ccc(C(C)(C)C([H]))cc1 7 9 44 Specified from 
SA 26

SA 34c OH [H]Oc1c([H])c([H])c(C([H])C)
c([H])c([H])1

23 5 82 X Specified from 
SA 26

SA 34d OH [H]Oc1c([H])c([H])c(C(C)(C)
C([H]))c([H])c([H])1

6 2 75 X Specified from 
SA 26

SA 35 c(c(c(c(c1)ccc2)c2)ccc3)
(c1)c3

13 8 62 X Coverage of 
certain active 
polyaromatic 
compounds

SA 36a c1ccccc1CC=O 28 35 44 [7]

SA 36b

P

S

c1ccccc1CP=S 0 0 [18]

SA 37 c1ccccc1N2C(=O)
CCC(=O)2

3 1 75 X
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As depicted in Fig.  1, deviation of only one param-
eter is in most cases not sufficient to conclude an 
endocrine activity. First, it should be evaluated if a 

secondary effect can be excluded, for example, due to 
changes in body weight. Second, it should be checked 
if further parameters are affected and the conclusion 

Table 2 continued

Structural 
alert

Structure SMILES Actives 
(true pos.)

Inactives 
(false pos.)

% actives Relevance 
for EA‑ED 
screening

Comments Ref.

SA 38 C1CCCCCCCCCCC1 3 2 60 X Coverage of 
HBCDs

SA 39 O CCCCC([H])c1cc(OC)ccc1 5 1 83 X

SA 40 CCCCC([H])c1ccc(OC)cc1 9 0 100 X

SA 41 c1c(C(F)(F)F)cccc1NC=O 4 0 100 X

SA 43 c1ccccc1COc2ccccc2 16 14 53 X

SA 46 C12C=CC(C2)CC1 8 6 57 X Coverage of 
norbornenes

SA 47 C12CCC(C2)CC1 6 2 75 X Coverage of 
norbornenes

SA 48a c1(Br)ccccc1Oc1ccccc1 14 2 88 X Coverage of 
BDEs

SA 48b c1c(Br)cccc1Oc1ccccc1 11 3 79 X Coverage of 
BDEs

SA 48c c1cc(Br)ccc1Oc1ccccc1 17 3 85 X Coverage of 
BDEs

SA 49 c12ccccc2CCC1 3 1 75 X

Relevant structural alerts (X in column “Relevance for EA-ED screening”) are present more in substances with endocrine activity than in substances without endocrine 
activity
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should be drawn based on a weight-of-evidence 
approach.

Reproductive toxicity data and subacute  to  chronic 
repeated dose toxicity studies were retrieved from the 
FedTex (http://cefic-lri.org/lri_toolbox/fedtex/) and the 
RepDose (http://www.fraunhofer-repdose.de/) data-
bases. The FedTex and RepDose data were selected 

from the available literature based on the level of detail 
regarding, for example, description of study design and 
details given for results. The data were double-checked 
by a second expert. Screening for chemicals with positive 
effect parameters related to potential endocrine disrup-
tion resulted in a list of 240 organic compounds. These 
compounds are reproductive toxicants with a certain 

Fig. 1 Scheme for differentiation between general reproductive toxicity and interactions with endocrine systems based on a weight-of-evidence 
approach. AGD anogenital distance, BW body weight, DHT dihydrotestosterone, FSH follicle-stimulating hormone, LH luteinizing hormone, PPS 
preputial separation, T3 tri-iodothyronine, T4 thyroxine, TSH thyroid-stimulating hormone, VO vaginal opening

http://cefic-lri.org/lri_toolbox/fedtex/
http://www.fraunhofer-repdose.de/
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likelihood of endocrine disruption. An indication of the 
EA-EDs among the 240 compounds was obtained from 
a comparison with results from receptor-based in  vitro 
assays. We observed about half of them to interact with 
EA receptors, indicating true positives that are toxic for 
reproduction and likely to have endocrine activities in 
mammals. Such substances are also potential endocrine 
disruptors with regard to the environment and further 
assessment of effects in fish might be needed. The other 
half of the 240 compounds are inactive in receptor-based 
in vitro assays and probably not EA-EDs in mammals.

Consistency of potential estrogenic and androgenic 
endocrine activities based on in vitro assays and in vivo 
mammalian long‑term reproduction studies and fish 
life‑cycle tests
The predictive power of in  vitro receptor binding and 
in vivo toxicity in mammals for endocrine activity in fish 
was assessed by comparing their outcome with results of 
reproduction and biomarker studies with fish, focusing 
on sexual endocrine endpoints, from an UBA report [27] 
and the literature cited therein (see Table 3). Population-
relevant endpoints were addressed by full life-cycle and 
two-generation tests (FLC) focusing on the effect param-
eters reproduction (fertilized eggs, fertility rate), sexual 
development, and generation time. Partial life-cycle tests 
also address population-relevant effects on sexual devel-
opment and reproduction. Indicative biomarkers for 
endocrine effects were investigated in the short-term fish 
screening assay (FSA) including vitellogenin and steroid 
hormone levels in blood. Regarding fish in vivo data, in 
total 22 studies (fish full life-cycle, partial life-cycle, and 
fish screening assays) were available for 12 substances. 
The effects of these 12 substances on fish were compared 
to the effects on mammals and in in vitro tests (Table 3). 
Only for eight of them, also reproductive toxicity data 
for rodents were available. Receptor-based in  vitro data 
could be retrieved for all the 12 substances. There is a 
remarkably good consistency of the data from fish and 
mammalian tests. The receptor-based in  vitro activi-
ties support comparable sexual endocrine pathways of 
toxic action in fish and mammals. Combined assess-
ment of data obtained in in vitro assays and in vivo fish 
tests reveals information on the underlying mechanism 
of action of the tested substance in fish, for example, 
reduced fertilization rate due to inhibition of androgen 
receptor activity in males.

The substances identified as “endocrine active” in fish 
tests are reproductive toxicants in mammals and EA 
receptor ligands in in  vitro assays (Table  3). There are 
no false-negative results; however, the relative poten-
cies vary. For example, flutamide is a moderate AR ago-
nist in in vivo fish FLC tests [27], very active in in vitro 

reporter gene assays [28], and causes malformations in 
epididymis, seminal vesicles, prostate, Cowper’s glands, 
and penis in rodents [29]. It furthermore affects male 
secondary sexual characteristics in terms of feminization, 
impairs spermatogenesis, and alters pituitary hormone 
concentrations [30].

Evaluation of structural alerts, in vitro assays, and in vivo 
mammalian long‑term reproduction studies for the 
indication of potential estrogenic and androgenic 
endocrine disruptors in fish
Comparative analyses of the agreement of chemical and 
toxicological approaches to the identification of poten-
tial EA-EDs in fish were based on receptor-based in vitro 
assays and in  vivo mammalian long-term reproduction 
studies. The combined dataset includes 933 chemicals, 
with 693 having only in  vitro data and 189 having only 
in  vivo mammalian long-term reproduction data. For 
51 substances, in vivo as well as in vitro data were avail-
able. The minor overlap of the in vivo and in vitro data-
sets with only 51 chemicals shows that for many in vivo 
reproductive toxicants in rodents, the corresponding 
in vitro results that could specify the relevant modes of 
action have not been published.

The results of pairwise comparisons of the in  vivo 
mammalian long-term reproductive toxicities and 
in  vitro classifications with structural alerts of potential 
EA-EDs were quantified in terms of accuracy (proportion 
of substances correctly classified), sensitivity (proportion 
of true positives correctly classified), and specificity (pro-
portion of true negatives correctly classified); for details, 
see “Methods” section.

The structural alerts agree quite well (80% accuracy) 
with the in vitro classifications (Table 4). This was to be 
expected since the structural alerts were derived from 
in  vitro data. 16.3% (50 of 307) of the active chemicals 
in  vitro are false negatives not recognized by the struc-
tural alerts. From the inactive chemicals in  vitro, 22.9% 
(100 of 437) have the structural alerts and thus are false 
positives. Notably, performance of the structural alerts 
is better for chemicals with higher activity in  vitro, and 
(very) high activities are classified more accurately than 
moderate to (very) weak activities.

Comparison of the classifications of the 51 chemicals 
tested in  vivo and in  vitro (Table  5) shows that in  vitro 
classifications always coincide with in  vivo mamma-
lian long-term reproductive toxicities. If we see in vitro 
activity, we always also see reproductive toxicity in vivo. 
Thus, based on these results, positive results in recep-
tor-based in vitro assays are good indicators of possible 
reproductive toxicity in vivo and suggest that EA recep-
tor binding may be involved in the reproductive toxic-
ity of these compounds (24 of 48, corresponding to 50% 
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true positives). At the same time, inactivity in vitro is not 
a good indicator for the absence of reproductive toxicity 
in  vivo. The reproductive toxicity of compounds with-
out EA receptor-binding potential is likely due to other 
modes of action.

For an overview of the relationships between chemi-
cal and toxicological approaches to the identification of 
potential EA-EDs, we calculated classification statistics 
of pairwise comparisons of in vivo mammalian long-term 
reproductive toxicities, receptor-based in vitro activities, 
and structural alerts of potential EA-EDs. Table  6 sum-
marizes the overall agreement, sensitivities, and specifi-
cities either for the full datasets (n = 744 or n = 240 for 
the receptor-based in vitro activities or the in vivo mam-
malian long-term reproductive toxicities, respectively) or 
the subset of compounds with in  vitro and in  vivo data 
(n = 51). We observe similar results for the relationships 
between in  vitro activities and structural alerts, regard-
less of the size and composition of the datasets. The simi-
lar information content of the in vitro activities and the 
structural alerts is furthermore the reason for the almost 
identical overall agreement, sensitivities, and specificities 
of activities in vivo with either structural alerts or in vitro 
activities, with regard to the same subset of compounds 
(n  =  51). Again, we observe no false-negative results, 
but >50% false positives. The agreement is much less for 
the relationships between the entire dataset of activities 

in vivo (n = 240) and structural alerts. This is due to the 
in  vivo mammalian dataset representing multiple path-
ways of reproductive toxicity, while the structural alerts 
are limited to EA receptor interactions.

The screening for potential EA-EDs based on struc-
tural alerts relative to in vitro classifications and in vivo 
mammalian long-term reproductive toxicities is shown 
in Table  7. Regarding first the chemicals with mamma-
lian long-term reproductive toxicity in  vivo and recep-
tor-based in vitro assays, we see positive results from the 
three approaches confirming each other for 19 chemicals 
(marked in red). Five substances with in vivo mammalian 
long-term reproductive toxicity are identified in vitro but 
not from their chemical structures (marked in orange). 
Structural alerts classify another three compounds with 
activity in vivo but not in vitro (marked in orange). For 
the remaining 21 mammalian long-term reproductive 
toxicants, neither in  vitro assays nor structural alerts 
provide evidence of interferences with EA endocrine 
receptors and, thus, other toxic pathways are more likely 
causing the reproductive toxicity.

For 13 chemicals that are inactive in vivo, we observe 
no structural alerts and also the in vitro data suggest the 
absence of EA endocrine effects (marked in green).

Among the 744 chemicals in the combined dataset with 
in  vitro data are 693 without information about in  vivo 
mammalian long-term reproductive toxicity, 335 of them 

Table 4 Comparison of in vitro activities and structural alerts of potential EA-EDs (numbers of chemicals, n = 744)

Accuracy = 79.8% (overall agreement)

Sensitivity = 83.7% (→16.3% false-negative classifications)

Specificity = 77.1% (→22.9% false-positive classifications)

In vitro very high 
activity

In vitro  
high activity

In vitro moderate 
activity

In vitro  
weak activity

In vitro very  
weak or no activity

Σ

Structural alert = yes 33 60 84 80 100 357

Structural alert = no 2 6 26 16 337 387

Σ 35 66 110 96 437 744

Table 5 Comparison of  in  vivo mammalian long-term reproductive toxicities and  in  vitro activities of  potential EA-EDs 
(numbers of chemicals, n = 51)

Accuracy = 52.9% (overall agreement)

Sensitivity = 100% (→no false-negative classifications)

Specificity = 50.0% (→50% false-positive classifications)

Mammalian long-term reproductive toxicants: in vivo active: causing specific endpoints indicative for endocrine activity, in vivo inactive: not causing specific 
outcomes in the available study/studies

In vitro very high 
activity

In vitro high 
activity

In vitro moderate 
activity

In vitro  
weak activity

In vitro very  
weak or no activity

Σ

In vivo active 6 6 11 1 24 48

In vivo inactive 0 0 0 0 3 3

Σ 6 6 11 1 27 51
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with structural alerts and 358 without structural alerts. 
The evaluation of their in vitro activities in combination 
with structural alerts indicates 84 chemicals (marked in 
orange) with high probability of EA-EDs in fish and fur-
ther assessments are recommended. Lower probability 
of EA-EDs may be associated with the chemicals with 
moderate to minor activity in  vitro and/or the absence 
of structural alerts [marked in (pale) yellow]. The priority 
for further assessments is very low for the 313 substances 
with only very weak or no activity in  vitro and without 
structural alerts (marked in pale green).

Application of structural alerts for the identification 
of potential EA‑EDs in EINECS
The structural alerts for the identification of potential 
EA-EDs (Table  2) have been applied to EINECS (Euro-
pean inventory of existing commercial chemical sub-
stances) to test the performance on large numbers of 
diverse substances and to prioritize potential candidates 
for endocrine activity due to interactions with estro-
gen and androgen receptors. EINECS includes approx. 
100,000 substances that were deemed to be on the Euro-
pean Community market between January 1, 1971 and 
September 18, 1981 [31]. Substances listed in EINECS 

are “existing chemicals” and considered phase-in sub-
stances under REACH.

For application to EINECS, the structural alerts 
(Table  2) have been implemented in a computerized 
screening tool (EDC-Scan).1 To support prediction confi-
dence of the structural alerts in EDC-Scan, their applica-
bility domain (AD) was defined based on atom-centered 
fragments (ACFs) [32]. The collected dataset of estro-
genic and androgenic activities in  vitro (see Additional 
file 1) was used as the training set for the determination 
of the AD of the structural alerts. If a chemical is within 
the AD because it is similar to the substances used to set 
up the model, predictions are considered most trustwor-
thy. If a compound is outside the AD, reliability of esti-
mates is low because it may act in different ways.

More than 33,000 discrete organic EINECS compounds 
are within the ACF-defined AD of the structural alerts 
for potential EA-EDs. Among them, structural alerts 
indicate 3585 chemicals (ca. 11%) as candidates with 

1 Within a follow-up project (UBA, FKZ 3714634120), the structural alerts 
for EA-EDs as well as other endocrine effects are being included in Chem-
Prop (http://www.ufz.de/ecochem/chemprop).

Table 6 Overall agreement, sensitivities, and  specificities of  in  vivo mammalian long-term reproductive toxicities, 
in vitro activities, and structural alerts of potential EA-EDs

Dataset n = 744: all compounds with in vitro data, dataset n = 240: all compounds with in vivo data, dataset n = 51: all compounds with in vitro and in vivo data

n Overall agreement (%) Sensitivity (%) Specificity (%)

In vitro/structural alerts (all compounds with in vitro data) 744 79.8 83.7 77.1

In vitro/structural alerts (all compounds with in vitro and in vivo data) 51 84.3 79.2 88.9

In vivo/in vitro (all compounds with in vitro and in vivo data) 51 52.9 50.0 100

In vivo/structural alerts (all compounds with in vitro and in vivo data) 51 49.0 45.8 100

In vivo/structural alerts (all compounds with in vivo data) 240 20.0 15.4 100

Table 7 Screening for potential EA-EDs based on structural alerts relative to in vitro classifications and in vivo mammalian 
long-term reproductive toxicities (numbers of chemicals, n = 933)

in vitro
very high 
activity

in vitro
high 

activity

in vitro
moderate 
activity

in vitro
weak 

activity

in vitro
very weak or 

no activity 

No information 
about in vitro

activity
Σ

in vivo active

Structural alert = yes 6 5 7 1 3 13 35

Structural alert = no 0 1 4 0 21 166 192

in vivo inactive

Structural alert = yes 0 0 0 0 0 0 0 

Structural alert = no 0 0 0 0 3 10 13

No information about in vivo activity

Structural alert = yes 27 55 77 79 97 0 335

Structural alert = no 2 5 22 16 313 0 358

Color code: red: very high probability of EA-EDs, orange: high probability of EA-EDs, yellow: moderate probability of EA-EDs, pale yellow: low probability of EA-EDs, 
pale green: very low probability of EA-EDs, green: unlikely EA-EDs

http://www.ufz.de/ecochem/chemprop
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potential endocrine activity. Their chemical structures 
are principally able to interact with estrogen and andro-
gen receptors as either agonists or antagonists. Due to 
the possibility that these chemicals may interact with EA 
receptors, they should be subject to further investigations 
regarding their potential for endocrine effects in fish.

Structural alerts have been detected in another 413 
organic chemicals that are outside the ACF-defined AD 
of the structural alerts for the identification of potential 
EA-EDs. According to good modeling practice, these pre-
dictions are not valid because they are not supported by 
the activities of the compounds of the training set. Still, 
these 413 chemicals contain structural elements that may 
be able to interact with estrogen and androgen receptors. 
If no additional evidence for endocrine activity is availa-
ble, such alerts would probably not be sufficient to trigger 
further regulatory action such as substance evaluation, 
although toxicological reasoning suggests that they are 
candidates for EA-ED activities.

Estrogenic and androgenic ED activities of the remain-
ing substances cannot be excluded, but are less likely. 
Because the structural alerts perform much better for 
substances with (very) high estrogenic and androgenic 
activities (<10% false-negative classifications for strong 
binders) as compared to >15% false-negative classifica-
tions for (very) weak binders, there is reasonable prob-
ability that the candidates with potential endocrine 
activities based on structural alerts include the most haz-
ardous EA-EDs.

Conclusions
In vivo, in vitro, and in silico methods for the identifi-
cation of potential EA-EDs with regard to the environ-
ment cover different adverse effects at the biomolecular 
and organism levels and indicate population-relevant 
effects. In  vivo studies often summarize effects caused 
by multiple pathways of endocrine and other repro-
ductive toxicities. In  vitro assays may address specific 
modes of endocrine activities. Structural alerts repre-
sent the in  vitro assays from which they were derived. 
The combination of in  vivo and in  vitro information 
with structural alerts provides complementary informa-
tion for evidence-based assessments of potential EDs. 
Information obtained at each level may support the pri-
ority setting for further assessments of candidate chem-
icals with potential environmental hazards. Evidence for 
endocrine activity increases if structural alerts, in vitro 
activities, as well as in vivo information provide positive 
results.

Application of structural alerts for the identification of 
potential EDs to the EINECS inventory indicated 3585 
chemicals (ca. 11%) as potential candidates for endocrine 

effects. Due to the possibility that these chemicals may 
interact with estrogen and androgen receptors, they 
should be subject to further investigations regarding their 
potential for endocrine activity with regard to the envi-
ronment. Such substances are indicated during the mass 
screening performed by ECHA and manually screened 
by member states. They may become subject to regula-
tory actions if the screening evidence is substantiated by 
additional information.

Methods
Experimental data from in vitro assays
Data were collected from publicly available databases and 
the open literature for in  vitro tests on estrogenic and 
androgenic receptor binding and receptor activation in 
cell cultures. Activities were measured via reporter gene 
activation or cell proliferation, for example, competitive 
ligand-binding assays, reporter gene assays with mamma-
lian cells with endogenous estrogen receptors transiently 
or permanently transfected with luciferase reporter gene 
systems, for example, CALUX [33, 34] and MVLN, MCF-
7, or HeLa cells [33, 35–38], yeast-based receptor gene 
tests stably transfected with a β-galactosidase reporter 
gene [14], and MCF-7 cell proliferation assay (E-Screen) 
[39].

1. US Food and Drug Administration Endocrine Dis-
ruptor Knowledge Base (FDA-EDKB): http://www.
fda.gov/ScienceResearch/BioinformaticsTools/Endo-
crineDisruptorKnowledgebase/default.htm.

 The FDA-EDKB database contains data regard-
ing binding to androgen as well as estrogen recep-
tors. The ligand-binding studies were conducted 
and validated at NCTR (National Center for Toxico-
logical Research, Jefferson, USA). The test results are 
reported as percent relative binding affinity (RBA) of 
the test substance relative to the respective positive 
standards (17R-methyl-3H]methyltrienolone (R1881) 
for AR and [3H]-17β-estradiol for ER).

 Androgen receptor (recombinant receptor): log 
(RBA) is given for 146 of 202 substances, ranging 
between 2.3 and −3.6. The remaining 56 substances 
are classified as non-binding.

 Estrogen receptor (isolated from rat uteri): log (RBA) 
is given for 131 of 232 substances, ranging between 
2.6 and −4.5. The remaining 101 substances are clas-
sified as non-binding.

2. National Center for Toxicological Research Estrogen 
Receptor Binding Database (DSSTOX-NCTRER): 
http://www.epa.gov/ncct/dsstox/sdf_nctrer.html.

 The DSSTOX-NCTRER database contains relative 
receptor-binding affinities for 232 chemical sub-

http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/EndocrineDisruptorKnowledgebase/default.htm
http://www.epa.gov/ncct/dsstox/sdf_nctrer.html
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stances based on ligand-binding studies with estro-
gen receptors (species: rat). Activities are classified 
in five “activity categories”. This dataset is identical 
with the estrogen receptor dataset of FDA-EDKB 
described above.

3. Data retrieved from primary literature:
  Primary literature was evaluated for test results from 

diverse in  vitro assays (Table  8); 1155 test results 
were collected for 744 substances (data tables with 
references are provided in Additional file 1).

Classification statistics
The results of pairwise comparisons of the in  vivo, 
in vitro, and in silico classifications of potential EA-EDs 
were quantified in terms of accuracy (proportion of sub-
stances correctly classified), sensitivity (proportion of 
true positives correctly classified), and specificity (pro-
portion of true negatives correctly classified):

where TP: true positive, TN: true negative, FP: false 
positive, FN: false negative, and Tot: total number of 
compounds.

Accuracy =
(TP+ TN)

Tot
× 100

Sensitivity =
TP

TP+ FN
× 100

Specificity =
TN

TN+ FP
× 100
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