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Abstract

In urban areas, water often flows along a partially closed water cycle in which treated municipal wastewater is
discharged into surface waters which are one source of raw waters used for drinking water supply. A number of
organic micro-pollutants (OMP) can be found in different water compartments. In the near future, climatic and
demographic changes will probably contribute to an increase of OMP and antibiotic-resistant pathogens in aquatic
ecosystems. The occurrence of OMP, possible adverse effects on aquatic organisms and human health and the
public perception must be carefully assessed to properly manage and communicate potentially associated risks and
to implement appropriate advanced treatment options at the optimum location within the water cycle. Therefore,
the interdisciplinary research project ASKURIS focuses on identification and quantification, toxicological assessment
and removal of organic micro-pollutants and antibiotic-resistant pathogens in the Berlin water cycle, life cycle-based
economic and environmental assessment, public perception and management of potential risks.
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Background
Due to the widespread use of chemicals and to the fast
advances in analytical methods, a large number of organic
micro-pollutants (OMP) can be detected nowadays in
wastewater and in the aquatic environment [1]. Pharma-
ceuticals are of special interest since they exert biologic
effects by intention and partly unavoidable side effects
[2]. Many OMP are efficiently removed in conventional
wastewater treatment processes, but a number of polar
OMP persist the biological treatment [3-6]. Persistent
compounds are released into surface water and can be
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detected there [7] and in groundwater [8,9]. Some com-
pounds are efficiently removed during bank filtration
[10,11]. Some OMP persist during drinking water treat-
ment [12,13].
Technical advances in analytical methods enable the

identification of low trace concentrations of known or even
unknown OMP in the aquatic environment. Extensive
knowledge about occurrence and fate of relevant OMP in
the aquatic environment is mandatory for the successful
implementation of technological measures. However, in
Europe, no regulatory limits for pharmaceutically active
OMP in surface water or drinking water have come into
force hitherto, notwithstanding pharmacovigilance.
Additional treatment steps are required in order to re-

duce the release of OMP into the aquatic environment. Ad-
sorption of OMP onto activated carbon is one promising
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option [14,15]. Oxidation using ozone is another powerful
technique for the OMP removal from wastewater treatment
plant effluents [16-19]. Possible by-products are a potential
drawback of ozonation [20,21]. Moreover, each additional
treatment step requires energy and resources and thus
causes additional impacts on the environment [22,23].
Besides OMP, antibiotic-resistant microorganisms can

be found in different parts of an urban water cycle [24].
Infections caused by multi-resistant germs became a se-
vere issue due to the widespread application of antibi-
otics [25,26].

Situation in Berlin and ASKURIS
Surface water and drinking water sources in Berlin are
embedded in partially closed water cycles. Some recalci-
trant OMP are released into surface water together with
treated wastewater of eight treatment plants, and certain
compounds can be detected in different compartments of
the Berlin water cycle [27-29]. The climatic and demo-
graphic developments will presumably lead to further in-
creased OMP concentrations in the near future [30].
The water cycle around Lake Tegel as shown in Figure 1

is an ideal study site for urban water cycles. The effluent
from the wastewater treatment plant in Schönerlinde is re-
leased into the Nordgraben channel that confluences with
the river Tegeler Fließ. Subsequently, the water is treated
in the phosphorus elimination plant (PEP) in Tegel [31]. A
pipeline connecting the outlet of Lake Tegel into the river
Havel (pumping station) with the PEP Tegel is used to
pump additional surface water to the phosphorus elimin-
ation plant to increase the flow rate in Lake Tegel in the
summer period. Modelling of different pumping scenarios
with regard to phosphorus and OMP removal revealed
that additional treatment processes are required [32]. Lake
Tegel is used as bathing water, and wells around the lake
are used for drinking water supply with bank filtration.
The joint research project ASKURIS as part of the

funding measure RiSKWa [33] aims at the identification
Figure 1 Urban water cycle around Lake Tegel in Berlin.
and quantification of both known and unknown OMP
and resistant microorganisms in the urban water cycle,
particularly around Lake Tegel. Methods for the analyses
of both known (target) and unknown (non-target) OMP
with high-resolution mass spectrometers are being devel-
oped and applied. Antibiotic-resistant microorganisms are
identified with conventional and molecular-biological tech-
niques, and the degree of resistance is being investigated.
In order to assess the safety for humans and the envir-

onment, samples from various segments of the water
cycle are tested for both eco- and human toxicological
impacts. The uptake and fate of OMP in the human
body is in the focus of a human biomonitoring.
Engineered barriers for OMP are investigated in la-

boratory, pilot and full scale. The main focus is on ad-
sorptive removal with powdered or granular activated
carbon and oxidative removal with ozone. Especially, the
ozone-treated water is intensively tested for eco- and hu-
man toxicity. Both economic and ecologic conditions of
the innovative treatment options are assessed in detail to
support decision making.
The actual, scientifically determined risk and the sub-

jective perception of a hazard are not identical in many
cases. The media play a pivotal role in communicating
hazards and corresponding risks. The perception of
OMP and associated risks in the public are also in the
focus of ASKURIS. Results from ASKURIS will be trans-
ferred to the risk management of Europe's largest inte-
grated water supplier and wastewater disposer.

Occurrence and fate of OMP and resistant
microorganisms
OMP quantification
Due to the large number of OMP in use and thus
discharged to wastewater and to the aquatic environ-
ment, fast and reliable analytical methods for a multipli-
city of OMP are required. Multi-residue methods with
preliminary extraction have been developed for a simul-
taneous analysis of multiple targets [34]. Advanced ana-
lytical systems facilitate direct sample injection [35] with
advantages regarding expenditure of time and costs. For
example, a wide range of 150 pesticides have been suc-
cessfully covered within one method [36].
In ASKURIS, multi-residue methods for ultrahigh per-

formance liquid chromatography with high-resolution
mass spectrometry are being developed and successfully
applied to aqueous samples of various origins [37].

Identification of unknown OMP
Besides the known compounds, a wide range of anthropo-
genic organic substances and their transformation prod-
ucts occur in the aquatic environment. In order to identify
compounds not included in multi-residue methods, the
so called non-target screening has been shown to be a
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powerful method to identify or even track the pathway of
individual compounds [38]. A full scan mass spectrometer
with high resolution and mass accuracy is a prerequisite
for that purpose.
Two different strategies are possible [39]: (1) in sus-

pects screening, also called ‘known-unknown screening’,
each detected mass (‘unknown’) in the highly resolved
spectrum is compared to a list of predefined substances
(‘known’). (2) In non-target screening, peaks with de-
fined masses are extracted from the spectrum and online
databases are searched for substances of the specific
mass. For that purpose, the database DAIOS (database-
assisted identification of organic substances) has been
created and already successfully applied for the identifi-
cation of trace organic compounds [38]. An exemplary
input mask is shown in Figure 2. The DAIOS database
currently contains approximately 1,400 individual com-
pounds and will be further extended.

Multi-resistant microorganisms
Molecular microbiological methods are applied in
ASKURIS in order to investigate the occurrence of
antibiotic-resistance genes [40]. Besides the well-known
multi-antibiotic-resistant Staphylococcus, multi-antibiotic-
resistant intestine bacteria such as Citrobacter, Enterobacter
and Escherichia coli have been detected [41,42]. Enterococci
with resistance against vancomycin [43,44] and multi-
antibiotic-resistant Pseudomonas aeruginosa [45] have been
found.
The gene tet(M), for example, is involved in the resist-

ance towards the antibiotic tetracycline and has been found
in wastewater treatment plants and their effluents [46].
Quantitative real-time polymerase chain reaction (RT-
PCR) is applied to search for tet(M) in samples from the
Figure 2 Exemplary screenshot showing the graphical user interface
the IUPAC name, the exact, molar and nominal masses, the chemical formu
water cycle including treated wastewater, effluent of the
phosphor elimination plant, surface water, bank filtrate and
drinking water and, additionally, hospital effluents.
Besides RT-PCR, conventional cultivation methods are

applied. Antibiograms are utilized to track for resistance
of microorganisms towards different antibiotics. A num-
ber of specific resistances have been found in river water
and water wells using antibiograms for a drinking water
source [47]. Selected bacteria are specifically enriched
on selective agar plates (cetrimide agar, Chromocult agar,
among others) and subsequently exposed to antibiotics.

Water safety
Human toxicology
The risk assessment in ASKURIS emphasizes the rele-
vance for humans. Cell-based assays are used to test for
potential genotoxic risks. Since assessing genotoxicity is
focused on the micronucleus assay, microscopy as well
as cytometry for counting micro-nuclei is employed.
In addition to genotoxicity tests, cytotoxic potentials

are also assessed, thereby differentiating between necro-
sis and apoptosis. This is accomplished by measuring
the release of lactate dehydrogenase and changes in the
electric resistance of the cells. Both methods indicate ne-
crosis, whereas apoptosis is assessed via the detection of
released nucleosomes. Furthermore, fluorescence ana-
lysis is used for determining the intracellular generation
of reactive oxygen species. These tests are accompanied
by the quantification of epigenetic changes like the acti-
vation of NF-κB, thus accounting for genotoxic precur-
sor mechanisms.
The assessment of the relevance for humans is

achieved by conducting these experiments in parallel to
tests using well-established human cancer cell lines and
of the online database DAIOS. With input fields for the OMP name,
la, CAS number and synonyms (courtesy of www.DAIOS-online.de).

http://www.daios-online.de/
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primary human cells. Based on the pivotal role of the
liver in metabolizing xenobiotics, the experiments are fo-
cused on hepatocytes. The comparative tests are mainly
carried out in the cell line HepaRG™ (Gibco®) and in pri-
mary human hepatocytes.

Ecotoxicology
Both original samples from the Berlin water cycle as com-
plex mixtures and OMP solutions are tested for ecotoxico-
logical effect potentials. On the one hand, standardized
bioassays are applied in ASKURIS, e.g. Daphnia immortal-
ity (ISO 6341:1996, DIN 38412–30:1989–03) and Aliivibrio
fischeri bioluminescence (ISO 11348–3:2007, DIN 38412–
37:1999–04). The conventional tests are based on mortality
rates or growth inhibition after short-term exposure. Ace-
tylcholinesterase inhibition (DIN 34815–1:1995–02) is
applied for neurotoxic effects, and the UmuC test (ISO
13829:2000, DIN 38415–3:1996–12) gives information
about genotoxic effects. On the other hand, a novel
biotest with macrophytes (Myriophyllum spicatum) is
used to assess different physiological parameters such as
biotransformation enzymes (glutathione S-transferase)
and enzymes for the mitigation of oxidative stress (peroxid-
ase or superoxide dismutase). Enzymes are quantified and
gene expressions are investigated using respective primers
and quantitative RT-PCR.
The combination of conventional and novel test sys-

tems enables an appropriate assessment of the risks for
the aquatic environment.

Human biomonitoring
As outlined in Figure 1, humans are an essential part of the
urban water cycle and water treatment aims at avoiding or
minimizing the exposure of humans to OMP via drinking
water. However, humans are exposed to chemicals in many
ways, e.g. in their homes, at work or via food. Human
biomonitoring by means of OMP measurements in urine
samples provides information on the extent to which
humans are exposed to chemicals. Monitoring of human
urine also indicates to which extent humans are a source
of OMP found in municipal wastewater. For human bio-
monitoring, it is essential to consider also metabolites of
OMP as recently shown for trialkyl phosphates [48].
In ASKURIS, multi-residue mass spectrometric methods

are being developed and used to determine the human ex-
posure to OMP and to assess their importance as a source
of OMP in wastewater.

OMP removal
Laboratory investigation of powdered and granular
activated carbon
In ASKURIS, various processes involving activated car-
bon for OMP removal are tested on several scales. A
large number of activated carbon products are available
as powders or granules. On the lab scale, different acti-
vated carbon products are checked for their feasibility
and efficiency in OMP reduction from different water
matrices. The tests include powdered activated carbon
(PAC) as well as granular activated carbon (GAC) prod-
ucts. For the comparison of different PAC, varying doses
of the products are added to the respective water, and
OMP adsorb onto the activated carbons during variable
adsorption times [49]. This kind of testing can also be
conducted with GAC which is pulverized by milling
prior to testing.
Besides the tests with milled products, defined frac-

tions obtained from sieving milled GAC are investigated.
The sieved fractions are then used as filter materials in
defined rapid small-scale column tests (RSSCT) that are
designed to comply with the hydraulic dimensioning of
large filters used in pilot or full-scale applications. The
RSSCT design allows for quick and hydraulically realistic
conditions during testing [50,51]. One drawback of the
RSSCT method is that during milling, the external sur-
face of the GAC is increased due to the production of
smaller GAC particles (the internal surface which deter-
mines the adsorption capacity for OMP is only affected
insignificantly) [52]. Effluents from wastewater treatment
plants contain effluent organic matter besides natural
background organic matter (e.g. humic and fulvic sub-
stances). It has been shown that different fractions of the
dissolved organic carbon (with regard to size exclusion
chromatography and online organic carbon detection)
can be removed by adsorption onto powdered activated
carbon [53]. Large organic molecules are able to block
activated carbon pores and therefore potentially reduce
the OMP adsorption capacity. Large molecules therefore
might cause more adverse blockage on large GAC parti-
cles (with small external surface) compared to small
GAC particles (with larger external surface). Thus,
blockage by large organic molecules can be more pro-
nounced when using original GAC than when using
ground GAC. Therefore, GAC products are also tested
in their original delivery condition.
Adsorptive OMP removal in pilot scale
In a first pilot phase, a rapid dual-media filtration with
GAC and sand has been examined, subsequent to phos-
phorus precipitation and sedimentation in the PEP
Tegel. The pilot filters as shown in Figure 3 comprise of
two filter columns (300 mm inner diameter) operated in
parallel with a fully automated backwash process. One
column was filled with GAC and sand while the other
(filled with pumice) served as a reference. The filter vel-
ocity was 8.5 m/h, and the duration of the first pilot
phase was 110 days which resulted in a total of 11,530
bed volumes or 24.45 m3/kg GAC.



Figure 3 Dual-media rapid filters of the pilot plant in the PEP
Tegel in Berlin.
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Results show that the filter performance of the GAC
filter was equal to the reference representing the setup
of the large-scale plant. Phosphorus removal was almost
equal to the reference filter resulting in mean concen-
trations of 16 and 17 μg/L. Likewise, parameters such as
dissolved organic carbon (DOC), total suspended solids,
UV light absorption at 254 nm wavelength, turbidity and
colour values showed no significant difference between
the two filters.
In a second phase, a pilot plant with PAC dosage and

coagulation/precipitation, flocculation, sedimentation and
filtration is operated. A mean flow of 1,350 L/h surface
water (influenced by wastewater) is withdrawn from the
influent of the PEP Tegel. PAC and coagulant are dosed in
front of a motionless mixer. In a three-stage mixing cas-
cade, adsorption of OMP onto PAC and coagulation of
particles take place simultaneously. Flocks are settled in
an enhanced clarifier, and the sludge containing a high
amount of PAC is recirculated back into the mixing cas-
cade. Surplus sludge is removed. Two parallel rapid dual-
media filtration units (anthracite or pumice and sand) are
operated downstream.
Optimal conditions for phosphor and OMP removal

are to be found meeting the specific requirements of the
Berlin water cycle. Two-stage coagulation and adsorp-
tion as well as comparative investigation of different fil-
ter media are in the focus of work.

Oxidative OMP removal with ozone
As activated carbon or ozonation processes are both vi-
able options for the removal of OMP, ozonation is tested
as well for the treatment of wastewater treatment plant
effluent. The removal of OMP is tested for a dosing
range between 0.5 and 0.8 mg O3/mg DOC under dy-
namic operational conditions including, e.g. storm wea-
ther events.
For the removal of (possibly toxic) by-products from

the oxidation step and to degrade the readily bioavailable
DOC after ozonation, three filters are tested for post-
treatment. Dual-media and biological activated carbon
filtration are compared regarding the degradation of
OMP, nitrification performance, and the diminishment
of effect potentials observed in bioassays. Besides the
biological activity, treatment benefits from the remaining
adsorption capacity of the activated carbon filter will be
evaluated. An additional slow sand filter after the dual
media filter simulates artificial groundwater recharge,
targeting for the worst case condition of direct infiltra-
tion of waste water treatment plant effluent.

Economic and environmental assessment in a life cycle
perspective
Additional treatment processes for elimination of OMP
or pathogenic microorganisms require resources such as
infrastructure, chemicals and energy, thus causing asso-
ciated impacts on the environment for the supply of
these resources and also additional costs for water util-
ities. The selection of an appropriate technology and the
positioning of the treatment step within the urban water
cycle both influence the overall efficiency of the process,
the related costs and the environmental impacts. Hence,
a comprehensive analysis of all associated environmental
and economic impacts is required for supporting the de-
cision for a specific technology or appropriate location
of treatment.
In ASKURIS, environmental and economic assessment

is based on the holistic approach of life cycle thinking, tak-
ing into account all direct and indirect effects of the inves-
tigated system on upstream or downstream processes. The
system under study will encompass the urban water cycle
at Lake Tegel in Berlin (compare Figure 1) as a case study
for water management in densely populated urban areas.
For environmental impacts, different technological options
and strategies of removing OMP and pathogens will be
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compared with Life Cycle Assessment (LCA), building
upon the existing methodological framework of ISO
14040/44. For economic implications, total costs of these
scenarios will be calculated in terms of both investment
and operating costs. Results of LCA and cost analysis will
then be used to identify pros and cons of technological
and strategic options and give decision support for future
implementation of additional treatment processes at the
respective sites.

Large-scale tests
The pilot scale studies together with the economic and
ecologic assessments will support the choice of the best
available technology for OMP removal within the Berlin
water cycle. The technical option with the most promis-
ing results from pilot scale investigations is planned to
be implemented in full-scale within ASKURIS.

Risk perception and risk management
The discursive construction of risk
From a sociological point of view, the public discussion
and dispute about the existence and extent of risks of
anthropogenic OMP and pathogens in drinking and sur-
face water takes place in public or semi-public dis-
courses. These discourses influence how we perceive
possible risks, how we think about possible risks, what
risks we state as true or false and finally, how we act and
behave in everyday life and in times of risk-based uncer-
tainty and crisis [54-58]. Hence, a basic assumption in
regard to a sociological perspective is the constructive
approach in the tradition of Berger and Luckmann [59].
Discourses can be understood as social practices of pro-
ducing, reproducing and stabilizing social reality [55].
These practices are usually controversial and conflictive;
moreover, they are always guided by specific interests of
the regarding social actors as representatives of specific
interest groups.
With respect to the particular research focus in

ASKURIS, discourses about the existence and extent of
risks of anthropogenic OMP and pathogens in the drink-
ing and surface water occur in and in-between different
discourse fields: (1) in mass media; (2) in general public,
in terms of the ‘normal’ consumer of water in everyday
life; furthermore, in specialized areas like (3) topic-
related sciences (engineering, biology, toxicology, ecol-
ogy, medicine etc.); (4) politics; and (5) water suppliers
and their representatives. Our research aim is it to ana-
lyse how the knowledge about and attitude towards the
existence and extent of these risks are being produced in
the mentioned discourses above and how these discur-
sively produced and constructed ‘truths’ affect social
actors.
In order to achieve these aims, an extensive survey is

being conducted to cover these different discourse fields
and to explore how risks of anthropogenic trace organic
compounds and pathogens in the drinking and surface
water are produced in and in-between these fields, which
discourses are most powerful and dominant and why.
Essential analytical categories will be the different lines
of arguments, the various levels of the discourses and
the diverse discourse positions [60]. Methods of qualita-
tive content analysis will be used to extract these cat-
egories from our empirical data. These data include
in-depth qualitative interviews with normal consumers
and professionals from science, industry and politics; press
articles, TV and radio broadcasts of regional and national
media institutions and also published texts and docu-
ments from scientific, political, non-profit, charitable, edu-
cational and economical organisations.

Risk management
A further goal of ASKURIS is the transfer of the
project's results into an integrated risk assessment for
the water supply of Berliner Wasserbetriebe that both
provides drinking water to 3.7 million people and treats
the wastewater. The transfer includes occurrence and
fate of OMP and pathogens within the urban water
cycle, their toxicity, their relevance for human health
and the assessment of different removal options. At
the moment, the risk management system in place at
Berliner Wasserbetriebe identifies, quantifies and evaluates
business and organizational risks. Technical, economical
and regulatory risks are thus included in the management
process. Regarding water quality, compliance with all water
quality and wastewater treatment standards is assured and
the generally acknowledged technical codes of good prac-
tice are used. However, up to now, there is no holistic,
process-orientated and risk-based approach which focuses
on the whole urban water cycle.
The water safety plan (WSP) approach [61] of the World

Health Organization offers a comprehensive framework to
implement such an integrated management system to
ensure water quality through good practice. Within
ASKURIS, a WSP will be developed and implemented at
Berliner Wasserbetriebe in three parts. First, a WSP for
Berlin water works including supply system description,
definition of critical control points, hazard analysis and
risk assessments as well as development of control mea-
sures will be developed and implemented. In a second
step, the WSP will be extended to include the urban water
cycle, i.e. assessing the influence of the share of treated
wastewater in surface water, combined sewer overflows,
etc. on the water resource. Finally, the WSP will be ex-
tended to the drinking water distribution system. Besides
compilation of partly already existing water supply system
descriptions, the key activities in this work package are the
scientific risk assessment for microbiological and chemical
risks. Monitoring results as well as toxicological data for
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risk assessment obtained within ASKURIS will be used by
a multi-disciplinary team including managers, engineers,
water quality controllers and technical staff. The devel-
oped water quality related, integrated risk management
system based on the water safety plan approach will then
be integrated into the existing risk management system of
Berliner Wasserbetriebe.

Conclusions
OMP and antibiotic-resistant organisms in the urban
water cycle of Berlin are analyzed together with toxico-
logical assessments and a human biomonitoring. This ap-
proach facilitates a scientific assessment of corresponding
risks in urban areas. Different treatment options at differ-
ent places within the water cycle are tested from bench
scale up to large scale. Accompanying cost and life cycle
assessments support the selection of most efficient tech-
nical measures with regards to the removal of harmful
OMP and organisms and thus minimizes risk. A basis for
an appropriate communication of potential risks is sup-
ported by an extensive sociological survey of the per-
ception of OMP-related risks. The detailed scientific
assessment of risks is used to implement a risk manage-
ment system. Outcomes of the research project ASKURIS
will provide an aid to decision-making for preventive mea-
sures against possible actual or future risks emanating
from OMP and antibiotic-resistant microorganisms.
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