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Abstract

Major accident regulations aim at protecting the population and the environment from possible accidental releases
of chemicals. To achieve this goal, the regulations need to be reassessed in light of the development of new
technologies. A currently rapidly growing new technology is nanotechnology, and engineered nanomaterials (ENM)
are already produced and used in commercial products. The aim of this work was therefore to evaluate the current
knowledge on human and ecotoxicology of ENM and their release and behavior in the environment in the context
of major accident prevention. Nano-specific release paths are not to be expected. The established safety standards
in the chemical industry are also applicable to ENM, especially the separate storage of flammable solvents and detention
reservoirs. The potential of a release to the environment of ENM in powder form is larger than for suspensions; however,
it can be minimized by safety measures established for conventional dusts. The considered human toxicology studies
show that to date not conclusive enough answers regarding the toxicity of ENM can be made. The effects are dependent
not only on the material itself but more on the functionalization, surface reactivity, size, and form. The acute ecotoxicity of
ENM seems to be similar to the one of the corresponding microparticles (TiO2) or the respective dissolved ions (Ag, Zn)
with the exception of photocatalytically active nano-TiO2, which has an increased toxicity. In order to guarantee
that all ENM are included in the existing major accident regulations, different classification options are possible
and the advantages and disadvantages are discussed. An important step will be the compulsory inclusion of
nano-specific data in the Material Safety Data Sheets that serve as the basic medium to transfer information
from the manufacturer to downstream users and authorities. We also call for a regular monitoring of the production
and uses for ‘high production volume ENM’ that could have the largest implications for major accident regulations.
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Introduction
The major accident prevention regulations have the goal
to protect the general population and the environment
from severe damage due to accidents. In Switzerland, a
company has to fulfill the requirements of this regula-
tion if they store compounds on their premises in
amounts that surpass the thresholds given in the regula-
tion [1]. The determination of these thresholds is based
on an approach, which contrasts the properties of a sub-
stance to its amount used within the company. Compan-
ies that fall under this regulation have to report an
estimation of possible damage and formulate scenarios.
If major damage of the general population (more than
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ten deaths outside the area of the company) or of the
environment cannot be excluded, a quantitative risk esti-
mation based on scenarios has to be prepared. The regu-
lation for major accident prevention only considers
major damages of people outside the area of the com-
pany and is therefore separate from occupational or con-
sumer protection regulations. It only considers acute
effects, and chronic effects or exposure is therefore not
included in this scenario.
Nanotechnology is a rapidly growing research and ap-

plication area with increasing importance for economy,
research, and society. In line with the precautionary
principle, it is therefore important to investigate possible
risks and, if necessary, take measures to protect humans
and the environment. In the focus of the risk discussion
about nanotechnology are the engineered nanomaterials
(ENM) because they can show - compared to larger
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materials - different properties and reactivity. Therefore,
they cannot a priori be handled in the same way as lar-
ger particles. A separate determination of threshold
values and criteria for evaluation is therefore necessary,
to account for the new characteristics of ENM.
There is to date no international agreement on how to

deal with major accident prevention of ENM. Two re-
ports are available about the fire and explosive proper-
ties of ENM [2,3]. The European Commission states that
ENM with potential for accidents can be categorized
within the Seveso II directive [4]. Several countries have
identified the issue of nano-accidents as relevant [5-7].
The English Parliament does not consider nano-specific
regulation to be necessary [8].
In a document by the British Standards Institution (BSI)

about guidelines for safe handling of ENM, also funda-
mental measures for preventive actions against accidents
are listed [9]. BSI asks companies that work with ENM to
develop emergency plans for possible accident scenarios
and to list the exact sequence of activities and the mea-
sures that need to be taken in case of an accident. All per-
sons that would be involved in such an accident should be
informed and trained in handling ENM. Furthermore,
measures should be taken to prevent the dissipation of
ENM in case of an accident. A report of the OECD about
major accidents with ENM is in preparation [10].
The basis for the assessment into the major accident

regulation is the material safety data sheet (MSDS). How-
ever, there is to date no duty to declare the size of particles
or indicate if the material contains a nanosized fraction.
Downstream users of compounds therefore receive often
no information if a product contains ENM. In many cases,
the nano-ingredient does not even reach the required
threshold value of 1% so that it does not even need to be
listed in the MSDS. A clear definition what constitutes an
ENM is therefore compulsory so that in the future, appro-
priate designations can be made on the MSDS.
The aim of this work is the assessment of the human

toxicity and ecotoxicity of ENM within a major accident
in comparison to conventional chemicals. We try to an-
swer the question if for the determination of threshold
amounts in the regulation a mass-based approach can
be used for ENM and which major accident scenarios
need to be considered for ENM. We performed this as-
sessment using four typical ENM that are covering dif-
ferent classes and that are all produced and used in high
quantities: nano-TiO2, nano-ZnO, carbon nanotube
(CNT), and nano-Ag [11]. We use the Swiss regulation
as an example but aim to provide general conclusions.

Release into the environment
Potential of ENM for major accidents
A major accident can happen whenever large amounts
of a potentially toxic or reactive substance are present.
This can happen during production and manufacturing
as well as during storage and transport. The scenarios
for major accidents strongly depend on the used ENM
and other chemicals on the same site as well as factors
specific for the situation or the site:

� Form of ENM: suspended or as powder
� Presence of flammable or explosive substances

(e.g., metallic ENM or organic solvents)
� Type of containment
� Risk of accident during transport
� Safety measures.

In general, we can assume that the potential for
major accidents is higher when ENM are present as
powder, because they are easier dispersible than sus-
pended ENM [12]. This is due to the fact that in the
regulation of major accidents, only the first 30 min
after the accident are of interest and the acute loss of
lives or acute damage of the environment is calculated
[1]. As water and soil can be purified and thus major
consequences in the long-term are not included in the
regulatory measures of major accidents, the velocity of
dispersibility of powders compared to presuspended
ENM plays no important role in our considerations.
The potential is also increased by the storage of easily
flammable or explosive compounds in the vicinity of
the ENM.
Of 25 major accidents or incidents that were re-

ported in 2008 in Germany (no nano-related cases)
[13], 11 occurred during production; 4 during hand-
ling; 3 during transport; 2 during maintenance; 1 each
during storage, decommissioning, and delivery; and 2
with unknown activity. Also, natural hazards such as
lightning, earthquakes, or flooding need to be considered
as triggers of major accidents, in addition to man-made
disasters such as explosions in neighboring factories or
airplane crashes [14,15].
The following release scenarios are considered as real-

istic causes of major accidents for ENM:

� Major accident scenarios during production

ENM are produced in very diverse operations
[16]. In general, the mechanical-physical top-down
approaches can be distinguished from
chemical-physical bottom-up approaches. In
top-down approaches, ENM are made from larger
materials through milling; in bottom-up approaches,
ENM are synthesized from atoms, ions, or molecules
in a chemical reaction. Milling operations are used
for metallic or ceramic ENM with a relatively
wide particle size distribution. Chemical-physical
approaches have the advantage that the form and
size of the particles can be better controlled.
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Possible reactions are precipitation and flame-,
plasma-, or gas-phase synthesis.
During milling, a major accident with
consequences for the general population can
practically be excluded, because in this process,
only small amounts (around 100 kg) of ENM are
used, mainly in aqueous dispersion and of metallic
or ceramic ENM; hence, explosions can be
excluded. If the process is carried out in organic
solvents, then this process needs to be carried out
in explosion-proof systems, but due to the small
amounts (batch volume of around 100 L with max
10-kg ENM), no hazard for the population is to be
expected. In gas-phase processes, a deflagration
and, with easily flammable solvents, a fire hazard
cannot be excluded. Nevertheless, a chain of different
events is necessary so that release of ENM beyond
the fabrication site is possible.
A possible scenario is the explosion of a
distillation equipment with subsequent fire during
which all ENM in the same fire compartment are
released. Depending on the safety measures,
amounts stored, and situation-specific conditions,
larger amounts of ENM could be released into air
or wastewater. We also need to consider that
carbon-based ENM could be combusted while
metallic ENM could be oxidized.

� Accident scenarios during transport
Transport of toxic substances is connected with a
rather high risk because traffic accidents are quite
Figure 1 Example of an accident scenario. In 2011, a truck transporting se
part of its cargo. Since TiO2 is not classified as a hazardous material, workers o
[18]; photographer: Arnaud Viry).
common and because easily flammable substances
can be released (e.g., fuel). However, the
transported amounts of ENM are currently rather
small, compared to the total amount of produced
material in any size (compare 5 Mio t of produced
TiO2 of which only 47,000 t are nano-TiO2 [17],
and this is one of the nanomaterials with the
highest production amounts). Although there is
currently no nano-specific obligation to label, we
propose that the containers for transport of
ENM should be labeled as a hazardous material
and that containers of the highest safety standards
be used. An accident during transport could lead to
the spilling of dispersions/powder or a fire through
which ENM could reach air, soil, wastewater, or
natural waters (Figure 1).

� Accident scenarios during manufacturing and
storage
During manufacturing or storage of ENM, fire
is a possible hazard, which can result in the
release of ENM into air (when stored as
powder) as well as into water/wastewater (ENM
dispersions). The cause for the accident can be
internal (e.g., technical) as well as external
factors. Deflagration is possible for metallic
ENM, but they are usually stored in dispersion
and/or under inert atmosphere. An example is
nano-zero-valent iron for which also hydrogen
production and the danger of hydrogen explosion
need to be considered.
veral 750-kg bags of photocatalytic titanium dioxide (TiO2) has lost
f the road maintenance department cleaned the road. (Photo from
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Release and behavior in the environment
Based on the scenarios described above, a primary re-
lease of ENM into air, water, and soil is possible. A sec-
ondary exposure of soil and surface water through
deposition from the atmosphere is likely. Also, the in-
direct contamination of surface water through the ef-
fluent of wastewater treatment plants needs to be
considered, especially because a shock load of ENM
may destroy the removal capacity of the activated
sludge phase of wastewater treatment. The secondary
pollution of groundwater can be neglected in the case
of accidents because particle mobility in soils is gener-
ally rather low [19].
To date, no major accidents with ENM are known,

and therefore, we do not have any experience with the
dissipation behavior of ENM after an accident. Also,
models are not yet available that are able to simulate the
distribution of ENM in the environment on a local scale
[20]. The only available models predict ENM concentra-
tions on a regional scale [21,22]. In these models, the
flows of ENM from production, use, and disposal
through technical compartments to the environment are
predicted and environmental concentrations are obtained
assuming well-mixed environmental compartments. Mea-
surements and modeling have been performed for work-
place situations [12,23,24]. One study measured and
modeled dispersion of ENM during a (purposely made)
failure of ventilation in a laboratory-scale flame synthesis
reactor [25]. The authors conclude that coagulation of
ENM is negligible inside the room [23,25]. The measure-
ments and calculations are restricted to the production
room and can therefore not be transferred to environmen-
tal conditions during a major accident.
During a major accident, powdered ENM can be re-

leased in larger amounts into air. Particles are not vola-
tile and therefore only be released during an explosion
or fire. The first elimination step is primarily agglomer-
ation and subsequently deposition of larger particles.
Agglomerates with a diameter of 1 μm have the longest
residence time of particles in the atmosphere [26]. Due
to agglomeration, it is not likely that single ENM persist
in air [27].
The concentration in air is primarily relevant for hu-

man exposure after a major accident. The prevailing
weather conditions during the accident play a major role
(wind speed, wind direction, precipitation). These condi-
tions cannot be considered in a generic scenario. The
following generic model parameters are proposed for
calculations of local exposure outside the industrial site
in the ECHA guidelines [28]:

� The total emissions are distributed radial
symmetrically around the source (radius 1 km).

� The height of the source is 10 m.
� The average distance from the source to the
boundary of the site is 100 m.

� The concentration decreases linearly from the
source to 1 km.

These assumptions are used to calculate a generic
local exposure scenario and therefore cannot be used to
model a major accident at a specific site. In addition,
they are not particle specific.
The input of ENM into surface water can occur in

three ways:

1. Release into surface water through storm water
collection systems along roads or on the production
site or directly into surface water if there is a close
proximity of the site of accident and the open water.
In both cases, we have to assume that only a
fraction of the total emitted ENM amount reaches
the water. The probability to reach the water is
higher for suspended ENM. However, washing of
powdered ENM during rain events or with
firefighting water cannot be excluded.

2. Release of ENM into wastewater with direct
connection to surface water. Studies have shown that
ENM are removed during wastewater treatment with a
high efficiency [29]. However, during a shock load of
antimicrobial ENM (e.g., silver), the bacterial
population may be compromised and therefore the
removal efficiency of the water treatment process [30].

3. Deposition from air. In this case, the input is
dependent on the surface of the water body. Due to
faster dilution, rivers are less at risk than lakes.

The ENM are diluted upon entry into the water bod-
ies. The dilution de facto depends on the size of the
water body and can have values between 1 and 100,000
[28]. A dilution factor of 10 is proposed if no other data
are available. An additional dilution can result from the
firefighting water.
Water contamination is even stronger dependent on

the local situation than the emission into air. The prob-
ability for a contamination of surface waters that has to
be classified as a major accident is therefore dependent
on the proximity of the site of accident to the next fresh-
water body. An accident is considered as major when in
a water volume of 106 m3 the lethal concentration 50
(LC50) and/or the acute half maximal effective concen-
tration (EC50) for fish or Daphnia, respectively, is sur-
passed [31]. With an EC50(Daphnia) of 1 μg/l [32] for
nano-Ag and homogeneous distribution already, a re-
lease of 1 kg of nano-Ag could lead to the corresponding
concentration. This evaluation neglects relevant elimin-
ation processes such as dissolution and precipitation as
AgCl; however, they may only play a role at longer time
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scales that are not relevant for major accident regula-
tions. The contamination of natural waters can result in
a secondary exposure of humans through bioaccumula-
tion into fish. However, such long-term effects are not
considered in major accident regulations.
A direct release of ENM into soils is only expected

during transport accidents. Indirect transfer can occur
through wet or dry deposition form air. Although the
local soil concentration can be very high after a major
accident, a persistent damage of the environment can be
practically excluded due to the low particle mobility [33]
and the possibility for soil remediation (excavation and
landfilling of polluted soil).
Toxicity and ecotoxicity in the framework of major
accident prevention
Human toxicity
In the Swiss Ordinance on Major Accidents, the following
criteria are used to determine the threshold amounts [1]:

� EU classification
� Acute toxicity; oral, dermal, and inhalation toxicities
� Classification given on MSDS

The comparison of conventional chemicals (e.g., mi-
croparticles) with ENM based on these criteria is re-
stricted to the criterion ‘acute toxicity’ as the ENM have
no special EU or MSDS classification. Table 1 summa-
rizes the hazard potential of ENM to humans in com-
parison with conventional materials.
Table 1 Hazard potential of ENM to humans in comparison w

ENM Hazard potentiala Remarks

Acute
toxicity

Chronic
effects

Difference
(micro/nano)

Nano-TiO2 Very low Low 1:10 Although TiO2 was
low as shown by m
larger particles, but
relevance [34-39]

Nano-ZnO Medium Low 1:1 Application of micr
a strong but interm
this reaction is prac
consequence of inh
the concentration n

CNT Low High n.a. Dependent on the
short/long), long-te
[42] if the condition
length/diameter rat
are not considered

Nano-Ag Low Low 1:1 Silver is used since
indication for an ac
there is exposure to
small amounts to p
small and the risk o

aAcute toxicity: classification on the basis of EU Directive 67-548 Annex VI - medium
actual literature. n.a., not applicable.
The published data are very heterogeneous and do not
provide a clear effect pattern for each of the materials.
The measured endpoint of the experimental data is not
the lethal dose concentration (LD50), but more subtoxic
events such as inflammation, oxidative stress response,
or gene expression profiling over different time scales
were assessed, which make a sound comparison of the
studies impossible. In addition, the three exposure routes
(oral, dermal, and inhalation) provide different symptoms;
therefore, the hazard potential of the selected materials is
based more on an expert view than on standardized and
comparable data sets.
Ecotoxicity
The ordinance of major accidents [1] uses as criteria for
the evaluation of the ecotoxicity the EC50 for Daphnia
(swimming disability after 24 h) and the LC50 for fish
(after 2 to 4 days). The only threshold in the area of eco-
toxicity is at 2 t of substance used at a site for an EC50

(Daphnia) or LC50 (fish) <10 mg/l. Tables 2 and 3 con-
trast EC50 and LC50 values for the nano- and microparti-
cles (TiO2) or dissolved metals (Ag, Zn). This comparison
evaluates if the overall toxicity of the traditional form and
the nano-form is different from each other. It does not
consider any difference in the mode of action but simply
uses mass as a metric to compare materials.
The only compound that is more critical in its nano-

form than as dissolved metal is therefore TiO2 in its
photocatalytically active form. For Ag and ZnO, we can-
not see a difference between the toxicity of the nano-form
ith conventional materials (microparticles)

placed in class 3 of the carcinogenic materials, its general toxicity is
any recent studies. There is a difference in the effects of smaller and
this, for a release scenario during a major accident, is only of low

o- or nanoscale ZnO particles into the lungs of mice or rats causes
ediate inflammatory reaction. The strength as well as the course of
tically identical for micro- or nanoscale ZnO [40,41]. The acute
alation of Zn dust is zinc fever; however, for severe effects (deaths),
eeds to surpass widely the permissible exposure limit of 5 mg/m3

type of CNT (physicochemical properties, e.g., single-walled, multi-walled,
rm effects similar to asbestos need to be considered (mesothelioma)
s like for ‘WHO fibers’ (length >5 μm, diameter <3 μm, and a
io of more than 3:1) are given. So far, most industrially produced CNTs
to be WHO fibers [43-49]

many years in nanoparticulate form (colloidal silver). There is no
ute intoxication of humans with life-threatening degree, unless
ultrahigh concentrations. Because Ag particles are added in rather
roducts, also the produced and transported amounts are rather
f a major accident with fatal consequences is therefore limited [50-54]

= R 23/25, low = R 20/22, very low = no labeling; chronic effects: based on



Table 2 EC50 values (mg/l) for Daphnia for different ENM:
comparison between nano-form and microform/dissolved
metals

EC50 Daphnia

ENM lowest
reported
value (mg/l)

Larger particles
or dissolved
ionsd

Rounded ratio
(nano/micro)

Nano-TiO2 0.03 [55]a >100 [56] >1:100 (for the
photocatalytically
active form)

Nano-ZnO 0.62 [57]b 1.86 [58]e 1:1

CNT 1.8 [57]c - -

Nano-Ag 0.001 [32] 0.0015 [59] 1:1
aOther values (in mg/l): 0.8 [60], 3.8 [61]; bother values (in mg/l): 1 [56], 3.95
[62]; cother value (in mg/l): 50.9 [63]; dfor Ag and ZnO, the values for the
dissolved metals were taken; eother value (in mg/l, for micro-ZnO): 1 [56].
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compared to the dissolved metals based on the currently
available data. For CNT, we cannot make this comparison
due to a missing larger particle.

Preventive measures
In the prevention of a major accident, a special emphasis
should be placed on safety measures. This is especially
important with downstream users. Whereas high safety
measures are normally standard at production sites, es-
pecially in the chemical industry, the handling of ENM
in manufacturing of the final products is much less con-
trolled and can result in a much higher possibility for re-
lease [7,72,73]. An important step in this context is the
employee training. The safe handling of ENM does not
require more action than needed for the handling of
powders and conventional chemicals.
Production and manufacturing sites have to comply

with existing high safety standards, which are determined
by the chemicals (e.g., solvents) that are used during the
process. Special emphasis has to be placed on those com-
panies that have no experience in handling conventional
chemicals but were founded as pure ‘nano’-company. A
critical issue is the fact that downstream users of ENM do
Table 3 LC50 values (mg/l) for fish for different ENM:
comparison between nano-form and microform/dissolved
metals

LC50 fish

ENM lowest
reported
value (mg/l)

Larger particles
or dissolved ionse

Rounded ratio
(nano/micro)

Nano-TiO2 2 [55]a >100 [64] >1:10

Nano-ZnO 1.8 [65]b 1 [58]f 1:1

CNT 20 [66]c - -

Nano-Ag 0.025 [67]d 0.003 [59] 10:1
aOther values: 125 mg/l [68], 500 mg/l [69]; bother value: 4.92 mg/l [68]; cLOEC
value, no LC50 available;

dother values (in mg/l): 0.028 [32], 1.25 to 1.36/9.4 to
10.6 [70], 7.07 [71]; efor Ag and ZnO, the values for the dissolved metals were
taken; faverage 30-day EC50 for dissolved Zn (range 0.3 to 1.9 mg/l).
not have other information than those given in the MSDS,
because these contain actually no nano-specific descrip-
tions. However, these companies are likely to store only
small amounts of ENM on their site - due to the high re-
activity of the materials and the normally low concentra-
tions used in final products - thus, the relevance for major
accidents is seldom given.

Constructional measures
Constructional measures are indispensable for a safe
handling of ENM. However, the established safety proce-
dures used in the chemical industry are deemed to be
sufficient. The procedural methods should be distin-
guished according to the specific form of the ENM. Dur-
ing production, manufacturing, and storage of suspended
ENM, a detention basin is needed. The rooms should also
not have any direct connection to the sewer system, or the
connection needs to be equipped with a possibility for
closure during an accident. For ENM in powder form, the
ventilation and the configuration of the building envelope
are central because they determine if ENM are released
through damaged windows/ceilings or through ventilation
into the environment. In both cases, fire prevention mea-
sures such as fire doors, separate storage rooms for or-
ganic solvents, and separate fire compartments are key.

Technical measures
Various technical measures can prevent or restrict a
major accident. These include sprinklers in storage
rooms, pressure-controlled equipment, and disconnec-
tion of ventilation in case of accident. However, these
tools are not nano-specific but target the accident pre-
vention of easily flammable compounds, which are
stored in the same room. If these conventional measures
are adopted consistently, they are also effective for
ENM.

Organizational measures
Simple but effective organizational measures are access
restrictions and sound employee trainings. All employees
working with ENM should get an appropriate training
and should be able to have access to personal protective
equipment. The plant fire brigade or the local fire bri-
gade should be informed about the presence of ENM
and should be trained in suitable firefighting procedures.

First insights of nanomaterials in major accident
prevention
The thresholds and criteria in the ordinance on major
accident prevention [1] are based on the mass of the
compound. Due to the small diameter of ENM, it is
questioned if the approach of using a mass basis is ad-
equate for ENM or if the particle number or specific
surface area should to be taken instead. However, we
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consider a mass-based approach for ENM within major
accident prevention regulation reasonable because data
from (eco)toxicological studies are mainly mass-based.
However, indispensable is in any case a clear definition
of what an ENM and the proposition for a definition by
the EU [74] clearly also influences the major accident
regulation as this definition also covers natural and inci-
dental nanomaterials and not only ENM [75,76].
Solubility plays a central role for the assessment of

the toxicity of ENM in comparison to microparticles.
Nanoparticles of easily soluble materials such as ZnO
or metals that can be oxidized and then release ions
(e.g., Ag) dissolve, due to their small diameter and the
corresponding high surface area, much faster than larger
particles. Their toxicity should therefore be compared to
that of the corresponding metal ions, e.g., Zn2+ and Ag+.
The most important difference is that ENM can enter cells
by additional pathways including passive entering into the
cells comparable to the Trojan Horse mechanism. How-
ever, as shown in our evaluation of ecotoxicological data,
the nano-form has overall not a higher toxicity than the
dissolved form and thus, within the context of major acci-
dent prevention, the total mass of a compound, irrespect-
ive of its form, can be used.
In order to guarantee that all ENM are included in the

existing major accident regulation, different options are
possible (Table 4). In every case, the declaration of ENM
on the MSDS is compulsory because without this infor-
mation downstream users cannot assess if a company
has reached a nano-specific threshold. It is also prob-
lematic that in certain intermediate products, the nano-
content is so low that it does not need to be specified in
the list of ingredients.
In our opinion, option 2 is the best option for the fol-

lowing reasons:

– Classification 4 in Table 2 includes all ENM that will
be produced in the future. The exemption list given
Table 4 Overview on possible classifications for considering E

Rule Advantage

1 All ENM have the same (eco)toxicity as larger particles
with the same composition. Some specific ENM are
placed in the exemption list

Simple rule; re
risk potential

2 Each manufacturer has to provide specific (eco)
toxicological tests for each ENM, independent of
the chemical composition of the ENM

The nano-asp
different prop
ENM are cons

3 Dispersions are classified like normal chemicals; for
powders, a nano-specific regulation is implemented
in addition to existing regulations for powders

The different
and powders
Simple to def

4 For ENM in powder form, the mass threshold is reduced
by a factor of 10 to accommodate the higher surface
area

The precautio
increased surf
nanoparticles

5 ENM are categorized (e.g., soluble/insoluble, metal
oxides/metals/organic ENM) and assessed differently

Differences be
are considere
in the Major Accident Ordinance does not need to
be adapted continuously, and there is no danger that
new, potentially toxic ENM are regulated by a too
generic regulation not strict enough. The
precautionary principle is applied.

– The classification is specific for each ENM. An over- or
under-regulation is avoided and the specific properties
of each ENM are considered. The importance of
substance specificity is evident from the following
considerations.

Despite a wide breadth of published studies, there are still
many significant questions unanswered. The substance-
specific factors that affect the toxicity of ENM have not yet
been answered in a coherent manner [77]. In addition to
the chemical composition, the following properties have
been mentioned [78]: primary and secondary particle size;
specific surface area; impurities or doting; surface proper-
ties (zeta potential, functionalization, coating); redox poten-
tial, reactivity; particle form; crystallinity; hydrophobicity/
hydrophilicity; solubility; biopersistency; age of particles.
In order to make any conclusions, all these factors

need to be characterized and controlled in the studies.
Additionally, particle-specific factors such as particle size
distribution play a role. These considerations make clear
that the terms ‘CNT’ and ‘nano-TiO2’ stand for a whole
group of materials which can have very different proper-
ties, mainly due to shape, surface functionalization, or
doting with other elements. It is, for example, assured
that the toxicity of nano-TiO2 varies tremendously with
changing mineral structure or surface coatings [77,79].
For practical reasons, it will be difficult to perform

(eco)toxicity tests for each produced or imported ENM.
Producers need to be obligated to include the relevant
information about toxicity and ecotoxicity of their prod-
uct in the MSDS.
Based on our evaluation of the ENM, there is no spe-

cial need for a drastic change in the classification of the
NM in major accident regulations

Disadvantage

cognizes the higher
of certain ENM

Insufficient data to select exemptions

ect as well as the
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materials, no matter if nano or not. According to the
guidelines of the Major Accident Ordinance [80], cur-
rently, the following threshold values are valid for poten-
tially nano-scaled compounds:

� 2,000 kg: ZnO, AgNO3

� No threshold: TiO2, SiO2

� Not on the list: CNT, CeO2, carbon black, CaCO3,
metallic silver

� Case-specific evaluation needed: iron oxides,
pigments

For CNT and all ENM for which their conventional
counterpart is not on the list, we suggest that a case-
specific classification has to be performed based on the
criteria of the regulation [1]. The implementation of op-
tion 2 that is favored by us would result in a threshold
limit of 2,000 kg for most nano-Ag and nano-ZnO com-
pounds, corresponding to the currently effective limits
for conventional Ag and ZnO. For CNT and nano-TiO2,
different threshold limits according to the specific prop-
erties of the ENM would come into force. Photocatalytic
nano-TiO2 would get a threshold of 2,000 kg due to the
increased toxicity against Daphnia. No threshold value
would apply for non-photocatalytic nano-TiO2. For CNT,
different thresholds would apply according to the length
and stiffness of the fibers. Option 2 thus allows a differen-
tiated regulation of all ENM, under the precondition that
a clear definition for ENM and the duty for declaration in
the MSDS exists.

Conclusions
As a general conclusion, we can state that ENM are clearly
less hazardous than many other chemicals, e.g., solvents
or high-reactivity compounds such as certain pharmaceu-
ticals, and can be treated similar to dusts or pigments.
However, it is extremely important to note that this con-
clusion is only valid in relation to major accidents and not
for occupational and environmental health or product
safety, i.e., the exposure of workers inside the factory
premises or of consumers due to products containing
ENM. It also does not consider long-term environmental
effects due to release during the use of the products.
These issues are covered in separate regulations that are
not part of our evaluation.
Due to the limited fundamental understanding of ENM

fate and effects, our conclusions need to be taken with
caution. Until standardized tests for the determination of
ENM toxicity are available and the declaration of ENM on
the MSDS is standard, it is recommended to perform at
regular intervals a monitoring regarding new ‘high pro-
duction volume ENM’ and to check if the statements
made in this work are still valid. Nevertheless, the multi-
tude of different studies that exist for the ENM considered
in this work and that report relevant results show in gen-
eral no evidence for a specific need for action. The acute
risks of ENM within a major accident are not significantly
different from conventional compounds, implying that the
current regulation for major accidents is also able to cover
ENM.
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